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Abstract—Graphic Processing Units (GPUs) achieve latency
tolerance by exploiting massive amounts of thread level
parallelism. Each core executes several hundred to a few
thousand simultaneously active threads. The work scheduler tries
to maximize the number of active threads on each core by
launching threads until at least one of the required resources
is completely utilized. The rationale is, more threads would give
the thread scheduler more opportunities to hide memory latency
and thus would result in better performance. In this work, we
show that launching the maximum number of threads is not
always necessary to achieve the best performance. Applications
have an optimal thread count value at which the performance
saturates. Increasing the number of threads beyond this value
results in no better and sometimes worse performance. To this
end, we develop Perf-Sat: a mechanism to detect the optimal
number of threads required on each core at runtime. Perf-Sat
is integrated into the hardware work scheduler and guides it
to either increase or decrease the number of active threads.
We evaluate the performance impact of our scheduler on two
GPU generations and show that Perf-Sat scales well to different
applications as well as architectures. With performance loss of
less than 1%, Perf-Sat is able to achieve core resource savings
of 18.32% on average.

Index Terms-GPGPU, Resource Utilization, Workload
Scheduling

I. INTRODUCTION

Graphics processing units (GPUs) have proven to be excel-

lent accelerators for general purpose computing. As they are

designed for high throughput, GPU architectures incorporate

several cores, each of which have hundreds of arithmetic units

and support thousands of active threads. Due to transistor

scaling, each new generation of GPU provides a higher com-

putational power compared to the previous one. For example,

the NVIDIA Kepler architecture [1] has six times the number

of single precision and four times the number of double

precision floating point units per core as compared to NVIDIA

Fermi [2]. GPGPU programming models, e.g. CUDA [3]

and OpenCL [4], use the thread block abstraction to enable

applications written for a previous generation GPU to scale

to the increased computation resources provided by future

generation GPUs. The number of blocks that can be active

simultaneously on a core depends on the resources available.

Newer generation GPUs provide more resources per core,

thereby supporting a higher number of concurrently active

thread blocks. Thus, by executing a higher number of thread

blocks (and hence threads) on a newer generation GPU, the
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(a) M2090 (Fermi)
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(b) K20X (Kepler)

Fig. 1. Impact of thread count on performance when simulated on configu-
rations matching the NVIDIA Tesla M2090 (a) and K20X (b) GPUs.

same application is able to utilize the increased number of

computation units and thereby achieve a higher throughput.

However, we observed that increasing the number of threads

does not always result in increased throughput. Each ap-

plication has an optimal thread count value, beyond which

increasing the number of threads does not result in fur-

ther improvement in performance. To observe the effect of

number of threads on application performance, we simulated

various application kernels1 with an increasing number of

thread blocks on GPGPU-Sim, a cycle-accurate GPU simulator

[5]. The configurations were chosen to match the NVIDIA

Tesla M2090 (Fermi) and K20X (Kepler) GPUs, as they are

designed specifically for high performance general purpose

computing. Fig. 1 depicts the results for six out of the 16

kernels that we used for this work. Three types of workloads

are shown in Fig. 1(a). One type of workload (SRAD-6 and

B+Tree) exhibits continuous improvement in performance as

the number of blocks is increased. For the second type (SRAD-

5 and BP-2) performance improves initially and then saturates.

Behavior of the third type (CFD and Gaussian) is similar

through the saturation point, except the performance drops off

as the number of blocks is increased beyond that. Interestingly,

the kernels for which performance saturated on the M2090

(SRAD and BP-2) behave like the third type of workload on

the K20X (Fig. 1(b)) as now they execute a higher number of

thread blocks.

Prior studies have made similar observations [6]–[8].

Cache Conscious Wavefront Scheduling [6] proposes a warp

1Kernels are the functions of an application that are offloaded to the GPU.
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Fig. 2. Block diagram of GPU hardware

scheduling policy (see Section II-B for description of the warp

scheduler) that reduces the number of active warps, when

threads from different warps contend for the same L1 data

cache set and increase evictions of possibly useful cache lines.

DYNCTA [7] tries to find the optimal number of thread blocks

at the thread block scheduler by monitoring the core idle and

memory wait cycles. However, both techniques use thresholds

that are determined heuristically and hence require executing

the applications for different architectures.
We believe that it is not possible to use one threshold for

different applications, even if they are being executed on the

same architecture. Thus, we propose Perf-Sat: a hardware

mechanism that detects the optimal thread block count at

runtime by using techniques similar to control systems. Per-

Sat uses information about core activity at the previous thread

block count along with feedback from the cores and makes

decisions based on relative performance. To reduce the effect

of not using thresholds, it uses history bits to record previous

decisions. The thread block count detected by Perf-Sat is used

by the thread block scheduler to limit the number of active

blocks on each core. This work is a first step towards a

hybrid scheduler that would use Perf-Sat at the chip level

to determine cores with unused resources. These resources

would then be used to execute threads at a lower priority

from a concurrently executing kernel, in an interleaved manner

[9], thereby increasing throughput whenever possible without

sacrificing performance of the first kernel.
The remainder of this paper is organized as follows: Section

2 gives an overview of the GPU hardware architecture and

work scheduling. The motivation of our work is described in

Section 3. Section 4 provides details of Perf-Sat. Experimental

results are discussed in Section 5. An overview of related work

is provided in Section 6. Section 7 summarizes contributions

of this work and provides directions for future work.

II. BACKGROUND

This section gives an overview of the GPU architecture and

describes the workload scheduling techniques that are used for

general purpose computing on GPUs.

A. GPU Hardware Architecture
Fig. 2 shows a high-level block diagram of the GPU chip

and main components within a core. GPUs have a many
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Fig. 3. Thread hierarchy used by GPU programming models

core architecture consisting of several in-order cores called

Streaming Multiprocessors (SMs). Each SM consists of sev-

eral arithmetic units denoted as EU (execution units) in the

figure. These units can be single or double precision floating

point units, load/store units or special function units used for

transcendental operations like sine and cosine. To store the

context of a large number of active threads, each SM has a

very large register file. Additionally, each SM has a private L1

data cache and a high-bandwidth on-chip memory that can be

shared by threads from the same thread block. If a memory

request misses the L1 data cache or shared memory, it is

routed via the interconnection network to a one of the memory

partitions. Each memory partition has a L2 cache bank and a

memory controller. The Fermi and Kepler configurations used

in our work have six 64-bit-wide memory controllers providing

a peak bandwidth of 177 GB/s and 250 GB/s respectively.

Further details of the configurations are provided in Table I.

B. Workload Scheduling

GPGPU programming models (eg. CUDA and OpenCL)

divide the computation using a three level hierarchy as shown

in Fig. 3. Usually, a thread performs work corresponding to a

single input/output data point. Thread blocks are groups of

threads that can synchronize using barriers and share data

through the on-chip shared memory. A grid, the highest level in

the hierarchy consists of several thread blocks and represents

all threads of a particular kernel.

Thread block scheduling: GPUs use a Single Program

Multiple Data (SPMD) model of computation. Work is

launched from an application via a kernel function call. The

kernel, is the single set of instructions that is executed by all

threads in the grid corresponding to that kernel. The thread

block scheduler is the hardware module that issues work

to the SMs. As threads within a block are allowed to use

synchronization barriers, work is issued at the granularity

of thread blocks. The publicly available information on the

implementation of the thread block scheduler is sparse. Gen-

erally, it is assumed that thread blocks are issued to cores

in a round-robin fashion until a core has resources available

for an entire block. Four resources are checked: number of

registers used per thread, shared memory used per thread,

number of available thread slots and number of available

thread block slots. Thus, the maximum number of thread

blocks (and hence threads) that can be issued simultaneously

on an SM depends on the size of the thread block as well

22222
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Fig. 4. Depiction of memory latency tolerance for different kernel categories.

as the resource requirement of each thread. We refer to this

maximum block count as Nmax.

Warp scheduling: On the SM, threads are grouped into

fixed-size groups called warps, usually having 32 threads. A

warp scheduler issues warps that are ready on the array of

execution units in Single Instruction Multiple Data (SIMD)

fashion. Although instructions from threads that belong to a

single warp are executed in lock-step, execution of different

warps is interleaved to achieve an overlap of memory access

latency with computation.

III. MOTIVATION

A. The Need for Thread Level Parallelism

Graphics processing units are designed for high throughput

rather than low latency. Hence, they trade-off the optimizations

used in CPUs for reducing latency, such as large caches, out

of order execution and branch prediction, to provide more

die area to computational units. To account for the overhead

of increased latency of memory accesses, GPU cores use a

technique called Single Instruction Multiple Threads (SIMT)

execution [2]. SIMT interleaves execution of multiple SIMD

groups, each of which can be at a different instruction.

As mentioned in section II-B, a SIMD group of threads is

called a warp. Warps within one thread block are executed in

round-robin order, until all of them stall due to memory access.

At this point, warps from the oldest thread block that was

scheduled are selected for execution and so on. In this manner,

the warp scheduler tries overlap memory access latency of the

stalled threads with computation of the active threads. This

scheduling technique is known as Greedy Then Oldest. Many

other warp scheduling policies exist such as Round Robin,

Two-level, etc. We do not describe them in detail as the work

reported in this paper is neutral with respect to the warp

scheduling policy. Further details regarding different policies

can be found in [5], [6], [10], [11] and [12].

B. Optimal Thread Block Count

The warp scheduling approach described above is widely

known in the GPGPU community. Hence, application devel-

opers tune the thread block size and resource requirement

per thread to maximize the number of active threads that can

be supported on a GPU core. Furthermore, the thread block

scheduler launches thread blocks on a core until this maximum

count is reached (Nmax). The rationale is, more threads would

provide the warp scheduler with more opportunities to overlap

memory access latency with computation. However, as shown

in Fig. 1, launching the maximum number of thread blocks

(and hence threads) does not result in the best performance

for all applications. For some applications, increasing the

number of threads beyond some point does not result in further

performance improvement, and for others might also reduce

performance. We call this point, the optimal thread block

count.

In our experiments, we observed three categories of appli-

cations. The effect of thread block count on each category

is illustrated in Fig. 4. Let us assume that the applications

have Nmax equal to four. In Fig. 4(a), memory requests

of warps from the first block are not completed even after

all the other blocks have completed their computations. The

performance of this category of applications would scale if

additional thread blocks could be issued. They are referred

to as C-strong. The optimal count for these applications is

equal to Nmax. Fig. 4(b), depicts the execution of the second

type of application: C-weak. Notice that three blocks are

sufficient to overlap all the memory latency. Launching the

fourth thread block would not result in a better performance

and hence the optimal count is three. Performance of such

applications saturates once the optimal block count is reached.

For the third category of workloads (refer Fig. 4(c) and 4(d)),

performance starts to decrease if the number of active blocks

is more than the optimal count. In the figures, we can observe
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(a) B+Tree (C-strong)
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(b) SRAD (C-weak)
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(c) LUD (MEM)
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(d) B+Tree (C-strong)
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(e) SRAD (MEM)
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(f) LUD (MEM)

Fig. 5. Breakdown of core activity for three types of workloads on the NVIDA Fermi (above) and Kepler (below) architectures.

that the memory system can support requests from only two

blocks. Issuing more blocks, starts increasing pipeline stalls.

The optimal count is the number of blocks that can issue

memory requests simultaneously, plus one. In this example,

it would be three. Such applications are categorized as MEM.

In the next section, we describe the breakdown of core activity

during execution, which explains the cause of this behavior.

C. Effect of Workload Characteristics on Optimal Thread
Block Count

To understand the effect of number of thread blocks on

application performance, we simulated a wide range of appli-

cations from the Rodinia benchmark suite [13] on a cycle

accurate GPU microarchitecture simulator [5]. The thread

block scheduler was modified to limit the number of blocks it

launches on each core. Applications were executed from one to

Nmax active blocks and the following architectural parameters

were monitored at each core:

Scoreboarding stalls: Cycles when all the warps are stalled

due to dependency from a previous instruction. A stall is cat-

egorized as either ALU or memory depending on whether the

previous instruction is an arithmetic or a memory operation.
Pipeline stalls: Cycles when all the warps are stalled

because of insufficient hardware resources. Again, a stall is

categorized as ALU if the resource is a computational unit

and memory if the resource is required for a memory operation

(e.g. MSHR entry, memory access queue, etc.).
Idle stalls: Cycles when all the ready warps are waiting on

a synchronization barrier. The warp scheduler does not have

any warps to issue.
Active: Cycles when the core is performing computations.

Fig. 5 illustrates the core activity profiles for an application

from each of the three types. Data plotted for scoreboarding

and pipeline stalls are attributed to both ALU and memory. For

simplicity, we do not distinguish between these in the figure.

C-strong: We can observe in Fig. 5(a) that the number

of scoreboarding stalls is very high with one block. This is

because there are not enough threads to overlap the memory

access and ALU latencies. As the number of thread blocks

increases, the scoreboarding stalls decrease while the pipeline

stalls increase. Notice that the decrease in scoreboarding stalls

is always greater than the increase in pipeline stalls, which

results in an overall increase in the number of active cycles.

This trend continues until the thread block limit is reached.

Hence, the optimal count is the same as Nmax for these work-

loads. Similar behavior is observed on the Kepler architecture

(Fig. 5(d)). It should be noted that, while the applications had

a lesser execution time on the Kepler architecture, the ratio

for which the core was active also reduced. This motivates

additional investigation into execution throughput, which is a

component of our planned future work.

C-weak: Fig. 5(b) shows that the performance of SRAD

continues to improve and starts to plateau at five blocks

(optimal block count). Observe that after five blocks, the

decrease in scoreboarding stalls is comparable to the increase

in pipeline stalls. This is because, as the number of active

threads increases, the warp scheduler has a higher number of

ready threads to choose from, which decreases the number

of scoreboarding stalls. However, this also increases the con-

tention for hardware resources, which results in an increase

in the number of pipeline stalls. Due to this contradictory

effect, the number of active cycles does not increase. Thus,

the performance saturates after the optimal count value.

MEM: Similar to the C-weak category of workloads, the

performance of workloads in this category also saturates when

44444



the decrease in scoreboarding stalls becomes comparable to

the increase in pipeline stalls. However, beyond this point

the performance starts to degrade. Observe in Fig. 5(c) that

performance of LUD drops off when the number of blocks

is increased beyond five. We observed that this is due to an

increase in L1 data cache contention among warps, which

causes an increase in the L1 data cache miss rates. The effect

is more prominent on the Kepler configuration, as the L1

cache size is the same and the number of warps executing

simultaneously increases. SRAD, which is a C-weak type of

workload on Fermi, becomes a MEM workload on the Kepler

configuration due to the same reason (Fig. 5(e)).

Our work is motivated by these observations. Detecting the

optimal thread block count for C-weak and MEM types of

workloads can reduce the amount of core resources required by

a kernel, without sacrificing performance. These resources can

either be power-gated or utilized for issuing threads from other

workloads in concurrent kernel execution scenarios. In the

next section, we explain how Perf-Sat utilizes the information

regarding core stalls to detect the optimal thread block count.

IV. PERF-SAT

A. Hypothesis

The design of Perf-Sat is based on the behavior presented in

the previous section. The key observation is that, performance

improves until the increase in the number of pipeline stalls is

lesser than the decrease in the number of scoreboard related

stalls. Lets consider an application that is executing with N

active blocks. Using N+1 active blocks would be better if,

PipelineN+1−PipelineN < ScoreboardN−ScoreboardN+1

Thus, N+1 active blocks are a better choice, if the sum of

the pipeline and scoreboarding stalls is lower than if N blocks

were active. This sum is referred to as stalled cycle count in the

rest of the paper. Our thread block scheduler issues �Nmax/2�
number of blocks on each core at initialization. The number

of active blocks is then adjusted until the stalled cycle count

is greater than at the previous thread block count.

B. Detection Algorithm

The detection algorithm has three phases:

1) Sample rate detection: As we make decisions based

on samples of the core activity during program execution,

our algorithm is sensitive to the sampling rate. For example,

a sample of the core activity when the workload was very

compute intensive should not be compared against one that

had many memory access instructions. We observed that

applications usually exhibit such phase behavior within warps.

The effect of phase behavior gets averaged across thread

blocks. Thus, we set the sampling period to approximately

the number of cycles it would take for Nmax thread blocks to

complete. When work from a new kernel is started on a core,

the number of cycles that elapsed until the first thread block

completes (One TBcycles) are recorded. The sampling period

is then set as One TBcycles ∗ Nmax.
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Fig. 6. State machine used by Perf-Sat

Decisions in the next two phases are made according to

the state machine shown in Fig. 6. The state machine has

four states: weak-increase, strong-increase, weak-decrease and

strong-decrease. The stalled cycle count for the previous block

count is stored (previous sample). At the end of a sample

period, Perf-Sat compares the stalled cycle count for the

current thread block count (current sample) with the previous

sample. A direction bit is used to indicate whether a particular

direction of throttle has been decided. A history bit is used to

distinguish between the weak and strong states.

2) Direction of throttle: The optimal thread block count can

be either higher or lower than the initial value of �Nmax/2�.

Hence, the direction in which we should change the number of

active blocks is decided in the second phase. At initialization,

the direction bit is set to 0. At the end of the first sample

period, the stalled cycle count for �Nmax/2� is stored as the

previous sample and the number of blocks is increased to

�Nmax/2� + 1. Perf-Sat is in the weak-increase state.

At the end of the second sample period, if the stalled cycle

count is lesser than the previous sample, it is considered that

the decision to increase was correct. Perf-Sat remains in the

weak-increase state and the history bit is set to 1. The thread

block count remains as �Nmax/2� + 1. On the other hand, if

the stalled cycle count is greater than the first sample, Perf-Sat

goes into the weak-decrease state. The sample corresponding

to �Nmax/2 + 1� is stored and number of active blocks is

reduced to �Nmax/2�.

At the next sample, if the number of stalled cycles is

coherent with the decision taken, Perf-Stat goes into the

strong-increase (or strong-decrease) state and the direction bit

is set. If not, the history bit is reset again. Thus, the history

bit ensures that a direction of throttle is decided only if two

consecutive decisions favor the same direction. If the optimal

thread count value is close to �Nmax/2�, Perf-Sat can toggle

several times between the weak-increase and weak-decrease

states. The optimal count is set as �Nmax/2 + 1�, if the state

machine toggles more than three times.
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TABLE I
DETAILS OF THE GPU CONFIGURATIONS.

Resource M2090(Fermi) K20X (Kepler)

Register file capacity per SM 128 KB 256 KB

Maximum threads supported per SM 1536 2048

Maximum thread blocks supported per SM 8 16

SP floating point units per SM (total) 32(512) 192(2688)

DP floating point units per SM (total) 16(256) 64(896)

SP floating point performance (peak) 1330 GFLOPS 3935 GFLOPS

DP floating point performance (peak) 665 GFLOPS 1311 GFLOPS

DRAM clock frequency (MHz) 1850 2600

DRAM peak bandwidth (GB/s) 177 250

TABLE II
DETAILS OF CUDA KERNELS USED FOR OUR WORK.

Kernel
Resource per block M2090(Fermi) K20X (Kepler)

Reg (Bytes) Threads Max Opt Type Max Opt Type

Backprop - 1 (BP-1) 12228 256 6 6 C-strong 8 8 C-strong

Backprop - 2 (BP-2) 24576 256 5 5 C-weak 8 5 MEM

B+Tree - 1 (B+-1 ) 24576 256 5 5 C-strong 8 8 C-strong

B+Tree - 2 (B+-2) 20480 256 6 6 C-strong 8 8 C-strong

Comp. Fluid Dyn. (CFD) 39936 192 3 3 MEM 6 5 MEM

Gaussian (Gaus) 1536 16 8 6 MEM 16 6 MEM

LU Decomposition (LUD) 16384 256 6 5 MEM 8 5 MEM

Hotspot (Hot) 36864 256 3 3 C-strong 6 6 C-strong

Pathfinder (Path) 16384 256 6 5 C-weak 8 5 C-weak

Nearest neighbor (NN) 16384 256 6 5 C-weak 8 7 C-weak

SRAD - 1 12288 256 6 6 C-strong 8 6 MEM

SRAD - 2 12288 256 6 5 C-weak 8 5 MEM

SRAD - 3 16384 256 6 6 C-strong 8 3 MEM

SRAD - 4 20480 256 6 6 C-strong 8 7 C-weak

SRAD - 5 20480 256 6 5 C-weak 8 4 MEM

SRAD - 6 12288 256 6 6 C-strong 8 7 MEM

3) Detection of optimal value: Once the state machine is in

the strong-increase (or strong-decrease) state, Perf-Sat keeps

increasing (or decreasing) the number of active blocks at the

end of each sample period. The stored sample is now updated

at each sample point. This continues until the stalled cycle

count of the current sample is more than the previous sample.

For example, lets say an application has Nmax = 15 and

Noptimal = 12. Perf-Sat starts with N = 8. It takes two samples

at N = 9 to set the direction bit and goes into the strong-

increase state. After N = 9, the number of active blocks is

increased at every sample point until 12.

The number of stalled cycles at N = 13 would be more than

at N = 12. At this point; the N13 sample is discarded, Perf-Sat

goes into the weak-increase state and number of active blocks

are kept as 13. The history bit is set to 0. At the next sample, if

the stalled cycle count is again more than the N12 sample, the

optimal block count is detected as 12. Similar to the problem

mentioned in the previous section, just before converging at

Noptimal = 12, Perf-Sat can toggle several times between the

weak-increase and strong-increase states. The optimal block

count is decided as the previous value (12 in this example) if

it toggles more than 3 times.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Our experiments were performed on GPGPU-Sim v3.1

[5], a cycle accurate GPU microarchitecture simulator. As

mentioned in section I, we configured the simulator to closely

match the NVIDIA Tesla M2090, which is based on the Fermi

architecture, and the Tesla K20X, which is based on the Kepler
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Fig. 7. Comparison of active thread blocks detected by Perf-Sat, with baseline
and empirically found optimal count.

architecture. Details of both the configurations are provided in

Table I.

We simulated a wide range of CUDA kernels from the

Rodinia benchmark suite [13]. We show results for 16 kernels

representing a good mix of the three types of applications: C-

strong, C-weak and MEM. Table II provides information about

the kernels. Kernels that are numbered, are from applications

which have multiple kernels.

B. Detection Accuracy

To find the optimal block count, the kernels were executed

separately for each thread block count by modifying the

thread block limit per core in the simulator. The count after

which increasing the number of blocks resulted in less than

2% performance improvement was decided as optimal. Fig.

7 compares this empirically determined optimal count with

the count detected by Perf-Sat. The baseline thread block

scheduler issues the maximum number of blocks supported. As

our mechanism operates separately for each core, the number

reported in the figure is the average across all cores. Perf-Sat

finds the optimal count with 94.25% accuracy on the Fermi

configuration and with 85.12% on the Kepler configuration.

There are two reasons for the difference between the detected

and the empirically found optimal values. Kernels for which

the optimal count is close to the maximum, Perf-Sat detects

the optimal count as maximum on some cores and lower than

the empirically found optimal on other cores. Secondly, for the

cores where the optimal count is close to Nmax/2, Perf-Sat

conservatively chooses the higher block count value.
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Fig. 8. Performance comparison between baseline, optimal and Perf-Sat.

C. Performance Impact

Fig. 8 compares the performance of Perf-Sat with baseline.

The difference between Perf-Sat and the baseline scheduling

policy is that Perf-Sat throttles the number of active blocks in

the beginning to detect the optimal count, while the baseline

scheduler always issues the maximum number of blocks possi-

ble. The speedup reported under Optimal is using the execution

time when the kernel is executed with the empirically found

number of thread blocks. As expected, we incur some loss in

performance for the C-strong and C-weak category of kernels.

This is because, their optimal block count is close to the

maximum. Perf-Sat starts with Nmax/2 number of blocks and

takes a few iterations to reach the optimal count. However, the

performance loss is only 0.51% on the Fermi configuration and

0.88% on the Kepler configuration. The performance of the

MEM category of workloads increases because the optimum

count is much less than the maximum. There is a 4.95%

performance improvement on average for these workloads

across the two configurations.

D. Resource Utilization

Fig. 9 shows the percentage of resources utilized by each

kernel with the baseline and Perf-Sat scheduling policies.

As the maximum block count for all of our kernels was

constrained due to either thread slots or registers, results are

shown for only these two resources. For the C-strong cate-

gory kernels, Perf-Sat utilizes only 0.97% lesser resources on

average compared to the baseline scheduler. This is expected

as the optimal count value is the same as maximum for these
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Fig. 9. Comparison of resource utilization per core.

workloads. The resource savings are more significant for the

other two categories of workloads. Perf-Sat utilizes 14.32%

and 35.35% less resources compared to the baseline for the

C-weak workloads on the M2090 and K20X configurations

respectively. For the MEM category, the reduction in resource

usage is 25.31% on the M2090 and 31.48% on the K20X

configuration. Across all kernels, the savings are 10.45%

on the M2090 and 25.51% on the K20X. Average resource

savings across the configurations is 18.32%.

VI. RELATED WORK

This section gives on overview of related work in GPGPU

scheduling techniques and workload throttling.

A. Scheduling in GPGPU

There have been several prior works that have proposed

scheduling techniques at the warp level. To increase the

overlap of memory latency with computation, Narasiman et

al. [10] proposed the two-level warp scheduling scheme. They

group a fixed number of warps into fetch groups. Warps

are scheduled in round-robin order from one fetch unit until

all the warps stall on a memory request, and then the next

fetch group is brought into the scheduler. Fetch groups are

selected in round robin order as well. Gebhart et al. [11]

proposed a similar hierarchical scheduling policy, along with a

register file cache. The objective of their work was to improve

the energy efficiency of the warp scheduler and instruction

dispatch. Rogers et al. [6] suggested that using a greedy then

oldest (GTO) policy for selecting fetch groups as well as for
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selecting warps within a fetch group, performs better than

round robin. Jog et al. [12] used the two level scheduler

to improve the efficiency of prefetching for GPUs. They

group non-consecutive warps into one fetch group, which then

prefetch for the next group. As warps for which data is being

prefetched are scheduled in the next group, this reduces the

amount of time they are blocked due to memory access.

B. Workload Throttling

It has been suggested in a few prior works that increasing

number of threads beyond a point can degrade performance

for some workloads. Bakhoda et al. [5] varied the amount of

core resources from 25% to 200% and observed that two of

the workloads they used showed a decrease in performance. In

their work on cache conscious warp scheduling [6], Rogers et

al. showed that high thread count can degrade performance for

cache sensitive workloads. They track L1 data cache lines to

detect warps that have lost intra-warp data locality, possibly

because of other warps evicting data lines that would have

been used by them. A scoring system increases the priority of

such warps. Warps that have a score below a certain threshold

are not scheduled, thereby reducing the number of active

threads. For cache-sensitive workloads, their warp scheduler

effectively reduces the active thread count close to the optimal

count. We attempt to find this count at the block scheduler.

Our work is closest to [7] and [8]. Kayiran et al. [7], monitor

the core idle cycles (Cidle) and cycles when all threads are

waiting for memory access (Cmem). They start by issuing

�Nmax� thread blocks. They increase the number of blocks

if Cidle is higher than a threshold. Once, Cidle is less than the

threshold, they further increase (or decrease) the block count

if Cmem is lower (or higher) than another threshold. Values

for both the thresholds, as well as the sampling period are

found empirically.

The work presented by Lee et al. in [8] is simi-

lar to ours, although using a different methodology. They

launch Nmax blocks at initialization and use a greedy warp

scheduling policy to issue work. The number of instruc-

tions executed until the first thread block completes are

counted. The optimal thread block count is estimated as

�N max ∗ (instr. in 1 block)/instr. executed�. The idea

is the amount of computation done to overlap latency of the

first block should be enough as now a new block can be issued

in its slot. Thus, the number of thread blocks that encompassed

those computations (calculated by the earlier equation) should

be optimal.

VII. CONCLUSION

In this work, we showed that launching maximum number

of thread blocks is not always optimal for GPGPU applica-

tions. Three categories of applications were identified and

the effect of number of thread blocks on their behavior

was thoroughly evaluated. We presented Perf-Sat, a hardware

mechanism that detects the optimal thread count on each core

at runtime. Its performance was evaluated against the baseline

and the empirically found optimal thread count values.

With less than 1% loss in performance, Perf-Sat can result in

significant resource savings for two out of the three workload

categories. In our future work, we would use Perf-Sat in

an integrated thread block and warp scheduler. The thread

block scheduler would use Perf-Sat to detect cores which

have unused resources. It would then issue thread blocks from

a concurrently active kernel. The warp scheduler on those

cores, would then schedule threads from the second kernel

at a lower priority. Priority based access to hardware units

would be required to ensure that performance of first kernel is

not degraded due to the contention from threads of the second

kernel.
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