Syllabus
EE 324: Signals and Systems II
Spring 2018

Instructors

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Name</th>
<th>Email</th>
<th>Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor</td>
<td>Yongxin Chen</td>
<td>yongchen@iastate.edu</td>
<td>Coover 3218</td>
</tr>
<tr>
<td>TA1</td>
<td>Amit Jena</td>
<td>amitjena@iastate.edu</td>
<td>TLA</td>
</tr>
<tr>
<td>TA2</td>
<td>Soumyabrata Talukder</td>
<td>talukder@iastate.edu</td>
<td>TLA</td>
</tr>
<tr>
<td>TA3</td>
<td>David Severson</td>
<td>dsev15@iastate.edu</td>
<td>TLA</td>
</tr>
</tbody>
</table>

Schedule

Lectures: M, W, F 2:10pm - 3:00pm, GILMAN 1652
Labs: T 10:00am - 12:50pm (A), R 12:10pm - 3:00pm (B), W 3:10pm - 6:00pm (C), W 6:10pm - 9:00pm (D), COOVER 2061

References

Signals and Systems, by S. Haykin and B. Van Veen, John Wiley and & Sons, 2005
Web resources:
MATLAB: https://www.mathworks.com
Online tutorial: https://www.tutorialspoint.com/signals_and_systems/

Responsibilities

Yongxin: main lectures
Amit: Homework grading, quizzes grading and exams grading
Soumyabrata: Recitation, Lab section A&B and exams grading
David: Lab section C&D and exam grading

Office hours

Yongxin: Mon 3:00pm-4:00pm, Fri 3:00pm-4:00pm
Amit: Tue 1:00pm - 3:00pm
Soumyabrata: Thu 9:00am - 11:00am
David: Fri 10:00am - 11:00am

Scholastic Dishonesty

Cheating, whether it is on your problem sets or exams, is absolutely unacceptable. Please refer to the Student Conduct Code at: https://www.policy.iastate.edu/policy/SDR

Dead week policy

http://www.provost.iastate.edu/academic-programs/dead-week
Course content
- Laplace transform (Chapter 6)
- Z-transform (Chapter 7)
- Applications to Filters (Chapter 8)
- Application to feedback control (Chapter 9)

Grading scheme
- There will be two in class midterm exams; in roughly the 6th and 12th week, respectively. There will be one final exam (in 17th week) that will be comprehensive.
- Homework (which will include matlab exercises) will be assigned on a weekly basis. These will be due a week later.
- There will be a certain number (6 maybe) of quizzes given in the class.
- The course involves weekly labs. Prelab reports are due the day of the lab, and lab reports are due the day of the next lab.
- Make up or late submission will be allowed only with a prior arrangement with the instructor, or for emergency (eg, medical); adequate documentation should be provided for the same.
- TA will supervise labs and do the grading, so please contact your TA for questions regarding your grading first.
- The overall distribution of grades is obtained as:
 - Homework 20%
 - Quizzes 10%
 - Labs 20%
 - 2 Midterms 30%
 - Final 20%
- Final letter grade will be assigned based on class score distribution with average being the cutoff for B or better, and ≤ 45 is automatic F.

Course outline
- EE 224 review (1 week)
- Signals and Systems overview (1 week)
- Laplace transformation (4 weeks)
- Z-transformation (3 weeks)
- Applications to Filters (3 weeks)
- Applications to feedback control (3 weeks)