
Optimizing Inter-Nest Data Locality�

M. Kandemir, I. Kadayif
Microsystems Design Lab

Pennsylvania State University
University Park, PA 16802, USA

fkandemir,kadayifg@cse.psu.edu

A. Choudhary, J. A. Zambreno
ECE Department

Northwestern University
Evanston, IL 60208, USA

fchoudhar,zambro1g@ece.nwu.edu

ABSTRACT
By examining data reuse patterns of four array-intensive embed-
ded applications, we found that these codes exhibit a significant
amount of inter-nest reuse (i.e., the data reuse that occurs between
different nests). While traditional compiler techniques that target
array-intensive applications can exploit intra-nest data reuse, there
has not been much success in the past in taking advantage of inter-
nest data reuse. In this paper, we present a compiler strategy that
optimizes inter-nest reuse using loop (iteration space) transforma-
tions. Our approach captures the impact of execution of a nest on
cache contents using an abstraction called footprint vector. Then,
it transforms a given nest such that the new (transformed) access
pattern reuses the data left in cache by the previous nest in the
code. In optimizing inter-nest locality, our approach also tries to
achieve good intra-nest locality. Our simulation results indicate
large performance improvements. In particular, inter-nest loop op-
timization generates competitive results with intra-nest loop and
data optimizations.

Categories and Subject Descriptors
B.3 [Hardware]: Memory Structures; D.3.4 [Programming Lan-
guages]: Processors—Compilers;Optimization

General Terms
Design, Experimentation, Performance

Keywords
Data Reuse, Cache Locality, Inter-Nest Optimization, Array-Intensive
Codes, Embedded Applications.

1. INTRODUCTION AND MOTIVATION
On-chip cache architectures are increasingly being used in em-

bedded system designs. While caches are very effective for ap-
plications that exhibit good data locality, many large-scale embed-

�This work is supported in part by NSF Career Award #0093082
and by a grant from PDG.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES 2002, October 8–11, 2002, Grenoble, France.
Copyright 2002 ACM 1-58113-575-0/02/0010 ...$5.00.

ded applications manipulate large data sets (e.g., images and video
frames), incurring frequent cache misses. Given the large access
latencies of off-chip memories, ensuring data locality (i.e., accept-
able cache behavior) is potentially the most important performance
issue.

The optimizing compiler literature is full of algorithms/techniques
for improving data cache locality (e.g., see [11] and the references
therein). Since many array-intensive applications spend most of
their execution times in nested loops, an overwhelming majority
of these techniques focus on nested loops and try to improve their
locality behavior using loop (iteration space) and memory layout
(data space) transformations. A common characteristic of the it-
eration space based techniques is that they focus on a single nest
at a time. In other words, each nest is optimized (transformed) in
isolation and this optimization tries to generate the best code (from
the data locality perspective) considering how the arrays are ac-
cessed by the nest body. We can refer to this kind of optimization
as the intra-nest optimization. An intra-nest optimization assumes
an empty cache (before entering the nest) and restructures loops
based on the data access pattern of the nest alone.

In many array-intensive embedded applications, however, loop
nests that are executed one after another access the same set of ar-
rays. That is, there might be a significant amount of data reuse
between two neighboring nests. While intra-nest optimizations can
be effective in optimizing each nest in isolation, they fail to capture
this inter-nest data reuse. To take advantage of inter-nest reuse, we
need to keep track of how different arrays are shared among neigh-
boring nests. More specifically, in optimizing the access pattern of
a given nest, we can consider which array elements are currently
in the cache (following the execution of the previous nest), and
restructure the current nest to reuse these cache-resident data ele-
ments. In this work, we call this type of code (loop) restructuring
the inter-nest optimization.

To demonstrate how inter-nest reuse can occur and how an opti-
mizing compiler can take advantage of it, we consider the program
fragment shown below:

for �i� � �� i� � n� i� ���
f ...U �i��... g

for �i� � �� i� � n� i� ���
f ...U �i��... g

In this fragment, there are two separate nests (each with one
loop) that access the same array. It should be noted that each loop
traverses the array from the first element to the last (assuming that
the array has n elements). If the data cache used cannot hold the
entire array U , every element of the array will be brought from off-
chip memory to cache twice: once in the first loop and one more
in the second loop. This is because if the cache is not sufficiently
large, after the execution of the first loop, only some elements that

127

are from the last part of the array will remain in the cache. The
second loop, however, does not access these elements immediately.
Instead, it starts with the first part of the array which can displace
the last part of the array from the cache. When the second loop
starts to access the last part, it is too late as these elements are not
in the cache anymore. It should be emphasized that these two loops
have a significant amount of data reuse; in fact, they share all el-
ements of U . This means they have perfect inter-nest data reuse.
However, inter-nest data locality is not good as we have explained
above. As will be discussed in detail later in this paper, one so-
lution in such a case is to run the second loop backwards (if data
dependences allow this). If this can be done, then this loop (when
it starts execution) will immediately access the last part of the ar-
ray, increasing the hit rate. In this simple case, it is relatively easy
to determine the best transformation. However, in general, when
we have loop nests sharing multiple multi-dimensional arrays (that
represent image/video data), we need a well-defined optimization
algorithm to optimize inter-nest locality.

In this paper, we present an inter-nest data locality optimiza-
tion algorithm and evaluate its effectiveness using a set of array-
intensive applications from embedded image and video processing
domain. Our algorithm does not only improve inter-nest data lo-
cality, but also ensures intra-nest locality after the code transfor-
mation. Our experimental results clearly show that the proposed
approach is very successful in optimizing inter-nest locality. To the
best of our knowledge, there exist three important previous studies
on this topic. First, Catthoor et al. [3] present elegant techniques
for making efficient use of limited data (memory) space consider-
ing access patterns exhibited by multiple nests. As compared to
our work, their study is oriented more towards reducing the mem-
ory space requirements. Second, Ahmed et al. [1] propose a com-
piler strategy where multiple iteration spaces are first mapped into
a common (large) iteration space and then this common iteration
space is optimized for data reuse. Since not every pair of nests share
arrays such an approach can potentially have a significant overhead.
Also, reducing the dimensionality of the common iteration space,
and finding a global transformation matrix for it are not easy tasks.
Our experience indicates that most of inter-nest data reuse in array-
intensive embedded applications occur between neighboring nests,
motivating a technique that focuses on neighboring nests. Third,
in an experimental study, McKinley and Temam [8] evaluate intra-
nest and inter-nest data reuse in scientific applications, and find that
an overwhelming majority of data reuse is intra-nest. This is in con-
trast to our study of embedded applications where there is signifi-
cant inter-nest data reuse. This is because in many array-intensive
embedded image/video applications the same data (e.g., an image)
is processed by multiple nests one after another; this leads to a high
degree of data reuse among nests. This is a strong motivation for
the compiler-based strategy presented in this paper.

The rest of this paper is organized as follows. In Section 2, we
define inter-nest locality formally and present a linear algebraic
representation that can be used for describing/enhancing it by an
optimizing compiler. In Section 3, we show how loop transfor-
mations can be used for inter-nest data locality. In Section 4, we
present experimental results obtained through our implementation.
Finally, in Section 5, we summarize our major contributions and
discuss future work.

2. INTER-NEST LOCALITY
In this section, we present a linear algebraic representation that

tries to capture inter-nest data reuse. Informally, this representation
specifies how the arrays are accessed in a given loop nest. This
information combined with the access pattern of the next loop nest

enables our compiler to perform loop transformations on the latter.
Such transformations are discussed in Section 3 in detail.

2.1 Background on Access Representation and
Loop Transformation

The loops in a C program surrounding any statement can collec-
tively be represented using an n-entry column vector (called itera-
tion vector):

�I � �i�� i�� � � � � in�
T
�

where n is the enclosing loops (from outermost to innermost). Here,
ik is the kth loop index. The loop range or affine bounds of these
loops can be described by a system of inequalities which define the
polyhedron S�I � �s� where S is a k � n matrix and �s is a k-entry
vector. If all loop bounds are constants, then we have k � �n
(one upper and one lower bound per loop). The integer values that
can be taken on by �I define the iteration space of the nest. In a
similar fashion, data (memory) layout of an array can also be rep-
resented using a polyhedron. This rectilinear polyhedron, called
index space, is delimited by array bounds, and each integer point in
it, called an array index, is represented using an index vector:

�v � �v�� v�� � � � � vm�T �

where m is the number of dimensions of the array.
Based on these iteration space and index space (data space) defi-

nitions, an array access can be defined as a mapping from iteration
space to index space, and can be described as:

G�I � �o�

Assuming a nest with n loops that accesses an array of m dimen-
sions, in this formulation, �I denotes the iteration vector, G is an
m� n matrix (called the access matrix) and �o is a constant vector
(called the offset vector). As an example, in a loop nest with two
loops (i� and i�), array reference U �i� � ���i� � i� � 	� can be
represented as:

G�I � �o �

�

 �

��
i�
i�

�
�

�
�

�	

�
�

The application of a loop transformation represented by a square,
non-singular matrix T can be accomplished in two steps [11]: (i)
re-writing loop body and (ii) re-writing loop bounds. For the first
step, assuming that �I is the vector that contains the original loop in-
dices and �I � � T �I is the vector that contains the new (transformed)
loop indices, each occurrence of �I in the loop body is replaced by
T ���I � (note that T is invertible). In other words, an array reference
represented by G�I��o is transformed to GT ���I ���o� Determining
the new loop bounds, however, is more complicated and, in general,
may require the use of Fourier–Motzkin elimination (a method for
solving an affine system of inequalities [11]). As an example, a
loop nest that consists of i� (the outer loop) and i� (the inner loop)
can be transformed into one with i� being the outer and i� being
the inner using the following loop transformations matrix:

T �

�
�

 �

�
�

It should also be mentioned that any loop transformation should
preserve the data dependences in the nest. If D is the data depen-
dence matrix (i.e., a matrix whose each column is a dependence
vector), after the loop transformation represented by T , all columns
of T D should be lexicographically non-negative [11].

128

(a) (b)

(d)(c)

i

(f)(e)

i i

i

i i

i i

1 1

1 1

2 2

2i

1

2

i2

i1

i2

Figure 1: (a-b) Access directions along i� and i� loops. (c-d)
Two different access patterns depending on the nesting order
of the loops. (e-f) Access patterns in the opposite direction of
(c-d).

2.2 Cache Footprint
When a loop nest finishes its execution, the array elements (be-

longing potentially to different arrays) left in the data cache con-
stitute the cache footprint of the nest. In general, due to many
factors involved (e.g., cache topology, access pattern, array base
addresses), it is not possible to determine (statically) exactly which
array elements remain in the cache after the execution of the nest.
Therefore, what we need is a reasonably accurate estimation heuris-
tic.

In search for such a heuristic, we note that the elements that will
remain in the cache (i.e., cache footprint) depend strongly on how
each array is traversed by the loop. Suppose, for example, that an
array is traversed one row at a time from top to bottom. Conse-
quently, when the nest finishes execution, we can expect that, the
elements that will remain in the cache will be the ones that belong
to the last rows visited (the exact number of these rows depends
on the cache capacity and array base addresses). Based on this, we
can argue that the next loop nest should be transformed (optimized)
in such a way that the first elements that it will be accessing from
the array in question should be the ones that belong to these rows.
Therefore, a first-order approximation for cache footprint would be
capturing the direction of accesses. In the next subsection, we pro-
pose a mathematical representation, called footprint vectors, that
can be used for this purpose.

2.3 Footprint Vectors
In order to restructure a given loop nest taking into account the

access pattern of the previous nest (and, thus, the contents of the
cache), we need a representation that summarizes the access pat-
tern of this (previous) nest. There are three major requirements
that need to be satisfied by such a representation. First, it should
summarize the access pattern as accurately as possible. Second,
it should be concise enough so that it can be manipulated easily
(e.g., using linear algebra). Third, it should be independent of the
cache architecture used. This last issue is important from the mod-
ularity viewpoint. This is because most loop/data optimizations are
applied during the initial phases of compilation, and these phases
generally do not exploit too many architecture-specific characteris-
tics.

To capture data access pattern of a given array reference in a
loop nest, we use a representation called footprint vector. A foot-
print vector corresponds to the access direction by a given refer-
ence on the array index space. Let G�I � �o be a reference to an m-
dimensional array in a nest of n loops. We define two iteration vec-
tors: �I �p and �I ��p such that �I ��p��I �p � ��� �� � � � � �� ��
� �� �� � � � � �� ��T �

that is, �I �p and �I ��p are two loop iterations that only differ by 1 in loop
position p, where
 � p � n. Note that we also implicitly assume
that when we move from iteration �I �p to iteration �I ��p � we do not
cross the loop upper bound.

A footprint vector with respect to loop position p is defined as
the difference between the two array elements accessed by �I ��p and
�I �p:

�fp � �G �I ��p � �o�� �G �I �p � �o� � G� �I ��p � �I �p� � �gp�

Here, �gp is the pth column of G, the access matrix. It should be
noted that a footprint vector is defined with respect to an array ref-
erence and a loop position. Therefore, a given array reference, we
can have multiple footprint vectors, one for each loop position. For
example, if:

G�I � �o �

�

 �

��
i�
i�

�
�

�
�

�	

�
�

then we have:

�g� �

�

�
and �g� �

�
�

�
�

Note also that, in general, there might be multiple references to
a given array in the same loop nest. Consequently, for each loop
position, we can define a matrix, each column of which is a foot-
print vector. For example, if we have two references U �i���i� �
�
and U �i���i� � i�� to an array U in a nest with loops i� (the outer
loop) and i� (the inner loop), we have two such matrices, one for
loop index i� and the other one for loop index i�:

F� �

�

 �
�

�
and F� �

�
�

�
�

Let us now discuss the meaning of a footprint vector. A footprint
vector (defined with respect to an array reference and loop posi-
tion) indicates how (i.e., in which direction) the array in question
is traversed when the iterations of the corresponding loop are exe-
cuted. For example, a footprint vector with respect to an innermost
loop position indicates how this loop traverses the array in ques-
tion. Consequently, when the nest finishes its execution, we might
have some idea about the array elements that might be in the cache.
Then, the next nest can be transformed to take advantage of these
elements in the cache. For instance, let us focus on the following
two footprint vectors:

�g� �

�

�

�
and �g� �

�
�

�
�

129

Here, we assume that �g� corresponds to i� loop and �g� corresponds
to i� loop. Figures 1(a) and (b) illustrate how an array (with these
footprint vectors) is traversed in i� and i� directions, respectively.
Note that these directions correspond to the associated footprint
vectors. The overall access pattern, on the other hand, depends
on the nesting order of these two loops. Assuming the i� loop is
the outer loop, we have the access pattern shown in Figure 1(c).
On the other hand, if we assume that loop i� is the outer loop, we
obtain the access pattern illustrated in Figure 1(d). If we look at
Figure 1(c) (resp. Figure 1(d)) more closely, we can observe that,
after the execution of the nest, we can expect that the cache will
contain the last rows (resp. the last columns) of the array. Note
that the footprint vectors (in conjunction with nesting order) give
us this information. Therefore, they can be used in optimizing the
nest that follows (in execution) this nest.

An important problem that needs to be solved now is the ques-
tion of how to decide the access direction when we have multi-
ple references to the same array. This is because each reference
might impose a different access pattern, requiring a different foot-
print vector to represent it. While it might be possible to record
all these footprint vectors and use them later in optimizing the next
nest, if there are too many references to the same array, it might
be a better idea to try to unify these vectors into a single vector.
Note that this problem can be re-expressed as one of generating a
single footprint vector from multiple footprint vectors. While one
can use several operators to unify multiple vectors, in this study,
we use vector combination.1 Note that, in a sense, the combined
vector reflects (or represents) the access pattern of each vector in-
volved. In our context, it can be used to represent the overall access
pattern of exhibited by multiple references to the same array. In the
remainder of this paper, unless stated otherwise, when we mention
footprint vector for an array and a loop position, we mean the com-
bined footprint vector (that is, the contributions of all references
are taken into account). However, it should be stressed that we still
need multiple footprint vectors for each array as we need to repre-
sent the array traversal in each loop direction.

3. INTER-NEST OPTIMIZATION
Once the footprint vectors of the previous nest are captured, the

next task in our optimization strategy is to transform the current
nest based on these footprint vectors. In this section, we focus on
this problem and present a loop transformation framework for en-
hancing inter-nest data locality.

3.1 Determining Loop Transformations
We start by observing that in order to take best advantage of

the data left in the cache after the execution of the previous nest,
the array should be traversed in opposite direction (as compared
to the traversal direction in the first nest) in all array dimensions.
Consider, for example, the access pattern shown in Figure 1(c).
Assuming that this is the access pattern exhibited by the previous
nest, for the best inter-nest data locality, the current nest should
generate the access pattern illustrated in Figure 1(e). Note that this
pattern corresponds to the following footprint vectors:

�g�
�
�

�
�

�

�
and �g�

�
�

�
�

�

�
�

So, the current nest should be transformed such that these footprint
vectors are obtained. Similarly, if the access pattern of the previ-
ous nest is the one shown in Figure 1(d), the access pattern of the

�A linear combination of the vectors �x, �y, and �z is given by a�x�
b�y � c�z, where a, b, and c are constants.

second nest should be the one given in Figure 1(f). The following
lemma gives our major result.

Lemma 1. Let H be a matrix such that column k is the footprint
vector k of the “previous” nest (i.e., the footprint vector that corre-
sponds to the kth loop position). Such a matrix is referred to as the
footprint matrix. If the loop transformation matrix T (for the “cur-
rent” nest) satisfiesNT �� � H�� (whereN is the default footprint
matrix of the current nest and H� is H with all entries negated), the
inter-nest data locality is improved.

Sketch of the Proof. Since H represents the footprint vectors in
the previous nest, H� should contain the target footprint vectors for
the current nest. We also note that the columns of H and N cor-
respond to the columns of the respective access matrices. Conse-
quently, when transforming the nest using the loop transformation
matrix T , these columns should be transformed the same way that
the access matrices are transformed; so, we need to select a T such
that NT �� � H� is satisfied.

It should be noted, however, that the loop transformation deter-
mined based on NT �� � H� may not be able to generate the op-
timal transformation in absolute sense; it is just expected to give us
an improved version. As an example, let us consider the following
program fragment which consists of two separate nests:

for �i� � �� i� � n� i� ���
for �i� � �� i� � n� i� ���
f ...U �i���i��... g

for �i� �
� i� � n� i� ���
for �i� � �� i� � n�
� i� ���
f ...U �i� �
��i� �
�... g

Considering the original access patterns of these nests, we have:

H �

�

 �
�

�
and N �

�

 �
�

�
�

Consequently, the second nest should be transformed using a loop
transformation T such that:�

 �
�

�
T �� �

�
�
 �
� �

�

should be satisfied. So, we have the following transformation ma-
trix for the second nest:

T �� �

�
�
 �
� �

�
�

Applying the loop transformation represented by this T , we obtain:

for �i� � n� i� �
� i� ���
for �i� � n�
� i� � �� i� ���
f ...U �i� �
��i� �
�... g

It should be observed that this transformed loop tries to reuse the
data left in the cache by the first nest as much as possible. However,
in general, there might be multiple arrays accessed in the loops.
Since these arrays can have different footprint matrices, the selec-
tion of the loop transformation matrix (for the second nest) should
be made by considering all footprint matrices. For example, in
the program fragment above, if we have a reference to an array V
(in addition to that to array U) in each nest, then we need to de-
termine a transformation matrix T such that both NuT

�� � H�

u

and NvT
�� � H�

v are satisfied. Here, H�

u and H�

v are the op-
posite (i.e., the negated versions) of the original footprint matrices
Hu and Hv that contain the footprint vectors for array U and array
V , respectively, in the first nest. Nu and Nv , on the other hand,
represent the footprint matrices that hold the original footprint vec-
tors in the second nest. In some cases, especially when there are

130

too many arrays shared by multiple nests, it may not be possible
to find a T in processing a given loop nest. In such cases, one
solution is to drop some arrays from consideration and repeat the
process of determining a suitable T . While there may be many
different strategies to determine the array(s) to be dropped, in our
current implementation, we use profile data and select the array that
is used the least frequently in the program. More specifically, we
instrument the program to be optimized so that at runtime it keeps
track of how many times each array reference is touched. Then,
by considering all the references to each array, we detect the array
which is referenced the least frequently. This is the array dropped
from consideration before we try to solve the system again.

3.2 Integrating with Intra-Nest Optimizer
While the technique discussed so far improves inter-nest data

locality, a loop transformation determined based on inter-nest reuse
(between the previous and current nests) alone might hurt the intra-
nest locality in the current nest. Consequently, in selecting the loop
transformation (for the current nest), we need also consider intra-
nest data reuse. In this subsection, we address this issue.

Many locality-oriented studies use the reuse vector concept for
representing and optimizing intra-nest data locality. The data reuse
theory introduced by Wolf and Lam [10] and later refined by Li [7]
can be used for identifying the types of reuses in a given loop nest.
Two iterations represented by vectors �I � and �I �� (where �I � precedes
�I �� in original execution) access the same array element using the

reference represented as G �I��o if G �I ���o � G �I ����o� In this case,
the temporal reuse vector is defined as �r � �I �� � �I �� and it can be
computed from the relation G�r � ��� Assuming row-major memory
layouts for multi-dimensional arrays (as in C), spatial reuse occurs
if the accesses are made to the same row. We can compute the spa-
tial reuse vector �r� from the equation Gs �r� � ��� where Gs is G with
all elements of the last row replaced by zero [10, 7]. A collection
of individual reuse vectors (originating potentially from different
arrays and different references) is referred to as a reuse matrix, R.
It is also known [7] that a loop transformation represented by T
transforms a reuse matrix R to T R� Consequently, a loop trans-
formation matrix that is acceptable from both inter-nest and intra-
nest data reuse perspectives should satisfy both NT �� � H� and
T R � R�� where R� is the desired reuse matrix and N and H�

are as defined in Lemma 1. Li’s thesis [7] explains a strategy to
determine a suitable R� matrix. In summary, in the ideal case, each
column of this matrix should have its non-zero element as the last
entry (all other entries being 0). This is because such a reuse vector
implies that data reuse occurs between the iterations of the inner-
most loop; thus, the chances are high that it can be converted into
locality (at runtime). Since in general a reuse matrix can contain
multiple vectors, it may not be possible to bring each column into
this form. The approach proposed by Li first orders the vectors
(in the reuse matrix) from left to right according to non-increasing
frequency of occurrence; that is, if a reuse vector occurs more fre-
quently than another one, it is placed to the left of the latter. After
that, the approach tries to achieve the ideal reuse vector for as many
columns as possible from the left side of the matrix. The details of
this approach are beyond the scope of this paper and can be found
in [7].

For example, suppose that the original second nest in the code
fragment above was:

for �i� � �� i� � n�
� i� ���
for �i� �
� i� � n� i� ���
f ...U �i� �
��i� �
�... g

In this case, we have only spatial reuse which is carried by the

outer loop. This is because for a fixed value of the inner loop, the
successive iterations of the outer loop access the consecutive array
elements. So, the reuse matrix is

R �

�

�

�
�

Then, we need to select a transformation matrix T such that both
of the following equalities are satisfied:

�
�

 �

�
T �� �

�
�
 �
� �

�
and T

�

�

�
�

�
�

�

�
�

Note that the first equality here corresponds to inter-nest constraint,
whereas the second one corresponds to intra-nest constraint. Also,
the vector of the right hand side of the second equality refers to the
ideal spatial reuse vector (matrix) for a nest with two loops [7]. A
loop transformation matrix that satisfies both these constraints is

T �

�
� �

�
 �

�
�

which results in the following code (i.e., the transformed version of
the second nest):

for �i� � n� i� �
� i� ���
for �i� � n�
� i� � �� i� ���
f ...U �i� �
��i� �
�... g

Note that this nest is acceptable from both intra-nest locality and
inter-nest locality perspectives.

3.3 Considering Multiple Previous Nests
While so far we have considered only the inter-nest data reuse

between two neighboring nests, in some cases, inter-nest reuse can
exist (and may be exploited) between two nests that are not neigh-
bors. For example, two nests that have another one between them
can access the same set of array elements while the nest between
them does not access the said array elements. In such a case, it
may or may not be beneficial to transform the third nest (the one
that reuses the data) to exploit inter-nest reuse. This decision is
largely dependent on whether the intermediate nest allows any data
(in the cache) processed by the first nest to reach to the third nest.
We check whether this is really the case using the Omaga Library
[6]. The Omega Library is a set of routines for manipulating linear
constraints over integer variables, Presburger formulas, and integer
tuple relations and sets. By using this library, we can determine
how many distinct elements have been accessed in the intermediate
nest. If this mumber is (at least) close to the cache capacity, there
is not much point in trying to optimize the inter-nest data reuse
between the first and the third nests. If, on the other hand, this
number is significantly smaller than cache capacity, there might be
some benefit in transforming the third nest for locality. If this is the
case, we use the approach explained in this paper to optimize the
data reuse between these nests.

3.4 Overall Optimization Strategy
Our overall optimization strategy is given in Figure 2. For clar-

ity of presentation, we assume that in a given nest each array is
accessed using a single reference. In this algorithm, f�j� is the
number of arrays accessed in nestNj . Hk�j represents the footprint
matrix for array j in nest Nk, and Rk and Tk are the reuse matrix
and the loop transformation matrix, respectively, for nest Nk. H�

k�j

is the same as Hk�j except that all entries are negated, and R�

k is
the desired (target) reuse matrix for nest Nk. The first nest in the
code is optimized for only intra-nest reuse (between lines 1 and 4)

131

1. Determine H��i for each
 � i � f�
�
2. Determine R�

3. Solve T�R� � R�

� for a suitable T�
4. Transform nest N� using T�
5. For k = 2, last nest
6. Determine set S, the set of common arrays between Nk and Nk��

7. For each s � S do
8. Build Hk�sTk

�� � H�

k���s

9. Endfor
10. Determine Rk

11. Build TkRk � R�

k

12. Determine a suitable Tk from constraints in (8) and (11)
13. Transform nest Nk using Tk
14. Endfor

Figure 2: Locality optimization algorithm.

and the remaining nests are optimized for both intra-nest reuse and
inter-nest reuse (in the loop between lines 5 and 14). Note that, in
determining the loop transformation matrix Tk, we use both inter-
nest constraint (i.e.,Hk�sTk

�� � H�

k���s) and intra-nest constraint
(i.e., TkRk � R�

k). The target reuse matrix R�

k can be determined
using the strategy proposed by Li [7]. Also, as mentioned earlier
in the paper, in determining a loop transformation matrix, when
we have conflicts, we drop one or more arrays from consideration.
This is not shown explicitly in the algorithm for the sake of clar-
ity. Finally, once a loop transformation matrix Tk is determined
for nest Nk, we also check whether all the columns in TkDk are
lexicographically non-negative (where Dk is the data dependence
matrix). If not, then the transformation is not applied.

4. EXPERIMENTS
Our inter-nest data locality optimization algorithm is implemented

using the SUIF experimental compiler infrastructure from Stanford
University [2]. In order to test the effectiveness of our approach,
we used four array-intensive applications from the image process-
ing domain, available to us from UMIST. wave is a wavelet com-
pression code that targets specifically medical applications. This
code has a characteristic that it can reduce image data to an ex-
tremely small fraction of its original size without compromising
image quality significantly. splat is a volume rendering applica-
tion which is used in multi-resolution volume visualization through
hierarchical wavelet splatting. It is used primarily in the area of
morphological image processing. 3D is an image-based model-
ing application that simplifies the task of building 3D models and
scenes. Finally, dfe is a digital image filtering and enhancement
code. It also contains a module for shape detection. These C pro-
grams are written so that they can operate on images of different
sizes. The input sizes used in our experiments vary between 117KB
and 231KB, and the execution times of the original codes range
from 21.2 seconds to 118.6 seconds. All the results presented in this
section are obtained using an in-house execution-driven simulator
that simulates an embedded MIPS processor core (a MIPS 4Kp like
architecture). The simulated architecture has a five-stage pipeline
that supports four execution units (integer, multiply-divide, branch
control, and processor control). This core is operated at 200MHz
frequency, has thirty-two, 32-bit general-purpose registers, and in-
cludes 8KB instruction cache and 8KB data cache. The cache hit
latency is 2 cycles and the miss latency is 75 cycles. The simula-
tor takes a C code as input, simulates its execution, and produces
statistics including hit/miss behavior and execution time.

Figure 3: Percentage improvement in execution time (with re-
spect to Original).

Figure 4: Percentage improvement in data cache misses (with
respect to Original).

132

Using SUIF, we generated five different versions of each code in
our experimental suite:

� Original: This is the original code.

� Intra-Nest (Loop): This is a pure loop-oriented data local-
ity optimization strategy. It optimizes a given code nest-by-
nest using popular loop transformations including loop inter-
change, loop reversal, loop skewing, loop scaling, and tiling.
Details of this approach can be found in Li’s thesis [7].

� Intra-Nest (Data): This is a pure data layout optimization
strategy. It does not transform loop structures; instead, it
enhances locality by re-layouting data in memory based on
the access patterns exhibited by the application code. Details
of this strategy can be found in [9].

� Intra-Nest (Loop+Data): This is a data locality optimiza-
tion approach based iteration and data space transformations.
Specifically, for each loop nest, it first uses aggressive loop
transformations to optimize temporal locality; and then, for
array references without temporal locality, it uses data trans-
formations (layout modifications) for optimizing their spatial
locality. A detailed description of this approach is outside the
scope of this paper and can be found elsewhere [5].

� Inter-Nest: This is the optimization strategy presented in this
paper. It tries to capture inter-nest reuse as much as possible.
But, as explained earlier, in selecting the loop transforma-
tion, it also takes intra-nest data reuse into account.

It should be mentioned that Intra-Nest (Loop), Intra-Nest (Data),
and Intra-Nest (Loop+Data) represent the state-of-the-art for pure
loop, pure data, and combined loop and data optimizations, respec-
tively. For the codes in our experimental suite, using our inter-
nest optimization scheme increased the overall compilation times
by at most 40% (as compared to the compilation times of the orig-
inal codes). Considering the runtime benefits of our optimization
scheme, this increase in compilation time is tolerable. Particularly,
in many embedded designs, a large number of machine cycles can
be spent in compilation as these systems typically run a single ap-
plication or a small set of related applications, and the increases in
compilation times can be compensated for by the large quantities
of end-products shipped. All percentage improvements presented
in this section are with respect to Original.

Figure 3 presents the percentage improvements in execution times
when different strategies are used. We see that the average ex-
ecution time improvements due to Intra-Nest (Loop), Intra-Nest
(Data), Intra-Nest (Loop+Data), and Inter-Nest versions are 9.7%,
12%, 15.4%, and 19%, respectively. We observe that our approach
is always more successful than Intra-Nest (Loop); that is, optimiz-
ing inter-nest locality can bring large performance benefits. We also
observe that in two of our four applications (wave and 3D) our ap-
proach even generates better results than Intra-Nest (Loop+Data).
This is due to significant amount of inter-nest data reuse in these
two applications. In other two applications, on the other hand,
the Intra-Nest (Loop+Data) version generates better results than
ours. This is because the former also employs data space trans-
formations. To see where these execution time benefits are coming
from, we show in Figure 4 the percentage reductions in data cache
misses (over the Original version). We see from these results that
the trends in cache miss savings are very similar to those in execu-
tion time savings.

Recall that the Inter-Nest version takes both inter-nest and intra-
nest data reuse into account in a selecting loop transformation ma-
trices. To see whether just considering inter-nest constraints would

Figure 5: Contributions of inter-nest reuse and intra-nest reuse
to the savings of the Inter-Nest version.

be sufficient, we present in Figure 5 the contribution of inter-nest
constraints and intra-nest constraints to the execution time savings.
In particular, for each application, the left portion of the bar (in Fig-
ure 5) shows the percentage of benefits that are due to just optimiz-
ing inter-nest data locality. We clearly see from these results that
optimizing just inter-nest locality is not sufficient; there is a signifi-
cant amount of intra-nest data reuse that needs to be accounted for.
The numbers written inside the left portions (of the bars), on the
other hand, indicate the percentage of potential data reuse that has
really been exploited. For example, in splat, 70.4% of the available
inter-nest reuse has been exploited. The maximum potential inter-
nest data reuse (between two neighboring nests) has been calcu-
lated by intersecting the following two sets and finding the number
of elements in the resulting set: the set of array elements that re-
main in the cache after the execution of the first nest and the set of
array elements that are required by the second nest. This process is
repeated for each neighboring nest pair and the resulting total sum
represents the maximum inter-nest data reuse in the program (we
refer to this number as MDR). On the other hand, the inter-nest data
reuse that has really been exploited between two neighboring nests
has been calculated by intersecting these two sets and finding the
number of elements in the resulting set: the set of array elements
that remain in the cache after the execution of the first nest and the
set of array elements that are reused from the cache by the second
nest. As before, this process is repeated for each nest neighboring
nest pair. The resulting total sum (over all nest pairs) represents the
inter-nest data reuse that has actually been exploited (we refer to
this number as EDR). The numbers written within the black por-
tions of the bars in Figure 5 correspond to EDR/MDR. We see that
at least 70% of all inter-nest data reuse are converted into locality.
However, while these numbers are encouraging, they also indicate
that there is even opportunity for achieving better inter-nest local-
ity.

A potential source for our inability to exploit inter-nest local-
ity fully is the conflicting requirements that the compiler needs to
resolve for determining the loop transformation matrix (T) for a
given nest. Such conflicts may occur when different arrays in a
given nest demand different loop transformation matrices. As men-
tioned earlier, our solution to this is to drop an array from consider-
ation and try to find the transformation matrix again. This process
(eliminating an array) continues until we find a T without conflict.
Obviously, a greater number of arrays accessed in a loop will in-
crease the chances of a conflict. The graph in Figure 6 gives, for
each benchmark, the percentage of conflicts when we have 2, 3, 4,

133

Figure 6: Percentage of conflicts in determining T as a function
of the number of arrays accessed in each nest.

5, 6 arrays in the nest. For example, in wave, out of the nests that
access two arrays, only 11.4% present a conflict in determining the
loop transformation matrix. As expected, in general, when we have
more arrays in the nest being optimized, the number of conflicts
is higher. Nevertheless, these numbers are not too high indicating
that our inter-nest optimizer does not suffer from too many con-
flicts. This is because in a given nest that accesses multiple arrays,
these arrays are in general accessed using the same access matrix.
Therefore, a loop transformation which is desirable for one array is
desirable for others too.

Our baseline optimization strategy only focuses on the inter-nest
data reuse between two neighboring nests. In some cases, however,
there might be data reuse between nests that are not neighbors. To
see whether this occurs for our benchmarks, we performed another
set of experiments where we changed the number of previous nests
considering for optimizing the inter-nest reuse in a given loop nest
(using the approach discussed in Section 3.3). Each point in the
x-axis in Figure 7 corresponds to a different value for this num-
ber. Note that the original value of this number is 1. We observe
from these results that increasing the number of previous nests con-
sidered makes some difference in some cases; but, when we move
beyond three previous nests, the additional benefits are incremen-
tal.

Figure 8 demonstrates how performance savings are affected when
cache size is changed (from 2K to 32K). These results are aver-
age savings across all four benchmarks in our experimental suite.
We see that our approach is most effective with small cache sizes
(which are more common in embedded systems). However, even
with a 16K data cache, it outperforms the remaining strategies. The
reason that the percentage savings due to our strategy reduce when
the cache size is increased can be explained as follows. When the
cache capacity is increased, the Original version starts to perform
better as more data are captured in the cache (as compared to the
case with the small cache size). While our approach also performs
better with the increased cache size, the improvement rate of the
original codes is much higher than that of the optimized codes.
Consequently, we observe a reduction in savings as we increase
the cache capacity.

5. CONCLUSIONS AND FUTURE WORK
As incresingly large portions of functionality of embedded sys-

tems are being implemented in software, many of these systems
offer caches to speed up computations. While most compiler-based

Figure 7: Increasing the scope of inter-nest reuse.

optimization techniques currently restructure code for cache local-
ity from the viewpoint of intra-nest locality, our experience with
several array-intensive embedded applications clearly show that there
also exists a significant amount of inter-nest data reuse. Based on
this observation, we proposed in this paper a compiler algorithm
for exploiting inter-nest data reuse. We also demonstrated how our
technique can be combined with an intra-nest optimizer. Our exper-
iments with four array-intensive embedded applications revealed
that it is possible to obtain execution time savings ranging from
9.7% to 19%.

This work is a part of the ongoing effort at Penn State on en-
hancing performance of embedded applications. Currently, there
are two major shortcomings of this work. First, the proposed al-
gorithm operates on a procedure granularity, and therefore, can
fail to fully-optimize some applications that can benefit from inter-
procedural analysis. Second, the current optimizer does not con-
sider data (memory) layout transformations. Since footprint vec-
tors are defined on data space, they can be manipulated (optimized)
using data transfomations as well. Our future research will address
both these issues.

6. REFERENCES
[1] N. Ahmed, N. Mateev, and K. Pingali. Synthesizing

transformations for locality enhancement of
imperfectly-nested loop nests. In Proc. the International
Conference on Supercomputing, May 2000.

[2] S. P. Amarasinghe, J. M. Anderson, M. S. Lam, and C. W.
Tseng. The SUIF compiler for scalable parallel machines. In
Proc. the Seventh SIAM Conf. on Parallel Proc. for Scientific
Computing, February, 1995.

[3] F. Catthoor, K. Danckaert, C. Kulkarni, E. Brockmeyer, P.G.
Kjeldsberg, T. V. Achteren, and T. Omnes. Data Access and
Storage Management for Embedded Programmable
Processors, Kluwer Academic Publishers, 2002.

[4] F. Catthoor, S. Wuytack, E. D. Greef, F. Balasa, L.
Nachtergaele, and A. Vandecappelle. Custom Memory
Management Methodology – Exploration of Memory
Organization for Embedded Multimedia System Design.
Kluwer Academic Publishers, 1998.

[5] M. Kandemir, A. Choudhary, J. Ramanujam, and P. Banerjee.
Improving locality using loop and data transformations in an
integrated framework. In Proc. International Symposium on
Microarchitecture, Dallas, TX, December, 1998.

[6] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and

134

Figure 8: Percentage improvement (over Original) in execution
time with different cache capacities.

David Wonnacott. The Omega Library interface guide.
Technical Report CS–TR–3445, Computer Science
Department, University of Maryland, College Park, MD,
March 1995.

[7] W. Li. Compiling for NUMA Parallel Machines. Ph.D.
Thesis, Computer Science Department, Cornell University,
Ithaca, New York, 1993.

[8] K. S. McKinley and O. Temam. A quantitative analysis of
loop nest locality. In Proc. the 7th International Conference
on Architectural Support for Programming Languages and
Operating Systems, Boston, MA, October 1996.

[9] M. F. P. O’Boyle and P. M. W. Knijnenberg. Non-singular
data transformations: definition, validity and application. In
Proc. International Conference on Supercomputing, Vienna,
July 1997.

[10] M. Wolf and M. Lam. A data locality optimizing algorithm.
In Proc. ACM SIGPLAN 91 Conference on Programming
Language Design and Implementation, pages 30–44, June
1991.

[11] M. Wolfe. High Performance Compilers for Parallel
Computing, Addison-Wesley Publishing Company, 1996.

135

