
Embedding Online Runtime Verification for
Fault Disambiguation on Robonaut2?

Brian Kempa, Pei Zhang,
Phillip H. Jones, Joseph Zambreno, and Kristin Yvonne Rozier

Iowa State University, Ames IA 50014, USA
{bckempa, peizhang, phjones, zambreno, kyrozier}@iastate.edu

http://temporallogic.org/research/R2U2/
Abstract. Robonaut2 (R2) is a humanoid robot onboard the Interna-
tional Space Station (ISS), performing specialized tasks in collabora-
tion with astronauts. After deployment, R2 developed an unexpected
emergent behavior. R2’s inability to distinguish between knee-joint faults
(e.g., due to sensor drift versus violated environmental assumptions) be-
gan triggering mid-task, safety-preserving freezes-in-place in the confined
space of the ISS, preventing further motion until a ground-control op-
erator determines the root-cause and initiates proper corrective action.
Runtime verification (RV) algorithms can efficiently disambiguate the
temporal signatures of different faults in real-time. However, no previous
RV engine can operate within the limited available resources and special-
ized platform constraints of R2’s hardware architecture. An attempt to
deploy the only runtime verification engine designed for embedded flight
systems, R2U2, failed due to resource constraints. We present a signif-
icant redesign of the core R2U2 algorithms to adapt to severe resource
and certification constraints and prove their correctness, time complex-
ity, and space requirements. We further define optimizations enabled by
our new algorithms and implement the new version of R2U2. We encode
specifications describing real-life faults occurring onboard Robonaut2 us-
ing MLTL and detail our process of specification debugging, validation,
and refinement. We deploy this new version of R2U2 on Robonaut2,
demonstrating successful real-time fault disambiguation and mitigation
triggering of R2’s knee-joint faults without false positives.

Keywords: Online Runtime Verification · Steam-based Runtime Veri-
fication · Real-time Embedded Systems · Temporal Logic Specification

1 Introduction

As the demand for autonomous operation rises at an unprecedented pace, we
must find ways for robotic systems to aid or replace human tasks safely. This
requires embedding runtime checks for safe operation into specialized domain-
specific platforms designed for utility and efficiency. Robonaut2 (R2) [9] is a hu-
manoid robot capable of performing complex tasks on-board the International
Space Station (ISS) while interacting safely with humans. [12] Even carefully de-
signed, formally-verified cyber-physical systems experience unanticipated emer-
gent behaviors deployment to complex, dynamic environments like the ISS. In
? Supported by NASA ECF NNX16AR57G and NSF CAREER Award CNS-1552934.

2 B. Kempa, P. Zhang, P. H. Jones, J. Zambreno, and K. Y. Rozier

R2’s case, position sensors within rotational joints can return faulty position
data indistinguishable from a high-torque force to the current control system.
Disambiguating between sensing errors and high-torque states would enable
autonomous operation, rather than freezing for safety reasons and contacting
Houston ground-control for help; choosing the incorrect mitigation action can
have disastrous consequences. Autonomous operation demands the real-time rea-
soning and safety guarantees provided by runtime verification, on increasingly
domain-specific hardware, including post-deployment.

This fault-disambiguation problem poses several challenges that previously
prevented an effective solution. Runtime Verification (RV) could detect the
faults, but R2 is already deployed on the ISS; no new resources will be launched
to run an RV engine. Low-level joint control resides on a heavily-optimized Field
Programmable Gate Array (FPGA) adjacent to the knee with limited remain-
ing space. Consequently, the only available resources in which to implement a
solution are tightly-constrained. RV needs to run in hardware in the remaining
space on that critical FPGA with provable non-interference with the existing
joint controller. The RV engine must be real-time, online, and stream-based to
continuously evaluate faults throughout R2’s operation. RV on R2 must be re-
motely configurable process; we cannot bring R2 back to Earth or requisition
astronaut time to change the runtime observer specification. Given that systems
on the ISS are frequently repurposed and operate in a continuously-changing
environment, we need to be able to change RV observers without re-synthesizing
hardware, and quickly adapt to updated conditions and requirements. Most RV
tools are implemented in software, require significant resources and overhead,
or have incompatible expression languages. R2 is running the Robot Operating
System (ROS) [21] and some formal verification tools for ROS exist; however,
none of these fit the requirements of the R2 project. Others have developed
a generic approach to formally verify real-time properties of ROS-based appli-
cations [10], at design time, using timed automata and a model checker in an
approach that cannot be scaled to R2’s resource constraints. Similarly, ROSCoq
extends the Coq theorem prover to enable reasoning about the cyber-physical
behavior for developing certified ROS systems [8]. ROSRV [11] and Declarative
Robot Safety (DeRoS) [1] integrate RV into ROS by automatically generat-
ing ROS nodes that monitor said properties during execution. But, they are
software-based, limited to data published on the ROS message bus, and incur
significant runtime overhead. EgMon eagerly checks for violations of specifications
in a future-bounded, propositional metric temporal logic that avoids instrumen-
tation of already-certified components [13]. Reading (previously logged) inputs
over a via a CAN bus (similar to the ROS bus) EgMon detected safety violations
for an autonomous research vehicle. But, EgMon is a software implementation
that would not work in R2’s architecture with significant overhead and with a
high level of false positives that would be unacceptable. Formal verification of
autonomous robot systems is a burgeoning research area; see [17] for a survey.

R2 requires a hardware-based solution with consideration for resource con-
straints; Table 1 summarizes four options. IoTA considers some resource con-

Embedding Online RV for Fault Disambiguation on Robonaut2 3

straints in implementing RV, but for software [6]. RVS is the only other mod-

Tool P2V[16] BusMOP[19] HW-CBMC [18] R2U2 [22]
Method Automata synthesis Formula decomposition

Type Hard-coded Programmable
Target Software COTS Peripheral HW-SW Co-design Sensor

Spec Logic Past time only Future/past time
Last Update 2007 2008 2017 2019

Table 1. Comparison of Hardware Monitor Tools.
ern hardware RV implementation; its limited expression language only produces
monitors the internal behavior of the kernel and requires resynthesis to change
monitored properties [24]. The Realizable Responsive Unobtrusive Unit [23]
(R2U2) is the only RV tool that starts an encoding with the resource constraints
and then optimizes the verification to reliably detect as many faults as possi-
ble, rather than, e.g., starting with runtime monitors and creating resource-
consuming implementations. R2U2’s online, stream-based, hardware (FPGA)
implementation, provable unobtrusiveness, and ability to change monitors with-
out resynthesis fit the R2 project. R2U2’s compositional, hierarchical design and
more flexible specification language made it most likely to fit in the space left
over on R2’s knee joint’s FPGA. However, an intial trial proved that even R2U2’s
most optimized configuration would not fit; no currently existing RV tools were
capable of on-board, real-time verification of R2’s knee joint fault. In order to
solve this practical problem, we must create a tool to bridge that gap. We use
R2U2 as a base, design and prove correct new observer encoding algorithms suit-
able for R2, and develop optimizations until we are able to successfully deploy
RV on the real Robonaut2 knee joint.

This paper contributes: (1) a significant revision of all asynchronous future-
time MLTL monitor encodings of [22] with new proofs of correctness; (2) op-
timizations to online RV for operation under resource constraints using these
encodings; (3) an implementation of these monitors with an empirical evaluation
showing improvement in resource consumption; (4) specification design, debug-
ging, validation, refinement techniques, and lessons learned from the deployment
of RV on an autonomous robot; (5) a case study embedding online, stream-based,
hardware RV on Robonaut2 hardware on loan from NASA, demonstrating suc-
cessful real-time fault disambiguation in this resource-constrained environment.
Section 2 overviews the logic MLTL and notation used. New monitoring en-
codings are detailed and proven in correct in section 3, then implemented with
optimization in section 4 and presented with experimental performance char-
acterization. Section 5 covers embedding of these observers on Robonaut2 and
development of specifications for fault disambiguation. Finally, lessons learned
and opportunities for future work are highlighted in section 6.

2 Preliminaries

R2U2 uses mission-time LTL (MLTL) for future-time temporal specification [22,
15]. MLTL is based on MTL [3] which adds time bounds to the temporal opera-

4 B. Kempa, P. Zhang, P. H. Jones, J. Zambreno, and K. Y. Rozier

tors of LTL, but with tighter constraints on the time intervals. A closed interval
over naturals I = [a, b] (0 ≤ a ≤ b are natural numbers) is a set of naturals
{i | a ≤ i ≤ b}. I is bounded iff b < +∞; otherwise I is unbounded. MLTL
temporal operators are restricted to bounded intervals. MLTL abstracts Metric
Temporal Logic (MTL) [2], which includes open and half-open intervals. Every
MTL open or half-open bounded interval corresponds to an equivalent closed
bounded interval, e.g., (1,2) = ∅, (1,3) = [2,2], (1,3] = [2,3], etc. Let P be a set
of atomic propositions (AP) and ϕ, ϕ1 and ϕ2 be MLTL formulas. The definition
of MLTL is given below:

Definition 1. (MLTL Syntax) The syntax of an MLTL formula ϕ over a set of
atomic propositions AP is recursively defined as:

ϕ ::= true | false | p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | �Iϕ | ♦Iϕ | ϕ1UIϕ2 | ϕ1RIϕ2

where p ∈ AP is an atom, ϕ1 and ϕ2 are MLTL formulas. I is an interval [lb, ub],
lb ≤ ub and lb, ub ∈ N, or simply [ub] if lb = 0. Given two MLTL formulas ϕ1,
ϕ2, we denote ϕ1 ≡ ϕ2 if they are semantically equivalent. In MLTL semantics,
we define false ≡ ¬true, ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2), ¬(ϕ1UIϕ2) ≡ (¬ϕ1RI¬ϕ2)
and ¬♦Iϕ ≡ �I¬ϕ. MLTL keeps the standard operator equivalences from LTL,
including ♦Iϕ ≡ (true UIϕ), (�Iϕ) ≡ (false RIϕ). Notably, MLTL discards the
next (X) operator, which is essential in LTL, since Xϕ is semantically equivalent
to �[1,1]ϕ (see [15]). The semantics of MLTL satisfiability is defined as follows:

Definition 2. (MLTL Semantics) The satisfaction of an MLTL formula ϕ,
over a set of propositions AP, by a computation/trace π starting from position
i (denoted as π, i |= ϕ) is recursively defined as:

– π, i |= true,
– π, i |= p iff p ∈ π[i],
– π, i |= ¬ϕ iff π, i 6|= ϕ,
– π, i |= ϕ1 ∧ ϕ2 iff π, i |= ϕ1 and π, i |= ϕ2,
– π, i |= ϕ1U[lb,ub]ϕ2 iff |π| ≥ i + lb and, there exists j ∈ [i + lb, i + ub] such

that π, j |= ϕ2 and for k < j every k ∈ [i+ lb, i+ ub] π, k |= ϕ1,
where computation π is a finite trace (i.e., sequence) of propositions over the set
AP with length |π|. p ∈ AP is an atom. The set of propositions at index i of π
is denoted as π[i](i ≥ 0).

2.1 Abstract Syntax Tree and Execution Sequence

R2U2 executes runtime reconfigurable specifications by constructing an Abstract
Syntax Tree (AST) of logical observers wherein each node produces an execution
sequence as output which can be used by other nodes in the tree.

Definition 3. (Execution Sequence) (adapted from [22]) An execution se-
quence for an MLTL formula ϕ, denoted by 〈Tϕ〉, over computation π is a
sequence of verdict tuples Tϕ = (v, τ) where τ ∈ N0 is a time stamp and
v ∈ {true, false} is a verdict. We use a superscript integer to access a par-
ticular element in 〈Tϕ〉, e.g., T 0

ϕ is the first element in execution sequence 〈Tϕ〉.

Embedding Online RV for Fault Disambiguation on Robonaut2 5

We write Tϕ.τ to access τ and Tϕ.v to access v of such an element. We say Tϕ
holds if Tϕ.v is true and Tϕ does not hold if Tϕ.v is false. For a given execution
sequence 〈Tϕ〉 = T 0

ϕ, T
1
ϕ, T

2
ϕ, T

3
ϕ, . . . , the tuple accessed by Tnϕ corresponds to a

section of satisfication of ϕ as follows: for all time stamps i ∈ [Tn−1
ϕ .τ+1, Tnϕ .τ],

π, i |= ϕ in case Tnϕ .v is true and π, i 6|= ϕ in case Tnϕ .v is false.

2.2 Propagation Delay

Each temporal operator in MLTL is accompanied by a closed natural integer
bound, I = [lb, ub]. As these operators chain together, the decidability of a given
node becomes a function of its bound and the bounds of its inputs.

Definition 4. (Propagation Delay) The propagation delay of an MLTL formula
ϕ is the the time between when a set of propositions π[i] (i.e., input) arrives at
ϕ, and when it is known if π, i |= ϕ (i.e., output). A node’s worst case delay
(wcd) is the maximum propagation delay it can experience, and the minimum
value is the best case delay (bcd).

Definition 5. (Propagation Delay Semantics) Let ϕ be an MLTL formula where
ϕ.bpd is the best-case propagation delay of formula ϕ and ϕ.wpd is its worst-case
propagation delay. If ϕ is a unary operator, then let its direct subformula be
ψ; else, if ϕ is a binary operator, then let ψ1, ψ2 be its direct subformulas. Let
Propagation Delay of formula h be defined as follows:

if ϕ ∈ AP :

{
ϕ.wpd = 0

ϕ.bpd = 0
if ϕ = ¬ψ :

{
ϕ.wpd = ψ.wpd

ϕ.bpd = ψ.bpd

if ϕ = �[ϕ.lb,ϕ.ub]ψ or ϕ = ♦[ϕ.lb,ϕ.ub]ψ :

{
ϕ.wpd = ψ.wpd+ ϕ.ub

ϕ.bpd = ψ.bpd+ ϕ.lb

if ϕ = ψ1 ∨ ψ2 or ϕ = ψ1 ∧ ψ2 :

{
ϕ.wpd = max(ψ1.wpd, ψ2.wpd)

ϕ.bpd = min(ψ1.bpd, ψ2.bpd)

if ϕ = ψ1U[ϕ.lb,ϕ.ub]ψ2 or ϕ = ψ1R[ϕ.lb,ϕ.ub]ψ2 :

{
ϕ.wpd = max(ψ1.wpd, ψ2.wpd) + ϕ.ub

ϕ.bpd = min(ψ1.bpd, ψ2.bpd) + ϕ.lb

3 New Future-Time Algorithms for R2U2

To improve real-time performance and reduce resource usage, we contribute new
encodings of asynchronous, future time MLTL operators. Single-writer, many-
reader, ring buffers called shared connection queues (SCQs) replace the FIFOs
of the original operators [22]. The SCQ backed operators allows further im-
plementation optimizations, discussed in section 4. While developed to reduce
real-time resource requirements, we found SCQ backed operators necessary for
other advancements like model-predictive runtime verification [27].

6 B. Kempa, P. Zhang, P. H. Jones, J. Zambreno, and K. Y. Rozier

3.1 Shared Connection Queues

A SCQ is a circular buffer of verdict tuples with one write pointer and one or
more read pointers, and buffers verdicts from a child subformula to be read by
multiple parent expressions. These supplant the synchronization queues utilized
in [22]. The Shared Ring Buffer is a similar structure used in multi-threading
software (e.g., [25, 14]), which inspired the SCQ. Figure 1 shows how SCQs are
embedded in an MLTL AST, with read pointers for each parent and a write
pointer for the child.

Reading and Writing Algorithms 1 and 2 show SCQ read and write operations.
Each SCQ manages a write pointer while observers maintain read pointers for
each child queue. SCQs store verdict intervals using aggregation [22], wherein the
latest tuple’s timestamp is overwritten by subsequent timestamp values if their
truth values are equal. For example, if the SCQ contains {(true, 10), (false, 15)},
then during the timestamp interval [11, 15] the verdicts are all false. If the next
input is (false, 16), the content becomes {(true, 10), (false, 16)}.

To enforce monotonic reads from an SCQ, the variable τe tracks the last
timestamp a reader used from a SCQ and prevents the output of a result with
a smaller timestamp than any previous result. When reading, the read pointer
rd_ptr searches the SCQ until encountering a value greater or equal to τe,
else it returns empty. The circular topography of the SCQ is omitted from the
algorithms for clarity. In practice, the pointer increments and decrements by the
size of a verdict tuple, modulo the size of the queue.

Algorithm 1: Function: write()
input: execution sequence tuple: data

1 if SCQ[SCQ.wr_ptr].v == data.v then //Setup aggregation
2 SCQ.wr_ptr −−;
3 end
4 SCQ[SCQ.wr_ptr]← data;
5 SCQ.wr_ptr ++;

0
1

2
34

5

6
…

0
1

2
34

5

6
… 0

1

2
34

5

6
…

𝑆!

𝑆" 𝑆# S1.SCQ: Store S1

S3.SCQ: Store S3

S2.SCQ: Store S2

0
1

0

0
1
…

S 1
.S
CQ

S 2
.S
CQ

S 3
.S
CQ

Memory Space

Abstract Syntax Tree Abstract Syntax Tree with SCQ Build SCQ using RAM

3

4☐[𝟐] 𝐴𝑃

∧

∧

☐[𝟐] 𝐴𝑃

𝑁!

𝑁" 𝑁#
𝑅𝑑 (𝑁!

)

𝑅𝑑
(𝑁!
)

𝑊𝑟 (𝑁") 𝑊𝑟 (𝑁#)

𝑊𝑟 (𝑁!)

𝑅𝑑 (𝑁!)

𝑊𝑟 (𝑁")

𝑊𝑟 (𝑁#)

𝑅𝑑 (𝑁!)

𝑊𝑟 (𝑁!)

…

…

1

Algorithm 2: Function: read()
input : &rd_ptr, τe
output: Empty or data

1 if ∗rd_ptr == SCQ.wr_ptr then
2 return Empty;
3 end
4 data← SCQ[∗rd_ptr];
5 while data.τ < τe do
6 rd_ptr ++;
7 if ∗rd_ptr == SCQ.wr_ptr

then
8 return Empty;
9 end

10 data← SCQ[∗rd_ptr];
11 end
12 return data;

Fig. 1. Implementation of SCQs, in the AST and in memory with rules of operation.

Queue Sizing The required buffer size for each observer is computed a priori
by recursively sizing the SCQs in an MLTL AST based the best and worst-case
delays of their subexpressions. The size of the output queue for a node g with
sibling nodes Sg that share a common parent:

size(g.Queue) = max(max{s.wpd | ∀s ∈ Sg} − g.bpd, 0) + 1

Embedding Online RV for Fault Disambiguation on Robonaut2 7

Sizing queues based on the worst-case-delay, guarantees verdicts are con-
sumed by the parent nodes before the write pointer recirculates and old data is
overwritten – firmly bounding the required memory. Software RV monitors can
use statically allocated memory to avoid undesirable effects of allocation since
the memory bounds are known in advance. In hardware RV deployments, the
SCQ is built from Block RAMs (BRAMs), an FPGA memory resource. Each
BRAM can be partitioned into multiple SCQs.

3.2 MLTL Operator Observers with SCQs

Algorithms 3–6 in Figure 2 demonstrate our new encodings of the four required
future-time MLTL asynchronous observers using SCQs. Whereas [22] used one of
two observers for �[lb,ub] depending on the bounds, this encoding only uses one
observer. We also include Algorithm 3 which denotes the addition of an atomic
proposition into the SCQs.

3.3 Correctness of New MLTL Observers

Correctness of algorithms 3–3 follows immediately from the SCQ read and write
operations.

Theorem 1 (Correctness of the �-operator). The observer in Algorithm 5
correctly implements 〈Tϕ〉, π, i |= �Jϕ for any 〈Tϕ〉.

Proof (Proof of Theorem 1). In [22] it is shown that:

∀i : (i− lb ∈ [n, n+ ub− lb] → π, i |= ϕ) ⇔ �lb,ubϕ

Therefore the verdict of �lb,ubϕ at time n is only dependent on π, i |= ϕ for
values of i that satisfy:

– (i− lb) ≥ n: Since (ub− lb) ≮ 0 and n ∈ N0 then i− lb ≥ 0 which is upheld
by the check on line 11 of Algorithm 5 and returns false time steps where
π, i |= ¬ϕ while i − lb ≥ 0. Intuitively, this suppresses false verdicts unless
the lower bound has been met.

– (i− ub) ≤ n: By the same logic (i− ub) ≤ 0 which is upheld by the second
check on line 8 does not allow. Intuitively, this suppresses true verdicts unless
the full duration of the interval has been observed.

Thus, a rising edge of ϕ (captured by lines 4-5) must be seen at a time ≤
(i− lb) and no falling condition can be seen before a time > (i− ub). The first
check on line 8 ensures ϕ has held for at least the duration of J , satisfying this
condition. With output occurring iff the original equivalence relation is satisfied,
the theorem follows.

Due to size, proofs for Algorithm 4 and Algorithm 6 will be available online1.
1 http://temporallogic.org/research/FORMATS20/index.html

8 B. Kempa, P. Zhang, P. H. Jones, J. Zambreno, and K. Y. Rozier

Algorithm 3: LOAD (ATOMIC) Operation
input : atomic proposition: AP, current timestamp: tR

1 for each new arriving timestamp do
2 N .SCQ.write([AP, tR]);
3 end

Algorithm 4: NEGATION Operator: ¬
Var: τe
Init: τe ← 0

1 data← N .iSCQ.read(τe,&N .rd_ptr);
2 while data is not Empty do
3 data← N .iSCQ.read(τe,&N .rd_ptr);
4 N .SCQ.write([!out.v, out.τ]);
5 τe ← out.τ + 1;
6 end

Algorithm 5: AND Operation: ∧
Var: τe
Init: τe ← 0

1 result← [false,−1];
2 data_1← N .iSCQ_0.read(τe,&rd_ptr);
3 data_2← N .iSCQ_1.read(τe,&rd_ptr);
4 while data_1 is not Empty || data_2 is not Empty do
5 if both data_1 and data_2 are not empty then
6 if data_1.v and data_2.v then
7 result = [true,min(data_1.τ, data_2.τ)];
8 else if !data_1.v and !data_2.v then
9 result = [false,max(data_1.τ, data_2.τ)];

10 else if data_1.v then
11 result = [false, data_2.τ];
12 else
13 result = [false, data_1.τ];
14 end
15 else if data_1 is Empty then
16 if !data_2.v then
17 result = [false, data_2.τ];
18 end
19 else if !data_1.v then
20 result = [false, data_1.τ];
21 end
22 if result.τ ! = −1 then
23 N .SCQ.write(result);
24 τe ← result.τ + 1;
25 else
26 Break;
27 end
28 data_1← N .iSCQ_0.read(τe,&rd_ptr);
29 data_2← N .iSCQ_1.read(τe,&rd_ptr);
30 end

Algorithm 6: GLOBAL Operation: �[lb,ub]

Var: m↑, [vpre, τpre], τe
Init: [vpre, τpre]← [false,−1], τe ← 0

1 data = N .iSCQ.read(τe,&rd_ptr);
2 while data is not Empty do
3 τe = data.τ + 1;
4 if data.v and !vpre then
5 m↑ ← τpre + 1;
6 end
7 if data.v then
8 if data.τ −m↑ ≥ ub− lb and data.τ − ub ≥ 0

then
9 N .SCQ.write([true, data.τ − ub]);

10 end
11 else if data.τ − lb ≥ 0 then
12 N .SCQ.write([false, data.τ − lb]);
13 end
14 [vpre, τpre]← data;
15 data = N .iSCQ.read(τe,&rd_ptr);
16 end

Algorithm 7: UNTIL Operation: U[lb,ub]

Var: m↓, [vpre, τpre], τe, τres
Init: [vpre, τpre]← [false, 0] or [vpre, τpre]← [true,−1],

τres ← 0, τe ← 0
1 data_1 = N .iSCQ_0.read(τe,&rd_ptr);
2 data_2 = N .iSCQ_1.read(τe,&rd_ptr);
3 while data_1 is not Empty and data_2 is not Empty

do
4 result = [false,−1];
5 tmin = min(data_1.τ, data_2.τ);
6 τe ← tmin + 1;
7 if vpre and !data_2.v then
8 m↓ ← τpre + 1;
9 end

10 if data_2.v then
11 result← [true, tmin − lb];
12 else if !data_1.v then
13 result← [false, tmin − lb];
14 else if tmin ≥ ub− lb+m↓ then
15 result← [false, tmin − ub]
16 end
17 if result.τ ≥ τres then
18 τres ← result.τ + 1;
19 N .SCQ.write(result);
20 end
21 [vpre, τpre]← data_2;
22 data_1 = N .iSCQ_0.read(τe,&rd_ptr);
23 data_2 = N .iSCQ_1.read(τe,&rd_ptr);
24 end

Fig. 2. Implementations of asynchronous, future-time MLTL observers using SCQs.
For each algorithm: N is the current node, N .SCQ is the output SCQ of N , and
N .iSCQ is input SCQ being read. In binary operators, there are two input queues:
N .iSCQ_0 and N .iSCQ_1

Embedding Online RV for Fault Disambiguation on Robonaut2 9

4 Optimizations and Experimental Performance Analysis

In an MLTL formula, repeated sub-expressions generate redundant observer in-
structions, needlessly increasing required queue space and execution time. Com-
pilers use common subexpression elimination (CSE) [7] to share the output of
repeated expressions. Figure 3 demonstrates the application of CSE to MLTL
ASTs. This was not possible with the observer encodings from [22] and uses
SCQs with multiple readers. Algorithm 8 is used to remove duplicate branches
of the formula AST.

S0← load AP(a0)
S1← f�[0,3](S0)

S2← f¬(S1)
S3← load AP(a0)
S4← f�[0,3](S3)

S5← fU[0,5](S2, S4)

(¬⏞
2
□[0,3]⏞
3
𝑎0⏞
4
)𝒰[0,5]⏞

1

(□[0,3]⏞
5
𝑎0⏞
6
)

S0← load AP(a0)
S1← f�[0,3](S0)

S2← f¬(S1)
S3← fU[0,5](S2, S1)

Fig. 3. Example of CSE on an MLTL formula where nodes 3 and 5 have identical
children. Sharing the output of node 3 removes one repetition of this sequence, saving
two queues and two instructions.

Experimental Demonstration of Improved Average Performance To measure the
impact of CSE with SCQs as presented in Section 4, the 10, 000 random MLTL
benchmark formulas used in [15] were converted to observer trees and queue
configurations with and without CSE enabled. The benchmark set varies the
length, number of variables, and probability of the U-operator.

The R2U2 configuration compiler is a single-threaded python application and
was ran in parallel (12 instances at a time) on a 2019 MacBook Pro with a i9-
9880H Intel Core i9 and 32 GB system RAM. In total, the 20,00 runs across
12 processes completed in under 15 seconds wall time and the duration of each
process was measured using the Python 3.7.7 standard time library process_time
function which counts system and user CPU (but not sleep) time with the most
precise clock available.

Over the whole set, the number of R2U2 observer nodes dropped 27.06%
from 788, 095 to 574, 822 and the total queue depth required decreased 4.28%
from 42, 300, 361 to 40, 491, 507 with only a −10.25% increase in running time
from 57.66 to 63.57 seconds of CPU time. Figure 4 shows histograms of AST
and SCQ reduction respectively. Only 30 of the 10,000 saw no improvement.

The reduction in AST nodes is significant and translates proportionally to
execution time. An mean and median savings of 24% on random formulas are
impressive and the greater repetition in human written specification gives hope
that this may be a low average compared to real specifications. The queue space
reduction was less impressive by percentage; however it still saved an median of
100 slots per formula which is important as BRAMs are less plentiful on FPGAs.

10 B. Kempa, P. Zhang, P. H. Jones, J. Zambreno, and K. Y. Rozier

Fig. 4. Reduction in AST nodes (left) and SCQ slots (right) as percentage of unopti-
mized size. Hight indicates number of formulas from MLTL benchmark set [15].

The long time bounds in the benchmark set is hoped to contribute to this, but
more testing is needed.

5 Theory into practice: Robonaut2

Algorithm 8: CSE(T, S)
Input : AST Tree: T , Set: S = {(label, node)}
Output: optimized AST: T

1 // Recuse through T in post-order
2 Let N = root(T)
3 if leftChild(N) 6= ∅ then CSE(leftChild(N), S)
4 if rightChild(N) 6= ∅ then CSE(rightChild(N), S)
5 // Build expression label
6 N.label = [′(′]
7 if leftChild(N) then

N.label += leftChild(N).label
8 N.label += N.name
9 if rightChild(N) then

N.label += rightChild(N).label
10 N.label += [′)′]
11 // Trim common subexpressions
12 if (N.label, •) /∈ S then
13 S = S ∪ (N.label, N)
14 else
15 Let M∃T such that (N.label,M) ∈ S
16 T = T ∪ (parent(N),M)
17 T = T − (parent(N), N)

18 end

Robonaut2’s legs are
comprised of se-
rial elastic actua-
tors with torsional
springs [20]. Pre-
cise measurement
of the spring dis-
placement are used
to cap applied force,
affording near-human
dexterity while re-
maining safe in con-
fined spaces with
astronauts [4]. Af-
ter deployment, the
Absolute Position
Sensors (APSs) have
been observed to
sporadically initial-
ize incorrectly by ≈
2.1 rad (120 deg).
In this fault condi-
tion, safety checks
fail due to a per-
ceived high torque
loading. This is well

beyond the physical hard-stop of the joint, but is not treated as a spurious error.

Embedding Online RV for Fault Disambiguation on Robonaut2 11

To increase availability and resilience, Robonaut2 must be able to automatically
trigger corrective action without compromising existing safety guarantees.

Bus Interface

PC

FPGA
Observer

Preprocessing

Bus Communicate IP

Target
Bus Port

D
irect Port

Sensor Sensor

Actuator

...

Formal
Specification .binAST

Fig. 5. Location of RV observer.
Compiled specifications are loaded
onto the FPGA where a RV observer
monitors the internal sensor values

Constraints Resource constraints and ar-
chitecture inflexibility are inherent chal-
lenges of supplementing an existing system.
The Robonaut2 team requested fault dis-
ambiguation directly on the joint controller
FPGA. This provides increased observabil-
ity, minimizes additional messages on the
control bus, and does not invalidate the
flight code certification of the paired micro-
controller. However, left-over space is lim-
ited and additional logic could not impact
the response time of the existing controller.
Additionally, the system’s remote deploy-
ment limited available debug information.
Consequently, initial specification was derived from a plain-language description
of the fault mechanics by subject-matter experts while awaiting a real trace.

Solution Architecture Figure 5 shows the desired architecture. During develop-
ment, a serial debug port loads specifications and returns verdicts. In flight,
Robonaut2’s configuration system will handle specification loading. R2U2 is re-
alizable, responsive, and unobtrusive [23]; it embeds observers for Robonaut2’s
symptoms in hardware, returns observer verdicts at the system clock rate, and
is adaptable to the highly-constrained operational environment without affect-
ing existing joint control, respectively. We apply two of R2U2’s reasoning layers:
signal processing (which processes incoming signals into Boolean atomics) and
temporal observation (which evaluates MLTL specifications). Our use case re-
quires early-as-possible identification of failure, necessitating using R2U2’s asyn-
chronous mode. The existing flight configuration routes all sensors, actuator
control, and communications through the FPGA while a microcontroller runs
high-rate model-based control algorithms [5]. Since the FPGA is the nexus of
the actuator’s sensors, all required data can be accessed on-chip.

5.1 Embedding Runtime Verification

R2U2 allows runtime configuration of the observer specifications, but limits to
the size and duration of these specifications are set by design-time parameters.
For R2U2 to dynamically reconfigure specifications at runtime (without resyn-
thesis or recertification), we utilize BRAMs for instruction memory, variable
memory, and queues; see [23]. R2U2 memory requirements are complex, but
deterministic, and driven by queue depth and timestamp length. Design-time
calculations have been developed [26] to explore the valid configurations under
our memory constraint. Figures 6 and 7 show the impact on FPGA look-up-
tables (LUTs) and BRAM respectively. A max queue depth of 20 and time-stamp

12 B. Kempa, P. Zhang, P. H. Jones, J. Zambreno, and K. Y. Rozier

0 10 20 30 40 50 60

Timestamp Width LTS (bit)

0

2000

4000

6000

8000

N
um

be
r

of
LU

T
s LUT-3/LUT-4 Adder/Subtractor; LUT-4 Comparator

LUT-6 Adder/Subtractor/Comparator

LUT-3 Comparator

Fig. 6. LUT resource usage for timestamp
length LTS . Growth is linear, but the rate
is dependent on FPGA process type.

0 10 20 30 40 50 60

Timestamp Width LTS (bit)

10

15

20

25

30

N
um

be
r

of
18

K
b

B
R
A
M

s

N × T ∈ [1,256]
N × T ∈ [257,512]
N × T ∈ [513,1024]
N × T ∈ [1025,2048]

Fig. 7. BRAM resource usage for times-
tamp length LTS and total binary opera-
tors’ longest trace delay N × T .

length of 16-bits were selected from expert and system operator’s recommenda-
tions. This increased the LUT utilization of the FPGA from 51.2% to 79.81%
and increased the number of BRAMs used from 2 to 27 our of 32. A video demo2

shows R2U2 running live on the R2 platform, reasoning over the joint state, eval-
uating temporal observers, and dynamically configuring specifications without
stopping the robot.

Sensor_1

n1

n2Sensor_2

X

X
+

Compare
≥,≤,
>, <,
=, ≠n3

𝐴𝑃

Select

Fig. 8. R2U2 atomic checker. Orange
blocks are configurable online.

Boolean Checker Construction R2U2’s
runtime-configurable Atomic Checkers, shown
in Fig. 8, convert the native sensor format
to Boolean variables used in specification.
For example, the EncPos sensors value indi-
cate the rotation degree of the motor. Robo-
naut2’s native encoder format is a 19-bit

number, where the highest bit is an error flag and the lower 18 bits represent
the encoder count. This presents two challenges: (1) the EncPos is reset to 0
at initialization regardless of the actual position; (2) to compare with the APS
values, this count must be scaled and offset. Taken together, R2U2 must recon-
figure the offset before using encoder values. For EncPos, we let sensor_1 take
the raw value as input and sensor_2 be constant 1. In this configuration, n1
is the scale factor, and n2 is the configurable offset. The output AP is result of
the selected comparison with the n3 reference value.

5.2 Specification

Design Our specifications need to disambiguate between three modes (APS1
faulty, APS2 faulty, or no fault) without false positives. We initially encode
Robonaut2’s team’s fault description: If the differences between APSs are larger
than 1 radian, then the APS that disagrees with the encoder by more than 0.01
radian is at fault. We assume: (1) Agreement with the encoder value implies cor-
rect APS position, (2) Agreement between any two position sources implies the
minority opinion is incorrect, i.e. sensor voting. To prevent false positives we en-
sure states hold for at least three timesteps before reporting a fault. An “encoder
fault position” signal is set by Robonaut2 when the encoder and APS1 disagree,
removing the need for one atomic checker redundant. Our MLTL specifications
2 http://temporallogic.org/research/R2U2/R2U2-on-R2_demo.mp4

Embedding Online RV for Fault Disambiguation on Robonaut2 13

reason over the APS1 position, APS2 position, encoder position, and encoder
fault position sensor inputs; see Table 2. The R2U2 configuration requires 17
instructions, 14 SCQs, and 29 queue slots with a max depth of 4 without CSE.
Applying CSE reduces that to 14 instructions, 11 SCQs, and 26 queue slots with
a max depth of 4.

Table 2. Fault disambiguation specification – revision 1

R2U2 Configuration

Bus Values Temporal Formulas

APS1: Position [rad] ϕ1 = �[0,3](Vthreshold)

APS2: Position [rad] ϕ2 = FaultEncPos ∧�[0,3](AgreeEnc,APS2)→ APS1Wrong

EncPos: Position [rad] ϕ3 = ϕ1∨!FaultEncPos→ APS2Wrong

EncFaultPos: Encoder Fault [bool] Observer Tree

Signal Processing
ϕ3ϕ1

EncFaultPos

ϕ2

AgreeEnc,APS2Vthreshold

APS1 APS2 EncPos

Vthreshold = |APS1−APS2| > 1 rad

AgreeEnc,APS2 = |APS2− EncPos| > 0.01 rad

Validation After initial specification development, a terrestrial Robonaut2 de-
veloped the fault of interest. To validate our specifications, we ran R2U2 over
the recorded traces. In Fig. 9-10 the top timeline shows the encoder (red), APS1
(blue, labeled motor), and APS2 (yellow, labeled joint) positions in radians. The
lower timeline shows the R2U2 verdicts of the fault-case specifications. In Fig. 9
the APS fault occurs at 43 seconds. The expected > 2.1 rad shift in APS position
is flagged by Vthreshold correctly. Notice that the encoder jumps to an implau-
sible 998 radians, violating the sensor voting assumption. Figure 10 records an
attempted recovery. While appearing successful, the difference between the three
sensors after time 19 is still too wide to unlock the e-stop. Additional Vthreshold
correctly encodes that this is a different failure mode. This data reveals an im-
plicit assumption that encoder values freeze during a fault.

Revision With our new insignt on the fault behavior, we revise the specification
strategy: If there is a sudden, large jump in the encoder and an APS’s position
report, the APS that jumped is at fault. The assumptions of our new strategy:
(1) A sufficiently large discontinuity in the data is the fault signature, (2) In
the fault case, only the faulty APS ‘moves’. To compare the APS value before
and after fault, we must identify the timestep of the fault – which is when the
encoder goes out-of-range. To determine the “moving” APS, we can divide the
joint range into sections and use the signal processing layer to get a Boolean
an indicating APS1 in region n (and similarly with bn and APS2). Now the
temporal observers can check if the APS is in the same region before and after
the encoder jump. The size of n dictates the maximum travel distance before
triggering a region change. We select n such that the maximum travel is about

14 B. Kempa, P. Zhang, P. H. Jones, J. Zambreno, and K. Y. Rozier

998
1000

0 5 10 15 20 25 30 35 40 45 50 55 60 65
3
2
1
0

Ra
di

us
encoder (rad) joint (rad) motor (rad)

False

True
◻[0,3]V threshold

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Time (sec)

False

True
◻[0,3]Agree EncAPS2

Fig. 9. Ground R2: APS Fault

998
1000

0 5 10 15 20 25 30 35 40
5
4
3
2
1
0

Ra
di

us

encoder (rad) joint (rad) motor (rad)

False

True
◻[0,3]V threshold

0 5 10 15 20 25 30 35 40

Time (sec)

False

True
◻[0,3]Agree EncAPS2

Fig. 10. Ground R2: Unsuccessful Recovery

half the fault discontinuity: ≈ 1 rad. The range of the APS is [−π, π], requiring
6 regions, (a1, a2, . . . , a6) and (b1, b2, . . . , b6) to meet the target region size. The
fault only occurs when arming a parked actuator so we are not concerned with
travel during a fault. Also, nominal travel across a boundary is not accompanied
with an encoder range error, further preventing false positives. Table 3 lists
the MLTL and signal layer specification. The R2U2 configuration requires 154
instructions, 140 SCQs, and 196 queue slots with a max depth of 3 without CSE.
With CSE this is reduced to 100 instructions, 86 SCQs, and 142 queue slots with
a max depth of 3. Here, CSE has makes a huge difference requiring the number of
SCQs be increased by one bit to 128 instead of 2 bits to 512 to accommodate the
formula. The 33% reduction in instructions shows the efficiency of configurations
with many repeated components.

Verification As a consistency check, an MLTL SMT solver proved the specifica-
tions were not tautologies, and were falsifiable [15]. Finally, recorded fault traces
were played back through real hardware, successfully catching the fault with no
false positives during nominal operation.

Embedding Online RV for Fault Disambiguation on Robonaut2 15

Table 3. Fault disambiguation specification – revision 2

R2U2 Configuration
Bus Values Temporal Formulas

APS1: Position [rad] ϕn = (an ∧ ¬e) ∧ �[1,2](¬an ∧ e)→ APS1Fault ∀n ∈ [0, 5]

APS2: Position [rad] ϕm+6 = (bm ∧ ¬e) ∧ �[1,2](¬am ∧ e)→ APS2Fault ∀m ∈ [0, 5]

EncPos: Position [rad] Observer Tree
Signal Processing ϕ[0,5]

a[0,5] e

ϕ[6,11]

b[6,11]

APS1 APS2 EncPos

e = EncPos > 100

an = π(n
6
− 1) < APS1 < π(n+1

6
− 1)∀n ∈ [0, 5]

bn = π(n
6
− 1) < APS2 < π(n+1

6
− 1)∀n ∈ [0, 5]

6 Conclusion

We have successfully designed, proven, and implemented a new set of future time
temporal observers for runtime verification with R2U2. We successfully applied
these to fault disambiguation on real Robonaut2 hardware on loan from NASA
– a real, demanding, and constrained environment. Importantly, the techniques
presented in sections 3 and 4 are not exclusive to this application or R2U2.

Working with FPGA limitations provided important lessons on the relation
between specification complexity and hardware resources. In fig. 6 LUTs required
is linear with time-stamp length, transistor count (and therefore chip space and
power) is exponential with LUT size. Also, the discontinuities in Fig. 7 are due to
BRAM width alignment. Since both LUT type and BRAM width are properties
of the FPGA, the target hardware can drastically change the maximum size of
specification even with the same amount of logic and BRAM free. For a hardware
R2U2 deployment, BRAM will probably be the limiting resource. This may not
be true for other monitors, but it’s the price of reconfigurability which allows
RV to be embedded, certified, and deployed flexibly and was a requirement of
the R2 team.

Future Work With the core observers implemented, we can re-encode the ex-
tended operator set of MLTL which features operators like “release” that are
currently accepted by the R2U2 formula compiler but encoded via the equiva-
lence relation in section 2. These additional encodings would reduce the number
of negations in the AST and therefor the amount of SCQ space required. Addi-
tional design-time optimizations to the AST are also under investigation.

On the application side, we are working toward distributing specifications
across RV monitors on multiple FPGAs. This extension has potential to in-
crease the set of specifications that can be monitored, both by utilizing more
of the leftover fabric on the platform, and by allowing observers to reason over
proprieties that cannot by observed from a single location.

References
1. Adam, S., Larsen, M., Jensen, K., Schultz, U.P.: Towards rule-based dynamic safety

monitoring for mobile robots. In: International Conference on Simulation, Model-
ing, and Programming for Autonomous Robots. pp. 207–218. Springer (2014)

16 B. Kempa, P. Zhang, P. H. Jones, J. Zambreno, and K. Y. Rozier

2. Alur, R., Henzinger, T.: A really temporal logic. J. ACM 41(1), 181–204 (1994)
3. Alur, R., Henzinger, T.A.: Real-time logics: Complexity and expressiveness. Infor-

mation and Computation 104(1), 35–77 (1993)
4. Badger, J., Hulse, A., Taylor, R., Curtis, A., Gooding, D., Thackston, A.: Model-

based robotic dynamic motion control for the robonaut 2 humanoid robot. In: 2013
13th IEEE-RAS International Conference on Humanoid Robots (Humanoids). pp.
62–67 (Oct 2013). https://doi.org/10.1109/HUMANOIDS.2013.7029956

5. Badger, J., Gooding, D., Ensley, K., Hambuchen, K., Thackston, A.: ROS
in Space: A Case Study on Robonaut 2, pp. 343–373. Springer Interna-
tional Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-26054-9_13,
https://doi.org/10.1007/978-3-319-26054-9_13

6. Clemens, J., Pal, R., Sherrell, B.: Runtime state verification on resource-
constrained platforms. In: MILCOM 2018-2018 IEEE Military Communications
Conference (MILCOM). pp. 1–6. IEEE (2018)

7. Cooper, K., Eckhardt, J., Kennedy, K.: Redundancy elimination revisited. In: Pro-
ceedings of the 17th international conference on Parallel architectures and compi-
lation techniques. pp. 12–21. ACM (2008)

8. Cowley, A., Taylor, C.J.: Towards language-based verification of robot behaviors.
In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.
pp. 4776–4782. IEEE (2011)

9. Diftler, M.A., Mehling, J.S., Abdallah, M.E., Radford, N.A., Bridgwater,
L.B., Sanders, A.M., Askew, R.S., Linn, D.M., Yamokoski, J.D., Perme-
nter, F.A., Hargrave, B.K., Platt, R., Savely, R.T., Ambrose, R.O.: Robo-
naut 2 - the first humanoid robot in space. In: 2011 IEEE Interna-
tional Conference on Robotics and Automation. pp. 2178–2183 (May 2011).
https://doi.org/10.1109/ICRA.2011.5979830

10. Halder, R., Proença, J., Macedo, N., Santos, A.: Formal verification of ros-based
robotic applications using timed-automata. In: 2017 IEEE/ACM 5th International
FME Workshop on Formal Methods in Software Engineering (FormaliSE). pp.
44–50. IEEE (2017)

11. Huang, J., Erdogan, C., Zhang, Y., Moore, B., Luo, Q., Sundaresan, A., Rosu, G.:
Rosrv: Runtime verification for robots. In: International Conference on Runtime
Verification. pp. 247–254. Springer (2014)

12. J.M.Badger, A.M.Hulse, A.Thackston: Advancing safe human-robot interactions
with robonaut 2. In: Proceedings of the 12th International Symposium on Artificial
Intelligence, Robotics and Automation in Space (2014)

13. Kane, A., Chowdhury, O., Datta, A., Koopman, P.: A case study on runtime mon-
itoring of an autonomous research vehicle (arv) system. In: Runtime Verification.
pp. 102–117. Springer (2015)

14. Lee, P.P., Bu, T., Chandranmenon, G.: A lock-free, cache-efficient shared ring
buffer for multi-core architectures. In: Proceedings of the 5th ACM/IEEE Sympo-
sium on Architectures for Networking and Communications Systems. pp. 78–79.
ACM (2009)

15. Li, J., Vardi, M.Y., Rozier, K.Y.: Satisfiability checking for mission-time ltl. In: Pro-
ceedings of 31st International Conference on Computer Aided Verification (CAV
2010). LNCS, vol. TBD, p. TBD. Springer, New York, NY, USA (July 2019).
https://doi.org/TBD

16. Lu, H., Forin, A.: The design and implementation of p2v, an architecture for zero-
overhead online verification of software programs. Tech. Rep. MSR-TR-2007-99,
Microsoft Research (August 2007)

Embedding Online RV for Fault Disambiguation on Robonaut2 17

17. Luckcuck, M., Farrell, M., Dennis, L., Dixon, C., Fisher, M.: Formal specifica-
tion and verification of autonomous robotic systems: a survey. arXiv preprint
arXiv:1807.00048 (2018)

18. Mukherjee, R., Purandare, M., Polig, R., Kroening, D.: Formal techniques for
effective co-verification of hardware/software co-designs. In: Proceedings of the
54th Annual Design Automation Conference 2017. p. 35. ACM (2017)

19. Pellizzoni, R., Meredith, P., Caccamo, M., Rosu, G.: Hardware runtime monitor-
ing for dependable cots-based real-time embedded systems. In: 2008 Real-Time
Systems Symposium. pp. 481–491 (Nov 2008)

20. Pratt, G.A., Williamson, M.M.: Series elastic actuators. In: Proceedings 1995
IEEE/RSJ International Conference on Intelligent Robots and Systems. Human
Robot Interaction and Cooperative Robots. vol. 1, pp. 399–406 vol.1 (Aug 1995).
https://doi.org/10.1109/IROS.1995.525827

21. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA workshop on
open source software. vol. 3, p. 5. Kobe, Japan (2009)

22. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime ob-
server pairs for system health management of real-time systems. In: Proceedings
of the 20th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS). Lecture Notes in Computer Science (LNCS),
vol. 8413, pp. 357–372. Springer-Verlag (April 2014)

23. Rozier, K.Y., Schumann, J.: R2u2: Tool overview. In: Proceedings of International
Workshop on Competitions, Usability, Benchmarks, Evaluation, and Standardisa-
tion for Runtime Verification Tools (RV-CUBES). vol. 3, pp. 138–156. Kalpa Publi-
cations, Seattle, WA, USA (September 2017). https://doi.org/TBD, https://easy-
chair.org/publications/paper/Vncw

24. Solet, D., Béchennec, J.L., Briday, M., Faucou, S., Pillement, S.: Hardware run-
time verification of a rtos kernel: Evaluation using fault injection. In: 2018 14th
European Dependable Computing Conference (EDCC). pp. 25–32. IEEE (2018)

25. Wong, L., Arora, N.S., Gao, L., Hoang, T., Wu, J.: Oracle streams: A high perfor-
mance implementation for near real time asynchronous replication. In: 2009 IEEE
25th International Conference on Data Engineering. pp. 1363–1374. IEEE (2009)

26. Zhang, P., Li, J., Kempa, B., Zambreno, J., Jones, P.H., Rozier, K.: Formal speci-
fication encoding under platform resource constraints ((Under Submission))

27. Zhang, P., Zambreno, J., Jones, P.H., Rozier, K.: Model predictive runtime verifi-
cation for embedded platforms with real-time deadlines ((Under Submission))

18 B. Kempa, P. Zhang, P. H. Jones, J. Zambreno, and K. Y. Rozier

A Proofs of New MLTL Observer Correctness

A.1 Negation Operator: ¬

Theorem 2 (Correctness of the NEGATION Operator: ¬). The observer
in Algorithm 3 correctly implements π, i |= ¬ϕ for any 〈Tϕ〉.

Algorithm 3: NEGATION Operator: ¬ϕ
Init: τmin = −1

1 if Tϕ.τ > τmin then
2 τmin = Tϕ.τ ;
3 return (!Tϕ.v, Tϕ.τ);
4 end

Proof (Proof of Theorem 2). For every input tuple, an output is produced with
an identical time and negated verdict. The theorem follows from the SCQ read
and write semantics, Alg. 2 and Alg. 1.

Embedding Online RV for Fault Disambiguation on Robonaut2 19

A.2 And Operator: ∧

Theorem 3 (Correctness of the AND Operator: ∧). The observer in Al-
gorithm 4 correctly implements π, i |= ϕ ∧ ψ for any 〈Tϕ〉 and 〈Tψ〉.

Algorithm 4: AND Operation: ϕ ∧ ψ
Init: τmin = −1

1 if Tϕ.τ > τmin or Tψ.τ > τmin then
2 if Tϕ holds and Tψ holds then
3 τmin = min(Tϕ.τ, Tψ.τ);
4 return (true,min(Tϕ.τ, Tψ.τ));
5 else if Tϕ does not hold and Tψ does not hold then
6 τmin = max(Tϕ.τ, Tψ.τ);
7 return (false,max(Tϕ.τ, Tψ.τ));
8 else if Tϕ does not hold then
9 τmin = Tϕ.τ ;

10 return (false, Tϕ.τ);
11 else if Tψ does not hold then
12 τmin = Tψ.τ ;
13 return (false, Tψ.τ);
14 end
15 end

Proof (Proof of Theorem 3). Input may be aggregated and therefore may repre-
sent an interval of like-valued verdicts. Results returned in 4 cases:

1. Both true: all inputs true for all time steps where both inputs are known to
be true by definition.

2. Both false: All time steps with a known false value of either input is false,
therefore output is false up through maximum known time stamp.

3. Only first input is false. This is sufficient to declare the output false up to
the final time-step of the false interval.

4. Only second input is false, same construction as previous point.

20 B. Kempa, P. Zhang, P. H. Jones, J. Zambreno, and K. Y. Rozier

A.3 Global Operator: �

Theorem 4 (Correctness of the GLOBAL Operator: �). The observer
in Algorithm 5 correctly implements π, i |= �Jϕ for any 〈Tϕ〉.

Algorithm 5: GLOBAL Operation: �[lb,ub]ϕ

Init: m↑ = 0, τmin = −1
1 if Tϕ.τ > τmin then
2 if of Tϕ occurs then
3 m↑ = τmin + 1;
4 end
5 τmin = Tϕ.τ ;
6 if Tϕ holds and Tϕ.τ ≥ max((ub− lb) +m↑, ub) then
7 return (true, Tϕ.τ − ub);
8 else if Tϕ.τ ≥ lb then
9 return (false, Tϕ.τ − lb);

10 end
11 end

Proof (Proof of Theorem 4). In [22] it is shown that:

∀i : (i− lb ∈ [n, n+ ub− lb] → π, i |= ϕ) ⇔ �lb,ubϕ

Therefore the verdict of �lb,ubϕ at time n is only dependent on π, i |= ϕ for
values of i that satisfy:

– (i− lb) ≥ n: Since (ub− lb) ≮ 0 and n ∈ N0 then i− lb ≥ 0 which is upheld
by the check on line 11 of Algorithm 5 and returns false time steps where
π, i |= ¬ϕ while i − lb ≥ 0. Intuitively, this suppresses false verdicts unless
the lower bound has been met.

– (i− ub) ≤ n: By the same logic (i− ub) ≤ 0 which is upheld by the second
check on line 8 does not allow. Intuitively, this suppresses true verdicts unless
the full duration of the interval has been observed.

Thus, a rising edge of ϕ (captured by lines 4-5) must be seen at a time ≤
(i− lb) and no falling condition can be seen before a time > (i− ub). The first
check on line 8 ensures ϕ has held for at least the duration of J , satisfying this
condition. With output occurring iff the original equivalence relation is satisfied,
the theorem follows.

Embedding Online RV for Fault Disambiguation on Robonaut2 21

A.4 Until Operator: U

Theorem 5 (Correctness of the U-operator). The observer stated in Al-
gorithm 6 correctly implements the MTLT U-operator. That is, for any two
execution sequence 〈Tϕ〉 and 〈Tψ〉 it produces the same verdicts as algorithm ??
which is proven to implement en |= ϕUJ ψ in [22].

Algorithm 6: UNTIL Operation: ϕU[lb,ub]ψ

Init: τ↓ψ = τprevψ = τout = 0, τmin = −1
1 if Tϕ.τ > τmin and Tψ.τ > τmin then
2 τmin = min(Tϕ.τ, Tψ.τ);
3 if of Tψ.v occurs then
4 τ↓ψ = τprevψ + 1;
5 end
6 τprevψ = Tψ.τ ;
7 if Tψ holds then
8 result = (true, τmin − lb);
9 else if Tϕ does not hold then

10 result = (false, τmin − lb);
11 else if τmin ≥ (ub− lb) + τ↓ψ then
12 result = (false, τmin − ub);
13 end
14 if result.τ ≥ τout then
15 τout = result.τ + 1;
16 return result;
17 end
18 end

Proof (Proof of Theorem 5). Suppose that for a given input stream there exists
two MLTL U-operator observers monitoring ϕU[lb,ub]ψ: ξ using Algorithm ?? and
ξ′ Algorithm 6, that return different truth values. There are only three locations
in Algorithm 6 where a result is decided (lines 11, 13, and 15) and therefore one
of these cases in ξ′ must not match the behavior of ξ.

Line 11 Requires ψ to be true, the trivially case of U . The timestamp accounts
for the delay between the verdict and the interval of interest, as indicated
by the lower bound.

Line 13 Requires both ϕ and ψ to be false, the trivially false case of U . The
timestamp justification is the same as the previous case.

Line 15 Requires ϕ to hold, and ψ to be false, also data past the length of the
interval from the last falling edge of ψ is available. This is the case when the
interval elapses without ψ becoming true. The timestamp for this verdict is
the time of the data, offset by the length of the interval.

Since ξ′ cannot return a verdict that differs from ξ, then if ξ′ will always even-
tually return a verdict then Theorem 5 holds.

22 B. Kempa, P. Zhang, P. H. Jones, J. Zambreno, and K. Y. Rozier

B Proofs of New MLTL Observer Complexity

Theorem 6 (Space Complexity of Asynchronous Observers). The re-
spective asynchronous observer for a given MLTL specification ϕ implemented
with SCQs as per algorithms 3-6 has the same space complexity, in terms of
memory bits, as the observers in [22] of (2 + dlog2(n)e) · (2 ·m · p), where m is
the number of binary operators, p is the worst-case delay of a single predecessor
chain in AST(ϕ), and n ∈ N0 is the time stamp it is executed.

Proof (Proof of Theorem 6). Only three modifications to the method presented
in [22] have been made:

1. CSE: In the worst case, no elimination occurs and the AST is unmodified,
thus no queues are eliminated.

2. SCQ: The shared connection queues require no additional space over the
synchronization queues used in [22].

3. U − operator: Algorithm 6 does not improve queue size over algorithm ?? in
the worst case.

In the worst case, all modifications to the method in [22] have identical space
complexity, therefore the bound remains unchanged.

Theorem 7 (Time Complexity of Asynchronous Observers). The asyn-
chronous observer for a given MLTL specification ϕ implemented with SCQs
as per algorithms 3-6 has the same time complexity as the observers in [22]
of O

(
log2 log2 max(p, n) · d

)
, where p is the maximum worst-case-delay of any

observer in AST(ϕ), d the depth of AST(ϕ), and n ∈ N0 the time stamp it is
executed.

Proof (Proof of Theorem 7). Only three modifications to the method presented
in [22] have been made:

1. CSE: In the worst case, no elimination occurs therefore no instructions are
eliminated.

2. SCQ: By the nature of the streaming input data, SCQ usage will be indis-
tinguishable from the synchronization queues used in the original.

3. Until: In the worst case, the incoming data is already in lockstep such that no
benefit from the interval computation of algorithm 6 is seen and complexity
is equivalent to algorithm ??.

In the worst case, all modifications to the method in [22] have identical time
complexity, therefore the bound remains unchanged.

