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Pre-departure flight plan scheduling for Urban Air Mobility (UAM) and cargo delivery drones
will require on-demand scheduling of large numbers of aircraft. We demonstrate an algo-
rithm known as FastMDP-GPU that performs first-come-first-served pre-departure flight plan
scheduling where conflict free flight plans are generated on demand. We demonstrate a par-
allelized implementation of the algorithm on a Graphics Processor Unit (GPU) and show the
level of performance and scaling that can be achieved. Our results show that on commodity
GPU hardware we can perform flight plan scheduling against 2000-3000 known flight plans
and with server-class hardware the performance can be higher. Our results show promise for
implementing a large scale UAM scheduler capable of performing on-demand flight scheduling
that would be suitable for both centralized or distributed flight planning systems.

I. Introduction

Urban Air Mobility (UAM) is an envisioned air transportation concept in which intelligent aircraft will safely and
efficiently transport passengers and cargo within urban areas by rising above traffic congestion on the ground. Aircraft
companies such as Boeing, Airbus, Bell, Embraer, Joby, Kitty Hawk, Pipistrel, and Volocopter are building and
testing electric vertical take-off and landing (eVTOL) aircraft to ensure UAM becomes an integral part of daily life
[1]. Meanwhile, in order to make UAM operations scalable, new airspace management concepts for highly dynamic
and dense air traffic are being studied by NASA, FAA, Uber, Airbus, etc [2][3][4]. Furthermore, NASA’s UAM Grand
Challenge was announced to engage the UAM community and promote public confidence through a series of system
level safety and integration scenarios [5].

Fig. 1 Agent (blue aircraft and blue flight track) flying through an airspace with known flight plans of other
aircraft (red aircraft and red trajectories).
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A major challenge to scale the UAM operations and accommodate high-density urban air traffic is strategic de-conflict
for eVTOL flights. “Strategic" here refers to pre-departure, whose procedure has to be completed while the aircraft is
still on the ground, instead of tactical real-time conflict resolution or collision avoidance. The essence of “strategic
de-conflict" is how to reserve airspace volume in a safe and efficient manner [6][7]. In this work, we focus on efficient
and scalable algorithms for pre-departure airspace reservation in free flight strategic de-conflict. We assume all the
airspace volume in a certain region (except the obstacles or restricted area) can be occupied by airspace users, instead of
a structured airspace with routes and waypoints.

Our contribution of this paper is that this is the first scalable algorithm for pre-departure airspace reservation and strategic
de-conflict to support free flight UAM operations. We respect the airspace user fairness by following a first-come-first
served (FCFS) policy. The algorithm offers great flexibility for implementation. It can be run by either a fleet dispatch
center (e.g. Uber), a personal user (personal owned eVTOL pilot), or by the airspace manager (e.g. the FAA). The
algorithm can handle both by-scheduled UAM operations (processing flight plans or airspace reservation requests in
batches) or by-request air taxi like operations (processing flight plans or airspace reservation requests one by one). Our
framework exploits both route and take-off time to achieve strategic de-conflict quickly and efficiently. The algorithm
provides a recommended flight plan, which contains not only the recommended route (a series of dynamic airspace
volume reservations), but also the recommended take-off time from several candidates.

The approach used in this paper formulates the problem as a Markov Decision Process (MDP) and then uses an algorithm
known as FastMDP to quickly and efficiently solve the MDP to generate a conflict free trajectory. A request is submitted
to the system containing an aircraft identifier, a source location, and a destination location and the system returns
a conflict free flight path to the user. When a conflict free flight path is generated, it is stored by the system as an
“accepted” flight plan in a database of accepted flight plans. Any future requests will consider both terrain and all
previously accepted flight plans when generating new conflict free flight plans. Requests can consist of a single aircraft,
or can consist of batches of aircraft. The implementation of the algorithm described in this paper takes advantage
of parallelization inherent in the problem to create a massively parallel implementation which scales to thousands of
aircraft on commodity Graphics Processing Units (GPUs). This implementation is used to study the level of scalability
that can be achieved by the algorithm on different classes of hardware. While the algorithm is capable of running on
both server class GPU hardware and embedded class GPU boards suitable for low size-weight and power applications,
the focus of this paper is on GPU hardware that is too large and power hungry for putting on board a typical aircraft.

The paper is structured as follows: Section II contains related work, Section III contains background material on Markov
Decision Processes (MDPs) and the FastMDP algorithm, Section IV describes the method used in this paper, Section V
describes the experimental setup, Section VI describes the experimental results, and the paper closes with Section VII
where the conclusion and future work are discussed.

II. Related Work

There have been many important contributions to the topic of guidance algorithms with collision avoidance capability
for small unmanned aerial aircraft.

Many papers apply different techniques to manage aircraft from a centralized controller by formulating the problem as an
optimal control problem. These methods can be based on semidefinite programming [8], nonlinear programming [9, 10],
mixed integer linear programming [11–14], mixed integer quadratic programming [15], sequential convex programming
[16, 17], second-order cone programming [18], evolutionary techniques [19, 20], and particle swarm optimization [21].
Besides formulating this problem using optimal control framework, methods such as visibility graph [22] Voronoi
diagrams [23], and A∗ search [24, 25] can also handle the path planning problem for aircraft. These methods work
well for 2D or 3D waypoint planning, but fail to scale when aircraft dynamics are considered. To address this issue,
sample-based planning algorithms have been proposed, such as probabilistic roadmaps (PRM) [26], rapidly-exploring
random trees (RRT) [27], and RRT* [28].

Model Predictive Control [29, 30] can be used to solve collision avoidance problem but the computation load is relatively
high. Potential fields [31, 32] are computationally fast, but in general they provide no guarantees of collision avoidance.
Machine learning and reinforcement learning based algorithms [33–36] have promising performance, but typically
require a long offline training time. Monte Carlo Tree Search (MCTS) algorithm [37] does not need time to train before
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the flight and can provide an “anytime” result depending on the available computation time, but the aircraft can only
adopt several discretized actions at each time step. A geometric approach [38–41] can be also applied for the collision
avoidance problem and the computation time only grows linearly as the number of aircraft increases. DAIDALUS
(Detect and Avoid Alerting Logic for Unmanned Systems) [42] is another geometric approach developed by NASA. The
core logic of DAIDALUS consists of: (1) definition of self-separation threshold (SST) and well-clear violation volume
(WCV), (2) algorithms for determining if there exists potential conflict between aircraft pairs within a given lookahead
time, and (3) maneuver guidance and alerting logic. The drawback of these geometric approaches is that it can not
look ahead for more than one step (it only pays attention to the current action and does not take account of the effect of
subsequent actions) and the outcome can be locally optimal in the view of the global trajectory.

There are many well known methods for solving MDPs including value iteration and policy iteration, which are iterative
methods based on the dynamic programming approach proposed by Bellman [43]. These algorithms use a table-based
approach to represent the state-action space exactly and iteratively converge to the optimal policy π∗ and corresponding
value function V∗. These table-based methods have a well known disadvantage that they quickly become intractable.
As the number of states and actions increases in number or dimension, the number of entries in the table increases
exponentially. Many real world problems quickly exhaust the resources of even high performing computers due to the
well known ‘curse of dimensionality’ [43]. Many attempts have been made to allow MDPs to scale to larger problems.
Factored MDPs [44, 45] attempt to alleviate the problem of state space explosion by identifying subsets of the MDP that
can be broken into smaller problems. Approximation methods under the general umbrella of Approximate Dynamic
Programming have been used as a compromise to obtain reasonable approximations of the underlying true value function
in cases where the state-action space (or the transition matrix T) is too large to represent with traditional exact methods,
which are summarized by the [46, 47]. Notably, linear function approximation methods such as GradientTD methods
[48–50], statistical evaluation methods such as Monte Carlo Tree Search [51], and non-linear function approximation
methods such as TDC with non-linear function approximation [52] and DQN [53] are good examples of some of the
approaches taken using approximation.

Traffic Management Initiatives (TMIs), including Ground Delay Program, Airspace Flow Program and Collaborative
Trajectory Options Program, are set of tools air traffic managers use to balance air traffic demand with airspace
capacity [54–56]. The essence of these programs is to apply ground delay or assign longer route to flights who would
otherwise experience more expensive and unsafe air delay. Within the area of pre-departure flight planning, [6] defines
a moving dynamic geofence around an aircraft during its flight. The dynamic geofence represents a safety margin
around the aircraft which is sufficiently large to guarantee safe separation. The dynamic geofence is formulated as a
convex polyhedra and intersection tests between polyhedra are used to detect conflicts with other flight plans. Network
optimization is used to find feasible paths between a grid of waypoints representing the possible paths the aircraft
can take when navigating between points in an urban area. Experiments show an airspace utilization improvement of
70-80% over a reserved corridor around the flight plan for the duration of the flight. This concept is expanded upon in
[7] where the dynamic geofence is used, but the solution is formulated as a two-level linear programming problem.
The first level of the problem is a discretized version of the problem which resolves scheduling conflicts using integer
programming. The second level performs speed profile smoothing using linear programming on the discretized solution
from the first level. While the method provides a global optimum, no simulation or numerical results are provided
for the runtime for sample problem sizes. In [57] NASA explores and extension to AutoResolver for UAVs to model
realistic air traffic management scenarios in the Dallas-Fort Worth metroplex, studying loss of separation and resolutions
in a simplified structured airspace, and shows AutoResolver can effectively introduce ground delays and alter fixed flight
paths along the structured airspace routes to avoid conflicts. Performance is shown in terms of the impacts to flight
schedules, though performance time to run the algorithm itself was not reported. In [58], NASA explores the use of
Mission Planner which performs pre-departure flight planning for UAVs / UAM in a first-come-first-served manner.
Mission Planner models both the network routing and trajectory generation problems. For a given set of goods or people
that need moved through the network, Mission Planner takes into account suitable aircraft availability, vertiport capacity,
and generates a set of flights that will satisfy the demand. It then builds candidate flight paths and iteratively uses a set
of resolution strategies to resolve conflicts or constraint violations that are discovered through the duration of each flight,
resulting in a viable, conflict free flight path. Performance of the algorithm is examined in terms of scheduling a random
set of realistic flights over a 3 hour window, where the number of flights was randomly sampled to be from 1000 to
10000 distributed over the 3 hour time window. A study is performed on the effectiveness of each resolution strategy.
No results are provided for the run time of the algorithm itself.
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(a) A risk well showing exponential decay of a negative
reward out to a fixed radius beyond which the negative
penalty is truncated.
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(b) FastMDP solving positive and negative rewards, com-
bining the results, and comparing to the solution pro-
duced by the value iteration algorithm traditionally used
to solve MDPs.

Fig. 2 FastMDP solves MDP using peaks that represent positive and negative rewards

III. Background

Markov Decision Processes (MDPs) are a framework for decision making with broad applications to finance, robotics,
operations research and many other domains [59]. MDPs are formulated as the tuple (S, A, R,T) where st ∈ S is the
state at a given time t, at ∈ A is the action taken by the agent at time t as a result of the decision process, rt = R(st, at )
is the reward received by the agent as a result of taking the action at from st , where R(st, at ) is known as the reward
function, and T is the transition function that describes the evolution of the system. The dynamics of the environment are
described by the transition function T(st, a, st+1) and capture the probability P(st+1 |st, at ) of transitioning to a state st+1
given the action at taken from state st . A policy π can be defined that maps each state s ∈ S to an action a ∈ A. From a
given policy π ∈ Π a value function Vπ(s) can be computed that computes the expected return that will be obtained
within the environment by following the policy π. We use the infinite horizon discounted reward formulation where a
parameter γ ∈ (0, 1) is defined which is applied at each step to determine return. A small value of γ favors short term
reward versus long term reward, whereas a large value of γ near 1.0 favors long term reward versus short term reward.

The solution of an MDP is termed the optimal policy π∗, which defines the optimal action a∗ ∈ A that can be taken from
each state s ∈ S to maximize the expected return. From this optimal policy π∗ the optimal value function V∗(s) can be
computed which describes the maximum expected value that can be obtained from each state s ∈ S. And from the
optimal value function V∗(s), the optimal policy π∗ can also easily be recovered.

We refer to the path taken through the state space as a result of following the optimal policy as the optimal trajectory.
We define the UAV planning problem as finding the optimal trajectory through the space such that the UAV maximizes
its future expected reward. From any starting state, by following the optimal policy π∗, we are guarantees to also follow
the optimal trajectory. MDPs are interesting because their solution simultaneously provides the optimal action a∗ to
perform from every state and can be viewed as analogous to a vector field in a continuous space.

A challenge with traditional MDP solution methods is that they often take a great deal of time to solve due to the iterative
nature that is required to solve them. One also finds that as the number of states or actions grows, the amount of time or
memory required to solve the MDP grows exponentially leading to issues of intractability. This is somewhat mitigated
by the use of approximation methods which lead to tractable solution methods for MDPs which, while iterative, lead to
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solutions within for many interesting problems on time scales ranging from seconds to days depending on the particular
problem. MDPs are typically not suitable for real-time applications, though there are some on-line methods which allow
MDPs to be solved without an explicit pre-training phase.

The FastMDP algorithm proposed in [60] represents a radical departure from the traditional approach to solving MDPs.
FastMDP solves a certain useful subclass of MDPs much more quickly than traditional methods by taking advantage of
structure within the value function. FastMDP relies on the observation that positive and negative rewards in an MDP
can be described as exponentially decaying peaks in the value function which can be combined in a particular way to
reconstruct the value function.

In [60], a method is described to combine the positive and negative peaks together such that they closely approximate
the value function produced by solving a MDP using traditional methods, as shown in Figure 2b. For UAV collision
avoidance problems in [60–62] positive rewards are modeled as exponentially decaying peaks while negative rewards
are modelled as risk wells which decay exponentially out to a fixed radius, where they are then truncated. Risk wells
capture the idea that if a penalty is far enough away from an agent’s current position it can be safely ignored, while also
encoding that the closer the agent is to a negative reward the riskier it is to be near that reward. As described in [60], the
risk well formulation also has the advantage that it can be processed using the same efficient algorithm that is used to
process positive rewards. This leads to a very efficient way to model UAV collision avoidance problems that has been
successfully demonstrated to solve interesting, practical problems.

Peaks are described by the tuple Pi = {ri, γi, p̂i, Ri} where the reward ri is the scalar value of the positive or negative
reward scalar that is placed in the environment, the discount factor γi ∈ (0, 1) is used to determine discounted future
reward, the position in 3D space is represented by p̂i , and the radius of the peak is represented by Ri . Positive peaks
share the same discount factor of γi which is also the discount factor for the overall MDP. Negative rewards may have
independent values of γi and are not tied to the overall MDP’s discount factor. (See [60] for a detailed explanation.)

The psuedocode for the FastMDP algorithm from [61] is shown in Algorithm 1 for context in understanding the overall
flow before the optimizations are described. In summary, positive and negative peaks are constructed from the positive
and negative rewards in the environment which are provided as inputs to the FastMDP algorithm. Positive peaks are
created from the positive rewards. All negative rewards result in negative peaks which are constructed in standard
positive form, which means that negative rewards are treated temporarily by the algorithm as if they were positive, are
used in generating the solution, and are reverted back to negative values before the algorithm generates its final answer.
[60] describes this process in much more detail along with the theory behind it.

With the positive and negative peaks created, the algorithm then performs forward projection of the aircraft’s state for
each possible action that can be taken a ∈ A over a planning window that (in this implementation) is 10 time steps into
the future, resulting in a set of points ∆10. The value V∗[st ] is computed at each point st ∈ ∆10. The action a∗ which
leads to the most valuable action is then computed and is then selected for the next time step. This process then causes
the algorithm to take the optimal action that it can perform at each time step.

IV. Method

The method used in this paper extends the FastMDP algorithm described in [61, 62] by reimplementing it for a Graphics
Processing Unit (GPU) to take advantage of parallelism inherent in the algorithm which we term FastMDP-GPU. The
FastMDP algorithm CPU-based implementations previously published in [60–62] are efficient in that they achieve
O(|R| × |A|) performance where |R| is the number of positive and negative rewards and |A| is the number of actions. For
a given problem where the number of actions |A| is fixed, the variation in run-time performance can then be considered
as linear in the number of rewards O(|R|). However, as the number of rewards scales to large numbers, even this O(|R|)
scaling is not enough to achieve real-time performance above 50-100 aircraft on a typical CPU, depending on the
problem, because the number of actions |A| for realistic problems is still large (even though it may be fixed for a given
problem.) In order to scale to large numbers of aircraft, we must recognize that each independent action can be computed
separately which is a form of parallelism that can be exploited. Furthermore, additional insights in this paper show that
there is additional parallelism inherent in the processing of the rewards that can yield additional performance gains.

These insights on the parallel nature of the algorithm lead to the GPU based approach described in this paper, which
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Algorithm 1 CPU based FastMDP algorithm from [61]
1: procedure DistributedUam(aircraftState, worldState)
2: St ← S0 // randomized initial aircraft states
3: A← aircraft actions (precomputed)
4: L← aircraft limits (precomputed)
5: St+1 ← allocated space
6: while aircraft remain do
7: for each aircraft do
8: st ← St [aircra f t]

9: // Build peaks from rewards in the environment
10: P+ ←build pos rewards
11: P− ←build neg rewards in Standard Positive Form
12: P∗ ←build neg rewards for terrain in Standard Positive Form
13: // Perform forward projection
14: ∆1 ← f wdProject(st, A, L, 0.1 s)
15: ∆10 ← f wdProject(st, A, L, 1.0 s)

16: // Compute the value at each reachable state
17: V∗ ← allocate space for each reachable state
18: for sj ∈ ∆10 do
19: // First for positive peaks
20: for pi ∈ P+ do
21: // distance
22: dp ←

sj − location(pi )


2
23: rp ← reward(pi )
24: γp ← discount(pi )
25: V+(pi ) ← |rp | · γ

dp
p

26: V+max ← max
pi

V+

27: // Next for negative peaks (in Standard Positive Form) including terrain
28: for ni ∈ {P−, P∗ } do
29: //distance
30: dn ←

sj − location(ni )


2
31: rn ← reward(ni )
32: γn ← discount(ni )
33: // within radius
34: ρn ← negDisti < radius(ni )
35: V−(pi ) ← int(ρn) · |rn | · γ

dn
n

36: V−max ← max
pi

V−

37: // Hard deck penalty
38: if altitude(st ) < penaltyAlt then
39: Vdeck ← 1000 − altitude(st )
40: else
41: Vdeck ← 0
42: V∗[st ] ← V+max −V

−
max −Vdeck

43: // Identify the most valuable action
44: a∗ ← arg max

s
(V∗)

45: // For illustration, the corresponding value
46: maxValue← V∗[a∗]
47: // And the next state when taking the action
48: st+1 ← ∆1[a

∗]

49: St+1[aircra f t] ← st+1
50: // Now that all aircraft have selected an action, apply it
51: St ← St+1
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(a) Flowchart of the operations performed on the CPU
versus the GPU.
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(b) Data dependencies between the kernels. Note that the
kernels are scheduled serially by the CUDA library in the
current implementation.

Fig. 3 The algorithm is broken into multiple kernels which are scheduled in a pipeline on the GPU.

allows many parts of the problem to be computed in parallel, resulting in an overall reduction in computation time
required for the same set of inputs. We use this GPU based method to study the level of scaling that can be achieved by
the algorithm by applying it to a pre-departure flight planning problem where conflict free flight path trajectories are
computed in a first-come-first-served order.

The overall FastMDP-GPU algorithm used in this paper is shown in Figure 3a. The Central Processing Unit (CPU) code
is responsible for initialization and coordination of the processing flow, and the GPU side is responsible for performing
the parallel computations. The GPU code is implemented using NVIDIA’s CUDA library and the GPU code blocks are
referred to as kernels. Each kernel is designed to be a simple block of code with as few loops and branches as possible.
When a kernel is launched by the CPU, on the GPU side many instances of the code within the kernel are launched in
parallel threads. The threads are scheduled by the CUDA library to run on the available GPU cores in the hardware and
run in batches until all threads have completed. The GPU is designed to handle large numbers of threads with very little
overhead for switching between threads (unlike CPUs). It is not unusual for a kernel launch to run millions of threads on
the GPU.

In CUDA, threads are organized into blocks, which are in turn organized into a grid. The blocks within a grid can be
indexed by 1D, 2D, or 3D indices. Likewise, the threads within a block can also be indexed by 1D, 2D, or 3D indices.
In the implementation used in this paper, the kernels shown in Figure 3a use different indexing schemes as needed in
order to maximize parallelism and are summarized in Table 1. The kernels are arranged in a pipeline with the sequence
defined by the CPU. The kernels themselves run serially, but the threads of each kernel run in parallel with each other.
Individual thread scheduling is managed by the CUDA library and GPU.

Each kernel consumes one or more data structures defined in the GPU card’s memory and outputs results into one or
more other data structures in the GPU memory. Copying memory between the CPU and GPU is minimized and is
primarily performed during initialization to set up the GPU state before the algorithm runs. At the end of each cycle, a
minimal amount of state information is copied from the GPU memory to the CPU memory so that the CPU software
is aware of the current state of the simulation. The major data structures used as inputs and outputs of kernels are
described in Table 2.

Each kernel is now described in detail.
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Table 1 Major data structures in GPU memory as inputs or outputs of each kernel, where N indicates the
number of aircraft being simulated in the batch, A indicates the number of actions that can be taken, Rp indicates
the number of positive rewards, Rt indicates the number of negative terrain rewards, Ri indicates the number
of negative intruder rewards, and W indicates the time step window of 10. Data structures which are multi-field
structures are indicated including the number of fields in the dimensionality (e.g., N × 6 for a structure with 6
fields.) Sample values shown for N = 1, A = 1350, Rp = 1, Rt = 50, Ri = 2000 which are typical values used for
a batch size of 1, an action space resulting in 1350 possible actions at each time step, terrain modelled with 50
negative rewards, and 2000 intruders.

Symbol Purpose Data Type Dimensionality Sample size (bytes)
P+ Peaks formed from positive re-

wards (eg., the goal)
64-bit float Rp × 6 1 × 6 × 8 = 48

P− Peaks formed from negative re-
wards from other aircraft in the
batch

64-bit float 5 × (N − 1) × 6 5 × 0 × 6 × 8 = 0

PI Peaks formed from negative re-
wards from intruders

64-bit float 5 × Ri × 6 5×2000×6×8 = 480, 000

PT Peaks formed from negative re-
wards from terrain

64-bit float Rt × 6 50 × 6 × 8 = 2, 400

∆10 States resulting from forward
projection

64-bit float N × A ×W × 12 1 × 1350 × 10 × 12 × 8 =
1, 296, 000

V+ Value contributed at states due
to contributions from positive
rewards from P+

64-bit float N × A ×W 1 × 1350 × 10 × 8 =
108, 000

V− Value contributed at states due
to contributions from negative
rewards from P−

64-bit float N × A ×W 108, 000

VI Value contributed at states due
to contributions from negative
rewards from PI

64-bit float N × A ×W 108, 000

VT Value contributed at states due
to contributions from negative
rewards from PT

64-bit float N × A ×W 108, 000

V Value computed from all posi-
tive and negative contributions
(primarily for debug and visual-
ization)

64-bit float N × A ×W 108, 000

V∗ Value computed from all posi-
tive and negative contributions

64-bit float N ×W 1 × 10 × 8 = 80

A∗ Selected action for each aircraft 64-bit float N 1 × 8 = 8

8



Table 2 Kernel indexing schemes used for eachkernel, where N indicates the number of aircraft being simulated
in the batch, A indicates the number of actions that can be taken, Rp indicates the number of positive rewards,
Rt indicates the number of negative terrain rewards, and Ri indicates the number of negative intruder rewards.
Sample values shown for N = 1, A = 1350, Rp = 1, Rt = 50, Ri = 2000 which are typical values used for a batch
size of 1, an action space resulting in 1350 possible actions at each time step, terrain modelled with 50 negative
rewards, and 2000 intruders.

Name Dimensionality Indexes Sample number of threads
Build peaks 1D N 1

Forward project 2D N × A 1350
Process positive rewards 3D N × A × Rp 1350
Process negative rewards 3D 5 × N × A × (N − 1) 0

Process negative terrain rewards 3D N × A × Rt 67,500
Process negative intruder rewards 3D 5 × N × A × Ri 13,500,000

Compute value 2D N × A 1350
Select best action 1D N 1

Determine terminal state 3D N × N 1

A. Kernel: Build peaks

Peaks are built as described in Table 3. In this implementation, each aircraft is assigned a single goal location which
represents a vertiport or other landing site. A single positive peak is created to model the goal. For each intruder,
multiple risk wells (negative rewards) are defined at different points along the intruder’s current trajectory as defined by
the position and the linear velocity of the intruder.

The inputs of the algorithm are the current state of the aircraft in the batch and the intruders. The outputs of the kernel
are the positive peaks P+, negative peaks P−, and negative peaks for intruders PI.

Note that terrain features are also modelled with risk wells, but these peaks PT are defined statically at load time and
transferred to GPU memory during the algorithm initialization phase. Also note that this kernel is called once for each
aircraft in the batch (see Table 1). While it contains loops, profiling has shown that the kernel contributes negligible
overhead and needs no further optimization. The logic in this kernel is more suitable for operation on CPU, but it is
implemented as a kernel primarily to avoid unnecessary copying to and from CPU and GPU memory.

Algorithm 2 Build Peaks Kernel
1: procedure Build Peaks(iac )
2: // iac : Aircraft index
3: // ia : Action index

4: // Build peaks per Table 3
5: // Build positive for the goal
6: P+ ← {rg, γ = 0.9, p̂g,∞} // goal
7: // Build negative rewards for each other aircraft in the batch
8: for ac ∈ batch do
9: P−ac ← {rac, γac, p̂ac, Rac } // aircraft
10: // Build negative rewards for each intruder
11: for ac ∈ intruders do
12: PI

ac ← {rac, γac, p̂ac, Rac } // aircraft

9



Table 3 Peaks created in the environment. For each aircraft in the environment, multiple negative peaks are
placed along its trajectory. Terrain features in this implementation are negative rewards placed manually to
overlay the terrain. Each aircraft’s goal is also manually selected and represents a vertiport in the environment.
Here p̂ represents the position of an aircraft and v̂ represents the velocity of the aircraft.

For each intruder or other aircraft in the batch:

Magnitude Decay factor Location Radius Timesteps Comment
−1000 .97 p̂ + v̂t 300 + 10t ∀t ∈ {−5, 0, 5, 10, 15} Collision avoidance, 5 rewards

For each terrain feature:

Magnitude Decay factor Location Radius Timesteps Comment
−1000 .99 manually placed manually selected N/A Terrain avoidance

For aircraft’s goal:

Magnitude Decay factor Location Radius Timesteps Comment
200 .999 manually placed ∞ N/A Vertiport attraction

B. Kernel: Forward project

Forward projection here refers to using models of the aircraft dynamics to compute the future state of the aircraft based
on an assumed action for a fixed duration of time. The aircraft dynamics and actions used in this paper are the same as
those used in [61]. The forward projection used here is considered a module that can be replaced with another physics
model or forward projection method. Additionally, multiple physics models that model different aircraft types could
also be implemented and used to simulate different aircraft dynamics within the same simulation.

The input of this kernel is the current state of all aircraft in the batch and the set of all possible actions that an aircraft
can take from the current state. One thread is created for each aircraft in the batch and each action that can be taken
from the current state for N × A total threads (see Table 1).

The output of this kernel is the future state of all aircraft in the batch for each possible action for each time step in the
lookahead window.

The time window forward projection is performed over is denoted with W and represents the number of simulation
time steps of duration dt to perform. In this implementation, W = 10 and each time step is dt = 0.1 seconds. The
time window could be increased or decreased and is selected so that the forward projected actions provide a significant
enough spread in the state space for the algorithm to detect a difference in value between states. The key here is that the
forward projection needs to be far enough away for the agent to react to the truncated boundary of risk wells. Less
maneuverable aircraft models will require a larger forward projection window W .

Note here that nothing precludes the time step dt from being variable. For simplicity, in this implementation the time
step is fixed, but if an adaptive time step dt or time window W were desired, this is achievable without loss of generality.
Likewise, at different time scales, different dynamics models could be used which are appropriate for the timescale if an
adaptive fidelity approach were desired.

Note also that if the dynamics model is such that the points in time can be computed independently from each other,
then the kernel could be further parallelized, but we do not assume this to always be the case.
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Algorithm 3 Forward Projection Kernel
1: procedure Forward Projection(iac, ia )
2: // iac : Aircraft index
3: // ia : Action index

4: // Perform forward projection of aircraft dynamics given action
5: for t ∈ {1, · · · ,W } do
6: ∆10[iac, ia, t] ← step physics computations forward in time

C. Kernel: Process positive rewards

For each of the future states computed by forward projection, the value contributed by positive peaks is computed and
saved in an output array.

The input of this kernel is the forward projected state for each action for each time step dt in the forward projection
window W . One thread is created for each aircraft in the batch for each action that can be taken from the current state for
each positive peak for N × A × Rp total threads (see Table 1).

The output of this kernel is the value at each state that is contributed by each positive peak.

Algorithm 4 Positive Rewards Kernel
1: procedure Positive Rewards(iac, ia, ip )
2: // iac : Aircraft index
3: // ia : Action index
4: // ip : Peak index

5: for t ∈ {1, · · · ,W } do
6: // Get projected state for this time step
7: s ← ∆10[iac, ia, t]
8: // Get peak
9: pi ← P+[ip ]
10: // Compute distance between state and peak
11: dp ← ‖s − location(pi )‖2
12: // Extract reward magnitude for the peak from data structure
13: rp ← reward(pi )
14: // Extract discount factor for the peak from data structure
15: γp ← discount(pi )
16: // Compute the value with respect to the peak
17: V ← |rp | · γ

dp
p

18: // Save max value (atomic operation)
19: V+[iac, ia, t] ← max

(
V+[iac, ia, t],V

)

D. Kernel: Process negative rewards

For each of the future states computed by forward projection, the value contributed by negative peaks is computed and
saved in an output array.

The input of this kernel is the forward projected state for each action for each time step dt in the forward projection
window W . One thread is created for each aircraft in the batch for each action that can be taken from the current state for
each negative peak for N × A × Rn total threads (see Table 1).

The output of this kernel is the value at each state that is contributed by each negative peak.
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Algorithm 5 Negative Rewards Kernel
1: procedure Negative Rewards(iac, ia, ip )
2: // iac : Aircraft index
3: // ia : Action index
4: // ip : Peak index

5: for t ∈ {1, · · · ,W } do
6: // Get projected state for this time step
7: s ← ∆10[iac, ia, t]
8: // Get peak
9: pi ← P−[ip ]
10: // Compute distance between state and peak
11: d ← ‖s − location(pi ) ‖2
12: // Extract reward magnitude for the peak from data structure
13: r ← reward(pi )
14: // Extract discount factor for the peak from data structure
15: γ ← discount(pi )
16: // Extract radius for the peak from data structure
17: R ← radius(pi )
18: // Compute whether we are inside the radius of the peak, result is a 1 if true or a 0 if false.
19: in← d < R
20: // Compute the value with respect to the peak
21: V ← in · |r | · γd

22: // Save max value (atomic operation)
23: V−[iac, ia, t] ← max (V−[iac, ia, t],V )

E. Kernel: Process negative terrain rewards

For each of the future states computed by forward projection, the value contributed by terrain peaks is computed and
saved in an output array.

The input of this kernel is the forward projected state for each action for each time step dt in the forward projection
window W . One thread is created for each aircraft in the batch for each action that can be taken from the current state for
each terrain peak for N × A × Rt total threads (see Table 1).

The output of this kernel is the value at each state that is contributed by each terrain peak.
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Algorithm 6 Terrain Rewards Kernel
1: procedure Terrain Rewards(iac, ia, ip )
2: // iac : Aircraft index
3: // ia : Action index
4: // ip : Peak index

5: for t ∈ {1, · · · ,W } do
6: // Get projected state for this time step
7: s ← ∆10[iac, ia, t]
8: // Get peak
9: pi ← PT[ip ]
10: // Compute distance between state and peak
11: d ← ‖s − location(pi ) ‖2
12: // Extract reward magnitude for the peak from data structure
13: r ← reward(pi )
14: // Extract discount factor for the peak from data structure
15: γ ← discount(pi )
16: // Extract radius for the peak from data structure
17: R ← radius(pi )
18: // Compute whether we are inside the radius of the peak, result is a 1 if true or a 0 if false.
19: in← d < R
20: // Compute the value with respect to the peak
21: V ← in · |r | · γd

22: // Save max value (atomic operation)
23: VT[iac, ia, t] ← max

(
VT[iac, ia, t],V

)

F. Kernel: Process negative intruder rewards

For each of the future states computed by forward projection, the value contributed by intruder peaks is computed and
saved in an output array.

The input of this kernel is the forward projected state for each action for each time step dt in the forward projection
window W . One thread is created for each aircraft in the batch for each action that can be taken from the current state for
each intruder peak for N × A × Ri total threads (see Table 1).

The output of this kernel is the value at each state that is contributed by each intruder peak.
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Algorithm 7 Intruder Rewards Kernel
1: procedure Intruder Rewards(iac, ia, ip )
2: // iac : Aircraft index
3: // ia : Action index
4: // ip : Peak index

5: for t ∈ {1, · · · ,W } do
6: // Get projected state for this time step
7: s ← ∆10[iac, ia, t]
8: // Get peak
9: pi ← PI[ip ]
10: // Compute distance between state and peak
11: d ← ‖s − location(pi ) ‖2
12: // Extract reward magnitude for the peak from data structure
13: r ← reward(pi )
14: // Extract discount factor for the peak from data structure
15: γ ← discount(pi )
16: // Extract radius for the peak from data structure
17: R ← radius(pi )
18: // Compute whether we are inside the radius of the peak, result is a 1 if true or a 0 if false.
19: in← d < R
20: // Compute the value with respect to the peak
21: V ← in · |r | · γd

22: // Save max value (atomic operation)
23: VI[iac, ia, t] ← max

(
VI[iac, ia, t],V

)

G. Kernel: Compute value

In this pipeline stage, the results of all positive and all negative rewards are combined into a single value for each state
computed by forward projection. One thread is created for each aircraft in the batch for each action that can be taken
from the current state for N × A total threads (see Table 1).

Algorithm 8 Compute Value Kernel
1: procedure Compute Value(iac, ia )
2: // iac : Aircraft index
3: // ia : Action index

4: // Initialize the total value
5: Vmax ← 0
6: // Compute the maximum value that this action resulted in along its trajectory
7: for t ∈ {1, · · · ,W } do
8: // Get the maximum positve, negative, terrain, and intruder values at this time step.
9: V+max ← V+[iac, ia, t]
10: V−max ← V−[iac, ia, t]
11: V−max ← VT[iac, ia, t]
12: VT

max ← VI[iac, ia, t]
13: // Compute an altitude penalty if we go below a hard deck minimum altitude
14: Valt ← apply penalty if less than hard deck
15: // Compute the value from all the components
16: V ← V+max −max

(
V−max,V

T
max,V

I
max

)
−Valt

17: Vmax ← max (Vmax,V )

18: // Save off the maximum value this this action achieved
19: V∗[iac, ia ] ← Vmax

H. Kernel: Select best action

Here the value of each possible action is computed and the action with maximum value is identified and selected. One
thread is created for each aircraft in the batch for N total threads (see Table 1).
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Algorithm 9 Select Action Kernel
1: procedure Select Action(iac )
2: // iac : Aircraft index

3: // Identify the most valuable action
4: a∗ ← maxa∈A V∗[iac, a]
5: A∗[iac ] = a∗

I. Kernel: Determine terminal state

This function monitors all aircraft in the simulation to detect collisions, Near Mid-Air Collisions (NMACs), collisions
with terrain, and aircraft that have successfully reached their goals. Selected actions are also applied to the internal
simulation state which effectively advances simulation time by dt. This code operates on the GPU side to avoid having
to transfer memory to the CPU. A summary of the results of this function and of the current simulation state are passed
to the CPU side to determine if simulation should continue or end. As this is just simple accounting and collision testing,
the code is omitted.

V. Experimental Setup

To demonstrate the effectiveness of the algorithm in solving a real-world problem, we apply the algorithm to a
pre-departure flight planning (PDFP) problem in which an aircraft must determine a flight plan before takeoff which
has no conflicts with any other aircraft’s previously accepted flight plan. In this setup, an aircraft submits a starting
and ending location to the PDFP system, and the PDFP system returns a trajectory to the aircraft which is known to
be conflict free. The PDFP system maintains a database of terrain and of accepted flight plans, which are the result
of previous successful requests for flight plans from other aircraft who have utilized the first-come-first-served PDFP
request system. The PDFP system guarantees that the result of a PDFP request is conflict free with respect to terrain and
with all accepted flight plans. When a new flight plan is generated by the PDFP system, it is automatically stored in the
database of accepted flight plans and is then used for any new future requests.

This could represent a centralized planning system where all aircraft submit to a central service provider, such as NASA’s
UTM. This could also represent a distributed case where an operator of a fleet or individual aircraft build a flight plan
using a published set of flight plans. In this case, multiple operators could build flight plans simultaneously that are
conflict free with respect to the published set of flight plans. However, there would need to be some mechanism which
resolves conflicting flight plans that result from distributed planners who inadvertently plans which conflict with each
other but are conflict free with respect to the published flight plans. Such a mechanism is outside the scope of this paper.

The implementation for this paper is focused on determining the level of scalability that can be achieved by the algorithm
and does not put any effort into the database design. The database used here is a simple table in memory which
stores a list of previously accepted conflict free flight plans. This database is loaded from a file and a mechanism is
available to add an accepted flight plan to this file. In a larger scale implementation for a production environment, this
could be implemented by a production quality database system such as SQL server or equivalent. Likewise, in this
implementation, it is naively assumed that all simulation time steps should take place at a 0.1 second increment. In a
more sophisticated implementation, a larger time step could be taken in regions where it is safe to do so (e.g., away from
other aircraft and terrain). This would have the effect of being able to complete a flight plan in many fewer iterations of
the algorithm and would lead to a higher throughput of the pre-departure flight planning system, but would not impact
the level of scalability of the algorithm itself being studied in this paper.

While the implementation in this paper plans for a single source and destination, it can easily be extended to plan along
a route using known points (e.g., NAVAIDs) as waypoints. In this way, multiple routes could be explored in parallel
by allowing the algorithm to generate several candidate schedules which are returned to the requester. The requester
could then evaluate different attributes of the flight plan, such as fuel usage, risk profile, etc and select a preferred route.
Likewise by performing parallel scheduling at different departure times, varying routes can be examined. For example,
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it may be that leaving 30 minutes earlier avoids known traffic congestion and leads to lower fuel cost.

Each request causes the algorithm in this paper to be invoked with one or more aircraft. All previously accepted flight
plans are treated as intruders and are made available to the algorithm. The algorithm is allowed to execute until it
reaches its goal or a collision occurs during simulation. Collisions with terrain or with other aircraft are tracked and
reported. Only a trajectory without collisions is accepted, otherwise an error is reported.

For batch sizes greater than one, there are two ways in which to operate this algorithm. One possibility is to invoke the
algorithm with multiple aircraft being co-simulated together with the same set of accepted flights. In this mode, the
aircraft will be aware of each other and will route around each other and all accepted flight plans. This is necessary if
the aircraft within the batch might possibly intersect each other’s flight plans (e.g., when they are flying through an
overlapping flight volume.) In cases where requests can be segregated into non-overlapping flight volumes (e.g. separate
sections of a metropolitan area, separate sectors of airspace, etc), then independent parallel instances of the algorithm
can be run independent of each other. For a successful large scale implementation of this algorithm, a strategy should be
employed to break requests into manageable numbers of overlapping flights, and to co-simulate small numbers of flights
together in batches allowing independent batches to run in parallel. An implementation of this level of parallelism is left
to future work.

While in this paper, all accepted flight plans are generated by successively running the algorithm with a sequence of
source and destinations, in principle the flight plans could also be generated by some external source and imported into
this algorithm. The flight plans could be in the form of trajectory points as is currently done in this implementation,
or could be in some higher level summary form such as line segments, Bezier splines, or some other more efficient
representation.

VI. Results

Figure 4a shows results for the algorithm’s performance as the number of accepted flight plans increases. The GeForce
2080 RTX used for this test has 8GB of RAM and tests were performed with NVIDA driver version 441.66 running
CUDA 10.2 on Windows 10. The GeForce Titan XP has 12GB of RAM, used driver 440.60 running CUDA 10.2 on
Ubuntu 18.04.

Performance results as the number of accepted flight plans varies are shown in Figure 4a. Any value above 10 Hz
represents running faster than real-time. This crossover occurs near 2,000 accepted flight plans on the GeForce 2080
RTX, which represents approximately 10,000 reward peaks that are processed by the algorithm. On the GeForce Titan
XP, the crossover occurs at about 3,000 accepted flight plans (15,000 reward peaks). On the CPU version of this
algorithm, this same crossover happens at around 75 flight plans. These results clearly show the benefit that the GPU
version of the algorithm is able to produce to reach higher scaling.

Performance results as the batch size varies are shown in Figure 4b. While this demonstrates that the frame rate for
processing the batch decreases as the number of aircraft in the batch increase, it also shows that if the total cycles
processed (the x-coordinate multiplied by the y-coordinate) is considered, it reflects that the GPU becomes saturated
and can perform a certain amount of work (certain number of computations) per second. Once the GPU becomes
saturated (at x = 5 on the graph), it can no longer keep up with the amount of new work being requested. This saturation
point will occur at a different level depending on the power of the GPU.

A. The impact of departure delay on en route flight time

To demonstrate the feasibility of examining multiple departure schedules, we show the results of varying the departure
time on the resulting flight plan. For illustration purposes, we define the cost function tflight = ta − td as each flight’s en
route time, where td is the departure time and ta is the arrival time. In general other cost function could be applied (e.g.,
fuel or electricity usage based off thrust, control actions, passenger comfort, risk profile, etc.). We first generate a set of
conflict free flight plans to form a congested airspace by allowing the algorithm to schedule a number of flight plans in
succession all departing at time td = 0 so that we have a set of known flight plans which are designed to generate traffic
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Fig. 4 Performance results of the algorithm.

congestion we can schedule around. We then perform a set of i candidate ground delay requests for each flight which
delay the departure time by some time ti = c ∗ i where c is an arbitrary delay constant such as 25 seconds. So the new
departure time will be t ′

d
= td + ti . We then show the resulting en route flight time from running the algorithm with

each candidate departure time in Table 4. In this experiment, waiting approximately 200 seconds is a good option to
avoid all congestion and obtain the shortest flight time which in turn would result in lower fuel cost.

Table 4 Impact of departure delay on en route flight time

Departure delay (s) En route flight time (s)
0 579
25 545
50 536
75 588
100 535
125 539
150 538
175 537
200 518
300 518
400 518
500 518
600 518

VII. Conclusion

This paper presents FastMDP-GPU, an approach for performing pre-departure flight planning that is efficient and scales
to a large number of aircraft using a highly parallelized GPU-based approach. This research is the first work that
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efficiently computes flyable pre-departure trajectories and strategically deconflicts with thousands of other planned
trajectories. This approach has the potential to perform pre-departure flight planning scheduling for dense UAM and
other congested environments which require quick replanning.

For future work, further optimization can be performed on the algorithm to obtain higher levels of utilization of the
GPU. Additionally, multi-GPU systems can be utilized to perform concurrent processing on multiple GPUs. Likewise,
moving processing into the cloud or a cluster so that multiple GPUs on separate systems are utilized could also improve
performance. Alternatively, given the limitations of a particular GPU another strategy could be to segment the problem
by geographical area. Geographic Information Systems (GIS) databases often employ queries which operate over an
area which are often implemented as range queries. Range query algorithms could be used to restrict the number of
trajectories that need to be considered to a volume relevant to the expected flight path.
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