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Abstract: The use of hardware-based data structures for accelerating real-time and embedded 
system applications is limited by the scarceness of hardware resources. Being limited by the 
silicon area available, hardware data structures cannot scale in size as easily as their software 
counterparts. We assert a hardware-software co-design approach is required to elegantly 
overcome these limitations. In this paper, we present a hybrid priority queue architecture that 
includes a hardware accelerated binary heap that can also be managed in software when the 
queue size exceeds hardware limits. A memory mapped interface provides software with access 
to priority-queue structured on-chip memory, which enables quick and low overhead transitions 
between hardware and software management. As an application of this hybrid architecture, we 
present a scalable task scheduler for real-time systems that reduces scheduler processing 
overhead and improves timing determinism of the scheduler. 
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1 Introduction 

Deploying increasing amounts of computation into smaller 
form factor devices is required to keep pace with the ever 
increasing needs of real-time and embedded system 
applications. The area of micro unmanned aerial vehicles 
(UAVs) is an example of where such need exists. The size 
of these vehicles has rapidly decreased, while the 
capabilities users wish to deploy continue to explode. As 
recently as June 2011, the New York Times published 
several articles on the cutting-edge work being pursued by 
Wright Patterson Air Force Base to develop micro-drones to 
aid soldiers on the battlefield (Bumiller and Shanker, 2011). 
In February of 2011, the DARPA funded nano air vehicle 
(NAV) program demonstrated a humming bird form-factor 
UAV weighing less than 20 grams (e.g., less than an AA 
battery) (DARPA, 2011; Grossman et al., 2011) with video 
streaming capabilities. These real-time and embedded 
applications can no longer rely on manufacturing advances 

to provide computing performance at Moore’s law rates, 
owing to transistors approaching atomic scales and thermal 
constraints (ITRS, 2009). Thus, more efficient use of the 
transistors available is needed. For example, use of 
application specific hardware has showed promise in 
accelerating various application domains, from 
cryptography (Eberle et al., 2008; Ors et al., 2008) to 
numerical simulation (Rahmouni et al., 2013) to control 
systems (Muller et al., 2013). 

We assert that the boundaries of software and hardware 
must be reexamined and we believe a fruitful realm for 
research is the hardware-software co-design of functionality 
that has been traditionally implemented in software. Such a 
co-design is needed to balance the cost of dedicating limited 
silicon resources for high-performance fixed hardware 
functionality, with the flexibility and scalability offered by 
software. Additionally, we claim seamless migration 
between software and hardware implemented functionality 
is required to allow systems to adapt to the dynamic needs 
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of applications. In this paper we examine a hybrid 
architecture for priority queue management and evaluate 
this architecture within a real-time scheduling context. The 
following motivates the importance of low processing 
overhead and timing predictably to a real-time scheduler’s 
performance. 

A real-time operating system (RTOS) is designed to 
execute tasks within given timing constraints. An important 
characteristic of an RTOS is predictable response under all 
conditions. The core of the RTOS is the scheduler, which 
ensures tasks are completed by their deadline. The choice of 
a scheduling algorithm is crucial for a real-time application. 
Online scheduling algorithms incur overhead, as the task 
queues must be updated regularly. This action is typically 
paced using a timer that generates periodic interrupts. The 
scheduler overhead generally increases with the number of 
tasks. A high resolution timer is required to distribute CPU 
load accurately based on a scheduling discipline in real-time 
systems, but such fine-grain time management increases the 
operating system overhead (Park et al., 2001; Adomat et al., 
1996). 

The extent to which a scheduler can ideally implement a 
given scheduling paradigm [e.g., earliest deadline first 
(EDF), rate monotonic (RM)], and thus provide the 
guarantees associated with that paradigm, is in part 
dependent on its timing determinism. A metric for helping 
quantify the amount of non-determinism that is introduced 
to the system by the scheduler is the variation in execution 
time among individual scheduler invocations. This can be 
roughly summarised by noting its best-case and worst-case 
execution times. Variations in scheduler execution time can 
be caused by system factors such as changes in task set 
composition, cache misses, etc. Reducing the scheduler’s 
timing sensitivity to such factors can help increase 
deterministic behaviour, which in turn allows the scheduler 
to better model a given scheduling paradigm. 

Figure 1 In order to allow analytical analysis of schedule 
feasibility, worst-case execution time (WCET) 
typically needs to be assumed (see online version  
for colours) 

 
Note: Thus, scheduler execution time variations that 

cause large differences between WCET and 
typical case execution time reduce utilisation of 
system computing resources. 

Figure 1 illustrates how the variation in scheduler overhead 
affects processor utilisation. To ensure that tasks meet their 
deadlines, the scheduler’s worst-case execution times are 
often overestimated. This can cause a system to be 
underutilised and wastes CPU resources. In this paper, we 
examine how the scheduler overhead and its variation  

can be reduced by migrating scheduling functionality (along 
with time-tick interrupt processing) to hardware logic. The 
expected results of our efforts are increased CPU utilisation, 
better system predictability, finer schedule and timing 
resolution. 

1.1 Contributions 

The primary contributions of this paper are 

1 a hardware accelerated binary min heap that supports 
enqueue and peek operations in O(1) time, returns the 
top-priority element in O(1) time, and completes a 
dequeue operation in O(log n) time 

2 a scalable hardware-software priority queue 
architecture that enables fast and low-overhead 
transitions of queue management between hardware 
and hybrid modes of operation 

3 a hybrid scheduler architecture that reduces scheduling 
overhead and improves predictability. 

1.2 Organisation 

The reminder of this paper is organised as follows.  
Section 2 describes the hardware-software priority queue 
architecture and implementation details. Section 3 describes 
the hardware scheduler architecture, which uses our priority 
queue design. The evaluation methodology and results are 
discussed in Sections 4 and 5. Section 6 presents related 
work on hardware accelerated priority queues and 
schedulers. Conclusions and future work are presented in 
Section 7. 

2 Hybrid priority queue architecture 

Priority queues are commonly implemented using a binary 
heap data structure, which supports enqueue and dequeue 
operations in O(log n) time. A binary heap is constrained by 
the heap property, where the priority of each node is always 
less than or equal to its parent. In a binary min heap, lower 
key-value corresponds to higher priority and the root node 
has the highest priority (lowest key value). A binary heap 
can be stored as a linear array where the first element 
corresponds to the root. Given an index i of an element, i/2, 
2i and 2i + 1 are the indices of its parent, left and right child 
respectively. 

Here we present a hybrid priority queue architecture that 
includes the hardware implementation of a conventional 
binary min heap (lower key value corresponds to higher 
priority), which can be managed in hardware and/or 
software. A binary heap could be stored compactly when 
compared to skip list, binomial heap and Fibonacci heap, 
without requiring additional space for pointers. Since the 
memory available in hardware (on-chip memory) is limited, 
the priority queue was implemented as a binary heap to 
better utilise the available resources. The priority queue 
operates in hardware mode when the queue size is less than 
a hardware limit threshold. When managed in hardware, the 
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priority queue supports enqueue and peek operations in 
O(1) time and dequeue operations in O(log n) time. 
Although the dequeue operation takes O(log n) time to 
complete, the top-priority (lowest key value) element can be 
returned immediately, allowing the dequeue operation to 
overlap its execution with the primary processor. Software 
issues custom instructions to initiate hardware-implemented 
enqueue and dequeue operations. 

Once the priority queue size exceeds hardware limits, 
excess elements are stored in the system’s main memory 
and managed by both hardware and software. Elements of 
the priority queue that are managed by hardware are 
memory mapped, providing software with direct access to 
these elements that are stored in a priority-queue-structured 
on-chip memory. Figure 2 illustrates this architecture. 
Memory mapping the priority-queue-structured on-chip 
memory additionally allows rarely used priority queue 
operations (e.g., delete element and decrease key) to be 
easily implemented in software, thus reducing the 
complexity of hardware control logic. 

Figure 2 A high level block diagram of the hardware-base 
priority queue interface (see online version for colours) 

 

2.1 Hardware priority queue 

A high level architecture diagram for the priority queue is 
shown in Figure 3. Central to the priority queue is the queue 
manager, which provides the necessary interface to the CPU 

and executes operations on the queue. Elements in each 
level of the binary heap are stored in separate on-chip 
memories called block rams (BRAMs) to enable parallel 
access to elements, similar to Bhagwan and Lin (2000) and 
Ioannou and Katevenis (2007). The address decoder 
generates addresses and control signals for the BRAM 
blocks. Queue operations in hardware mode are explained in 
detail below, using a min-heap example, where a lower key 
value corresponds to a higher priority. 

2.1.1 Enqueue 

Enqueue operations in a software binary heap are 
accomplished by inserting the new element at the bottom of 
the heap and performing compare-swap operations with 
successive parents until the priority of the new element is 
less than its parent. In software, the worst-case behaviour of 
this operation occurs when the priority of the new element 
is greater than the rest of the nodes present in the heap. In 
this case, the new element bubbles-up all the way to the root 
of the heap [i.e., O(log n) time]. 

However, our hardware implementation can perform 
this operation in O(1) time. We first calculate the path from 
the next vacant leaf node to the root. The index, i, of this 
leaf node is always one more than the current size of the 
queue, and each ancestor of this leaf node can be computed 
in parallel using a closed form equation (e.g., kth parent is 
located at index i/2k) in hardware. This path includes all 
ancestors from the leaf node to the heap’s root. The heap 
property ensures that the elements in this path are in sorted 
order. 

The shift register mechanism, shown in Figure 3, inserts 
a new element in constant time. This is similar to the  
shift-register priority queue described in Moon et al. (1997). 
Each level of the heap is mapped to an enqueue cell, which 
consists of a comparator, multiplexer and a register. The 
element to be inserted is broadcast to all the cells during an 
enqueue operation. The enqueue operation is then 
completed in the three steps shown in Figure 4. In the first 
step, all the elements in the path from the leaf node to the 
root node are loaded into the corresponding enqueue cells. 
The address for each BRAM block is generated by the 
address decoder. In the second step, the comparator in each 
enqueue cell compares the priority of the new element with 
the element stored locally and decides whether to latch the 
current element, new element or the element above it. In the 
final step, the elements along with the new entry are stored 
back into the heap. 
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Figure 3 The hardware priority queue architecture (see online version for colours) 

 

Figure 4 Steps of enqueue operation in hardware mode, (a) elements in the insertion path are loaded to enqueue cells  
(b) sorted insert of the new element to the enqueue cell array (c) elements in the enqueue cell array are stored  
back to the heap (see online version for colours) 

 

Figure 5 Steps of dequeue operation in hardware mode, (a) the root element is removed by replacing it with last element  
of the queue (b) new root is swapped with highest priority child (c) no more swap operations as the heap property  
is restored (see online version for colours) 

 
Note: In worst case there will be log(n) swap operations. 
 
2.1.2 Dequeue 

Figure 5 illustrates an example of a dequeue operation in 
hardware mode. The dequeue operation can be divided into 
two stages: removing the root element from the queue  
(as the value to be returned by the dequeue call), and 
reconstruction of the heap. The root element is first 
removed by replacing it with the last element of the queue 
to keep the heap balanced. The new root element is then 
compared with its highest priority child and is swapped if its 
priority is less than that of its child. This operation is 
repeated until the priority of the new root element is greater 
than that of its children. 

 
 
 
 

Note that the root element is returned immediately to the 
processor before restoring the heap property. The processor 
is not required to wait for the operation to complete, as the 
heap property of the queue is restored in hardware which 
executes in parallel to the CPU. Back-to-back dequeue 
operations would cause the processor to wait for the first 
operation to be completed in hardware before getting the 
result of the second request. Hence, the worst case 
execution time of a dequeue operation is O(log n). 
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2.1.3 Decrease-key and delete 

The decrease-key operation decreases the priority of a given 
queue element, and the delete operation removes a specified 
element from the queue. Supporting these rarely used 
operations in hardware adds considerable complexity to the 
hardware’s control logic. To avoid this complexity, these 
operations have been implemented in software. Software 
accesses the hardware priority queue elements via a 
memory mapped interface as if they resided in main 
memory. 

2.2 Hybrid priority queue management 

The size of the hardware priority queue is limited by the 
available on-chip memory resources of the device. 
Gracefully handling size overflow situations allows the use 
of hardware data structures for a wider range of 
applications. We achieve this by extending the heap array to 
off-chip memory (i.e., main memory) and managing the 
queue in both hardware and software. In hybrid mode, the 
enqueue and dequeue operations are executed in two stages. 
The hardware executes a part of the queue operation in the 
first stage, and then control is returned to software, which 
completes the rest of the operation. 

A memory mapped interface, shown in Figure 6(a), 
provides software access to on-chip priority queue elements 
as if they were resident in main memory. Since the address 
space of memory mapped hardware and the extended 
priority queue will typically not be part of the same 
continuous memory block, as shown in Figure 6(b). The 
queue algorithm needs to be modified accordingly to access 
the correct address depending on the array index of the 
element. The combination of memory mapping the 
hardware-base priority queue and implementing small 
modification to the queue algorithm enables our hybrid 
approach to have fast and low overhead transitioning 
between hardware and software management. The priority 
queue operations in hybrid mode are explained in detail 
below. 

Figure 6 (a) Memory mapped interface provides access to 
priority queue elements stored in BRAM  
(b) Virtual address space showing extended  
priority queue (see online version for colours) 

(a)   (b)  

2.2.1 Enqueue 

Figure 7 presents an example of the enqueue operation in 
hybrid mode. In the first stage of an enqueue operation, the 
new element is inserted into the hardware priority queue, 
which forms the top portion of the queue. This is similar  
to the hardware enqueue operation as explained in  
Section 2.1.1. Since we only go into hybrid mode when the 
queue size exceeds hardware limits, the lowest priority 
element in the hardware insertion path must be moved to the 
overflow buffer shown in Figure 3. This first stage is 
performed in constant time as explained in Section 2.1.1. 
Control is then returned to software. The overflow buffer is 
available to software through a memory mapped interface. 
In the second stage of the enqueue operation, the element in 
the overflow buffer is copied to the bottom of the extended 
queue and compare-swap operations are performed with 
successive parents until the heap property is restored. This 
stage is similar to the software enqueue operation and only 
the extended part of the queue (stored in main memory) is 
modified by software. The software implementation of 
enqueue operation is outlined in Algorithm 1. 

Algorithm 1 Pseudocode of hybrid priority queue’s enqueue 
operation 

1: procedure HYBRiD_PQ_ENQUEUE(queue, elem) 

2:  if Queue = Full then 

3:   throwexception 

4:  end if 

5:  Hardware_pq_enqueue(elem) 

6:  queue.size + + 

7:  if queue.size > queue.hwlimit then 

8:   index = queue.size 

9:   Copy overflown hardware element to the end of 
software queue. 

10:   queue.data[index] = overflow_cell 

11:   while index > queue.hw_limit do 

12:    if queue.data[index] 
<queue.data[parent(index)} then 

13:     swap_queue_data(queue, index, 
parent(index)) 

14:     index = parent(index) 

15:    end if 

16:   end while 

17:  end if 

18: end procedure 
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Figure 7 Steps of enqueue operation in hybrid mode, in this example we assume that the first 3 levels of the heap are managed in 
hardware, (a) hardware elements in the insertion path are loaded to enqueue cells (b) sorted insert of the new element and the 
lowest priority element is moved to the overflow buffer (c) hardware stores back the elements in enqueue cells and the overflow 
buffer element is moved to the bottom of the queue by software (d) software performs compare-swap operation to restore heap 
property (see online version for colours) 

 

Figure 8 Steps of dequeue operation in hybrid mode, in this example we assume that the first three levels of the heap are managed in 
hardware, (a) the root element is removed by replacing it with the last element of the queue by software (b) the heap property is 
restored by swapping the new root (31) with highest priority child (c) hardware completes dequeue operation and returns the 
position of new root(31) (d) software continues restoring the heap property from the position returned (see online version  
for colours) 

 

 
2.2.2 Dequeue 

Figure 8 provides an example of the dequeue operation in 
hybrid mode. In the first stage of a dequeue operation, the 
root element of the queue is removed by replacing it with 
the last element of the queue. This operation should be 
performed by software, since the last element of the queue 
resides in main memory. The hardware dequeue operation is 
then initiated through a custom instruction, which restores 
the heap property of the hardware portion of the queue as 
explained in Section 2.1.2. The custom instruction when 

completed returns the position of the newly inserted 
element, which can be accessed by software through 
memory mapped interface. The software then continues 
restoring the heap property starting from the position 
returned. The software implementation of dequeue 
operation is outlined in Algorithm 2. 

Comparing our approach with the related work reported 
in Section 6, our approach scales nicely without requiring 
complex hardware control logic to manage pipelining. Our 
hardware-software co-design approach overcomes the size 
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limitations of hardware, enabling the support of arbitrarily 
large priority queues. 

3 Hardware scheduler 

3.1 Overview 

As an application of the priority queue described above, we 
propose a hardware-software scheduler architecture 
designed to reduce the time-tick interrupt processing and 
scheduling overhead of a system. In addition, our hybrid 
architecture increases the timing determinism of the 
scheduler operations. The instruction set architecture of a 
processor was extended to support a set of custom 
instructions to communicate with the scheduler. The 
hardware scheduler executes the scheduling algorithm and 
returns control to the processor along with the next task to 
execute. Software then performs context switching before 
executing the next task. 

Algorithm 2 Pseudocode of hybrid priority queue’s dequeue 
operation 

1: procedure HYBRiD_PQ_DEQUEUE(queue) 
2:  if Queue = Empty then 
3:   throw exception 
4:  end if 
5:  result = queue.top; 
6:  if queue.size < queue.hw_limit then 
7:   hardware_pq_dequeue() 
8:  else 
9:   Replace root with last element of heap array. 
10:   queue.data[0] = queue.data[size] 
11:   Execute hardware dequeue and return position of 

newly inserted element. 
12:   new_index = hardware_pq_dequeue() 
13:   Continue heap restoration in software from the 

position returned. 
14:   Restore_sw_heap(new_index) 
15:  end if 
16:  queue.size – –; 
17: end procedure 

A software timer periodically generates interrupts to check 
for the availability of a higher priority task. The check is 
accomplished using a single custom instruction that returns 
a preempt flag, set by the hardware scheduler, based on 
which the processor chooses to continue executing the 
current task or preempts it to run a higher priority task. The 
following describes the functionality of the key components 
of the hardware accelerated scheduler. 

3.2 Architecture 

A high level block diagram of the hardware scheduler is 
shown in Figure 9. 

3.2.1 Controller  

The controller is the central processing unit of the 
scheduler. It is responsible for the execution of the 
scheduling algorithm. The controller processes instruction 
calls from the processor and monitors task queues (ready 
queue and sleep queue). 

3.2.2 Timer unit 

The timer unit keeps track of the time elapsed since the start 
of the scheduler. This provides accurate high-resolution 
timing for the scheduler. The resolution of the timer-tick 
can be configured at run time. 

3.2.3 CPU interface 

The interface to the scheduler is provided through a set of 
custom instructions as an extension to the instruction set 
architecture of the processor. This removes bus arbitration 
timing dependencies for data transfer. Basic scheduler 
operations such as run, configure, add task, and preempt 
task are supported. 

3.2.4 Task queues 

At the core of the scheduler are the task queues, which are 
implemented as priority queues. The ready queue stores 
active tasks based on their priority. The sleep queue stores 
inactive tasks until their activation time. The task with the 
earliest activation time is located at the front of the sleep 
queue. 

3.3 Modes of operation 

The scheduler is designed to operate in either hardware or 
hybrid mode, depending on the size of the hardware priority 
queues and the number of tasks in the system. Once the 
number of tasks exceeds the hardware limit, the queues 
extend to off-chip memory (i.e., main memory) and the 
scheduler starts operating in hybrid mode. In hybrid mode 
the scheduling algorithm is executed in software and the 
hybrid priority queues described in Section 2 are used to 
accelerate scheduler operations. This transition involves 
stalling the hardware scheduler through a co-processor call 
(custom instruction) and calling the software scheduler 
function. As the elements stored in the on-chip priority 
queues can be accessed by software via a memory mapped 
interface, it avoids the need to copy data between hardware 
and software memory when the scheduler changes modes. 
The proposed scheduler architecture scales to support an 
arbitrarily large number of tasks. 

4 Evaluation methodology 

4.1 Platform 

The hybrid priority queue and the scheduler were deployed 
and evaluated on the re-configurable autonomous vehicle 
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infrastructure (RAVI) board, an in-house developed FPGA 
prototyping platform. RAVI leverages field programmable 
gate array (FPGA) technology to allow custom hardware to 
be tightly integrated to a soft-core processor on a single 
computing device. It enables exploration of the 
software/hardware co-design space for designing system 
architectures that best fit an application’s requirements. The 
portions of the RAVI board used for our experiments 
included the Cyclone III FPGA, the on-board DDR DRAM 
and the UART. The FPGA was used to implement the 
NIOS-II (Altera’s soft-processor), the DDR stored software 
that was executed on the NIOS-II, and the UART supported 
data collection. A pictorial description of the setup is shown 
in Figure 10. 

4.2 Architecture configuration 

The priority queue and the scheduler were implemented  
as an extension to the instruction set architecture  
(using custom instructions) of a Nios II embedded processor 
running at 50 MHz on an Altera Cyclone III FPGA. The 
priority queue supported up to 255 elements in hardware 
mode and up an arbitrarily large number of elements in 
hybrid mode of operation. For our evaluation we limited the 
queue size to 8,192 elements. A binary heap-based priority 
queue implemented in software was used as a baseline to 

compare against the performance of our hybrid priority 
queue. 

The scheduler can support up to 255 tasks when 
managed in hardware, and up to an arbitrarily large number 
of tasks when in hybrid mode. For our evaluation we limited 
the task set size to 2,048, which is sufficient to support a 
vast majority of embedded systems. The scheduler can be 
configured to use EDF or a fixed priority-based scheduling 
algorithm such as rate monotonic scheduling (RMS). The 
scheduler overhead was also measured using different 
timer-tick resolutions (0.1 ms, 1 ms, 10 ms), which is used 
to generate periodic interrupts for the scheduler. A software 
test bench was built to accurately measure the overhead of 
the scheduler for different task sets and timer resolutions. 
Hardware-based performance counters, supported by the 
NIOS II processor provided a relatively unobtrusive 
mechanism to profile software programs including interrupt 
service routines in real-time. An EDF (Liu and Layland, 
1973) scheduler was deployed to measure the impact of 
running a dynamic scheduling algorithm on the processor. 
In EDF scheduling, task priorities are assigned based on the 
absolute deadline of the current request. At any given time, 
the task with the nearest deadline will be assigned the 
highest priority and executed. A software EDF scheduler 
implementation was used as a baseline to compare against 
our hybrid implementation. 
 

Figure 9 A high level architecture diagram of the hardware scheduler along with the custom instruction interface  
(see online version for colours) 

 

Figure 10 FPGA-based evaluation platform (see online version for colours) 
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4.3 Workload and metrics 

The performance of the priority queue was evaluated using 
the classic hold model (Vaucher and Duval, 1975); Jones, 
1986), where a priority queue of a given size is initialised 
and hold operations (dequeue followed by enqueue) are 
performed repeatedly on the queue. The size of the queue 
remains constant for the whole duration of the experiment. 
The access time measured by the hold model is dependent 
on the initial queue size and priority increment distribution. 
For our evaluation we used exponential, uniform, bimodal 
and triangular distributions, similar to those used in Vaucher 
and Duval (1975) and Ronngren and Ayani (1997). The 
transient behaviour of the priority queue is measured using 
the up/down model (Ronngren et al., 1991), where the 
queue is initialised to a given size by series of enqueue 
operation and then emptied by series of dequeue operation. 

A set of periodic tasks with randomly generated 
parameters (i.e., task execution time and period) was used to 
evaluate the performance of the EDF scheduler. The relative 
deadline of the tasks were assumed to be equal to their 
period. The number of tasks in the task set were varied, 
keeping the utilisation factor constant at 80%. The metrics 
used to evaluate our scheduler were: 

• scheduler overhead: time spent executing the 
scheduling algorithm 

• timer-tick overhead: time taken to service the periodic 
timer interrupt 

• predictability: variation in the execution time of 
individual scheduler invocations. 

5 Results and analysis 

This section presents the results of our hybrid priority queue 
versus software priority queue evaluation experiments. A 
discussion is then given on the results of our hybrid and 
hardware scheduler evaluation experiments. 

5.1 Priority queue 

5.1.1 Mean access time 

The mean access times of the hybrid and software priority 
queues measured using classic hold and up/down 

experiments are shown in Figures 11 and 12. The hybrid 
priority queue is fully managed in hardware when the queue 
size is 255 or less. The results show that the hybrid queue is 
six times faster than the software queue when the queue size 
is 255. The hybrid priority queue extends to software 
memory when the queue size exceeds 255 elements and the 
fraction of total work done in hardware decreases as more 
levels of heap are stored in software memory. Hence, the 
difference in performance between the hybrid and software 
priority queue decreases as the size of the queue increases. 
Even when the queue contains 8,192 elements, the hybrid 
priority queue performs close to 30% better than software 
priority queue. The performance of the hybrid and software 
priority queue is not very sensitive to priority increment 
distributions. 

5.1.2 Resource utilisation and scalability 

We implemented our hardware priority queue design on an 
Altera Cyclone III (EP3C25) FPGA. The resource 
utilisation of the priority queue for different queue lengths is 
shown in Table 1. Each priority queue element is 64 bits 
wide, with a 32 bit priority value. The amount of 
combinational logic required increases logarithmically with 
the size of priority queue. Since the number of elements 
doubles with each additional level, the combinational logic 
scales logarithmically with queue size. The device contains 
66 M9K memory blocks, which can be used as on chip 
memory. Each M9K block can hold 8,192 memory bits with 
a maximum data port width of 36. Since each level of the 
heap is stored in a BRAM with a 64 bit wide port, a 
minimum of 2 M9K blocks are used per level. The BRAM 
usage can be optimised by moving the first 5 levels of the 
heap to memory mapped registers. We also implemented the 
shift-register and systolic array-based priority queue 
architectures described in Moon et al. (1997). The resource 
utilisation of both architectures are shown in Table 2. These 
architectures use distributed memory instead of BRAMs to 
store queue elements. Figure 13 shows that our queue 
architecture scales well for large queues, as compared  
to shift-register and systolic array-based architectures 
(Moon et al., 1997) in which the combinational logic 
required increases linearly with queue size. 
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Figure 11 Performance comparison between the software and hybrid implementation of a priority queue, (a) software priority queue  
(b) hybrid priority queue (see online version for colours) 

  
(a)       (b) 

Note: Evaluated using the classic hold model, for four different priority increment distributions. 

Table 1 FPGA resource utilisation of the proposed priority queue design for different queue sizes 

Resources1 
Size 

Look-up tables (LUTs) Flip-flops Memory (bits) BRAMs 

31 1,411 (5.73%) 906 (3.68%) 1,920 (0.32%) 8 (12.12%)
63 1,996 (8.1%) 1,048 (4.25%) 3,968 (0.65%) 10 (15.15%) 
127 2,561 (10.4%) 1,182 (4.8%) 8,064 (1.325%) 12 (18.18%) 
255 3,161 (12.84%) 1,330 (5.4%) 16,256 (2.67%) 14 (21.21%) 

Note: 1Altera Cylone III FPGA contains: 24,624 LUTs, 24,624 flip-flops and 66 BRAMs. 

Table 2 FPGA resource utilisation of shift register and systolic array-based priority queue architectures (Moon et al., 1997) in 
comparison with proposed priority queue design 

Shift register Systolic array Proposed design 
Size 

LUTs Flip-flops 
 

LUTs Flip-flops 
 

LUTs Flip-flops 

31 4,995 (20.29%) 2,077 (8.43%)  8,560 (34.76%) 3,999 (16.24%) 1,411 (5.73%) 906 (3.68%)
63 10,275 (41.73%) 4,221 (17.14%)  17,520 (71.15%) 8,127 (33.00%)  1,996 (8.1%) 1,048 (4.25%) 
127 20,835 (84.61%) 8,509 (34.56%)  – –  2,561 (10.4%) 1,182 (4.8%) 
255 – –  – –  3,161 (12.84%) 1,330 (5.4%) 

Note: – Configurations for which the priority queue resources do not fit in Altera Cyclone III FPGA. 

Figure 12 Performance comparison between the software and hybrid implementation of a priority queue, (a) software priority queue (b) 
hybrid priority queue (see online version for colours) 

  
(a)       (b) 

Note: Evaluated using the up/down model, for four different priority increment distributions. 
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Figure 13 Comparing FPGA look-up table utilisation of the 
proposed priority queue design against shift register 
and systolic array-based priority queue architectures 
(Moon et al., 1997) for different queue sizes  
(see online version for colours) 

 
Note: Flip-flop utilisation also shows a similar trend. 

5.2 Scheduler 

For our analysis we have considered the following three 
configurations of an EDF scheduler. 

• Software scheduler: used as the baseline for evaluating 
our hybrid and hardware scheduler. Evaluated for up to 
2,048 tasks. 

• Hardware scheduler: executes scheduling algorithm, 
manages task queues, and supports up to 255 tasks in 
hardware. 

• Hybrid scheduler: the task queues of the software 
scheduler is replaced by our hybrid priority queue to 
accelerate scheduler operations. Evaluated for up to 
2,048 tasks. 

5.2.1 Scheduler overhead 

The overhead of the scheduler was measured for different 
sets of tasks and timer tick resolutions. Figure 14(a) shows 
the percentage overhead of software scheduler. The 
software scheduler overhead increases with the number of 
tasks and the timer-tick resolution. Most of this overhead 
results from time tick processing, where the scheduler 
periodically processes interrupt requests to check for new 
tasks and managing the task queues. This time-tick 
processing has been a limiting factor for implementing 
dynamic priority-based scheduling algorithms in embedded 
real time systems (Park et al., 2001; Adomat et al., 1996), 
since finer granularity time ticks lead to closer to ideal 
implementation of such schedulers. 

Figure 14(b) shows the scheduling overhead when the 
hardware scheduler is used. The results show that when the 
timer tick resolution is set to 0.1 ms and with 255 tasks, the 
scheduler overhead is less than 0.4%. This is a 90% 
reduction in scheduler overhead as compared to the 
software implementation. Most of the scheduling overhead 
is eliminated by the hardware scheduler, as the time tick 
processing and a majority of the scheduling functionality is 
migrated to hardware. A call to the software scheduler is 
now replaced by a custom instruction call to obtain the next 
task for execution or to preempt the current task. The 
overhead of managing the task queues in software is 
removed, as the scheduler runs in parallel to the processor 
and hardware priority queues are used to accelerate task 
queue management. The time tick processing overhead is 
reduced considerably as the software interrupt service 
routine just needs to execute a single instruction to check 
the availability of a higher priority task in the hardware 
scheduler. 

 
 

Figure 14 Performance of the software scheduler compared with hardware scheduler for task sizes less than or equal to 255,  
(a) software scheduler (b) hardware scheduler (see online version for colours) 

  
(a)       (b) 
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Figure 15 Performance of software scheduler compared with hybrid scheduler for task sizes greater than 255, (a) software scheduler  
(b) hardware scheduler (see online version for colours) 

  
(a)       (b) 

Figure 16 Variation in execution times of software and hardware scheduler, (a) software scheduler (b) hardware scheduler  
(see online version for colours) 

  
(a)       (b) 

 
Once the number of tasks exceeds 255, our scheduler 
executes in hybrid mode where the scheduling algorithm 
runs in software and queue operations are accelerated using 
our hybrid priority queues. The switching between hardware 
and hybrid scheduler mode is quick and has little or no 
overhead in part due to the hardware queues being memory 
mapped. The overhead of the scheduler in hybrid mode is 
50% less than the software scheduler overhead as seen in 
Figure 15. 

5.2.2 Predictability 

The predictability of the scheduler can be measured as the 
variation in the execution time of a single call to the 
scheduler. The variation in execution times of the hardware 
and software scheduler is shown in Figure 16. The 
difference between the best case and worst case execution 
time of the software scheduler is 50 times larger then the 
hardware implementation as shown in Figure 16. This 
variation for the software implementation is due to system 
factors such as changes in task-set composition, cache 

misses, etc. The processing time of the software priority 
queues (task queues) varies, as it depends on the current 
queue size and task parameters. These variations can make 
the scheduler a significant source of non-determinism in 
real-time systems. Since the system must be designed for 
worst case behaviour to ensure task deadlines are met, 
increases in execution time variation reduces CPU task 
utilisation (i.e., CPU becomes underutilised). On the other 
hand, the execution times of the hardware scheduler show 
more deterministic behaviour with very little variation. 
Migrating time-tick processing to hardware and the use of 
hardware accelerated priority queues results in tighter 
worst-case execution time bounds for the scheduler. This in 
turn leads to higher CPU task utilisation. Figure 17 shows 
the variation in execution time of the hybrid scheduler in 
comparison with the software scheduler. The use of hybrid 
priority queues in the software scheduler reduces the 
variation in the scheduler execution time by more than 50% 
as shown in Figure 17. 
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Figure 17 Variation in execution times of software and hybrid scheduler, a) software scheduler (b) hardware scheduler  
(see online version for colours) 

  
(a)       (b) 

 
6 Related work 

6.1 Hardware priority queues 

Many hardware priority queue architectures have been 
implemented in the past, most of them in the realm of  
real-time networks for packet scheduling (Moon et al., 
1997; Bhagwan and Lin, 2000; Ioannou and Katevenis, 
2007). Moon et al. (1997) compared four scalable priority 
queue architectures: first-in-first-out, binary tree, shift 
registers and systolic array-based. The shift-register 
architecture suffers from bus loading, as new tasks must be 
broadcasted to all the queue cells. The systolic array 
architecture overcomes the problem of bus loading at the 
cost of doubling hardware storage requirements. The 
hardware complexity for both the shift register and systolic 
array architecture increases linearly with the number of 
elements, as each cell requires a separate comparator. This 
makes these architectures expensive to scale in terms of 
hardware resources. 

Bhagwan and Lin (2000) proposed a new pipelined 
priority queue architecture based on p-heap (a new data 
structure similar to binary heap). A pipelined heap manager 
was proposed in Ioannou and Katevenis (2007) to pipeline 
conventional heap data structure operations. Both of these 
pipelined implementations of a priority queue are scalable 
and are designed to achieve high throughput, but at the 
expense of increased hardware complexity. 

The size of the priority queues discussed above is 
limited by the availability of on-chip memory. A hybrid 
priority queue system (HPQS) was proposed in Zhuang and 
Pande (2006), where both SRAM and DRAM was used to 
store large priority queues used in high speed network 
devices. A java-based hardware-software priority queue  
was proposed in Chandra and Sinnen (2010), where a  
shift-register-based priority queue (Moon et al., 1997) was 
extended by appending a software binary heap. Bloom et al. 
(2012) presented an exception-based mechanism for 
handling overflows in hardware priority queue, where 
additional data is moved to secondary storage by the 
exception handler. 

6.2 Hardware schedulers 

Several architectures (Adomat et al., 1996; Burleson et al., 
1999; Saez et al., 1999; Kuacharoen et al., 2003;  
Gupta et al., 2010; Kohout et al., 2003) have been proposed 
to improve the performance of schedulers using hardware 
accelerators. Most schedulers implement some kind of 
priority-based scheduling algorithm that requires a priority 
queue to sort the tasks based on their priority. A real time 
kernel called FASTHARD has been implemented in 
hardware (Adomat et al., 1996). The scheduler of 
FASTHARD can handle 256 tasks and eight priority levels. 
The Spring scheduling coprocessor (Burleson et al., 1999) 
was built to accelerate scheduling algorithms used in the 
Spring kernel (Stankovic and Ramamritham, 1991), which 
was used to perform feasibility analysis of the schedule. 
Kuacharoen et al. (2003) implemented a configurable 
hardware scheduler that provided support for three 
scheduling disciplines, configurable during runtime. A slack 
stealing scheduling algorithm was implemented in hardware 
(Saez et al., 1999) to support scheduling of tasks (periodic 
and aperiodic) and to reduce scheduling overhead. Nakano 
et al. (1995) implemented most of the/xITRON kernel 
functionality including tasks scheduling in a co-processor 
called STRON-1 which reduced the kernel overhead. A 
hardware scheduler for multiprocessor system on chip is 
presented in Gupta et al. (2010), which implements the Pfair 
scheduling algorithm. A real time task manager (RTM) that 
implements scheduling, time management, and event 
management in hardware is presented in Kohout et al. 
(2003). The RTM supports static priority-based scheduling 
and is implemented as an on-chip peripheral that 
communicates with the processor though a memory mapped 
interface. The SERRA run-time scheduler synthesis  
and analysis tool was presented in Mooney and  
Micheli (1997). The tool automatically generated a  
run-time hardware-software scheduler from system level 
specification. A hardware-software kernel was presented in 
Morton and Loucks (2004), which implemented a 
scheduling co-processor running EDF scheduling algorithm. 
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A hardware real-time scheduler coprocessor (HRTSC) 
architecture for NIOS II processor was described in  
Varela et al. (2012), which could be configured to run any 
priority-based scheduling discipline. 

The hardware priority queues described above use  
on-chip memory to store data, which limits the size of the 
queue due to resource constraints of the device. In our 
hybrid priority queue architecture, the hardware priority 
queue can be extended into off-chip memory and managed 
in both hardware and software, when the queue size exceeds 
hardware limits. The priority queue, when managed in 
hardware, supports constant time enqueue operations and 
dequeue operations in O(log n) time. The hardware 
utilisation of the our priority queue increases 
logarithmically with the queue size and avoids complex 
pipelining logic. 

One of the limitations of the hardware schedulers 
described above is that, once deployed, they can only 
support a fixed number of tasks. Our hybrid scheduler 
architecture overcomes this limitation by switching between 
hardware and software modes of operation depending on the 
number of tasks in the system. The transitions between 
hardware and software is fast and has low overhead. The 
hybrid priority queue is used as a part of our real-time 
scheduler to improve performance and timing predictability. 

7 Conclusions and future work 

A new hybrid priority queue architecture has been 
implemented, which can be managed in hardware and/or 
software. The priority queue when managed in hardware 
supports enqueue and peek operations in O(1) time, returns 
the top-priority element in O(1) time, and completes a 
dequeue operation in O(log n) time. The design enables 
quick and low overhead transition between hardware and 
software management. We utilise hardware logic to enhance 
the performance of queue operations even when managing 
the priority queue in software. As an application of the 
proposed priority queue architecture, a scalable hybrid 
scheduler is implemented that supports 255 tasks in 
hardware mode and up to an arbitrarily large number of 
tasks in hybrid mode. The scheduler when managed in 
hardware, showed up to 90% reduction in scheduler 
overhead when compared to the software scheduler. Our 
results show that the hardware scheduler has 98% less 
variation in execution time when compared to the software 
scheduler, thus giving more predictable execution times, 
which is necessary in high-performance real time systems. 

Avenues of future work include, 

1 reducing the rate of performance degradation as queue 
overflows into software, 

2 evaluating the use of our hybrid priority queue in 
discrete event simulation and network optimisation 
algorithms 

3 integrating our hybrid scheduler with Real-time Linux 
and characterising the scheduler performance. 
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