Lab 3

EE 324: Signals and Systems II

In this Lab section we will continue our exercises on mathematical modeling of dynamical systems.

1 Prelab assignment

1. Get familiar with the differential equation solver ode45 again https://www.mathworks. com/help/matlab/ref/ode45.html
2. Simulate and plot the response of the following system

$$
y[k]-0.5 y[k-1]=x[k]
$$

with input $x[k]=1$.
3. Derive the differential equation associated with the following systems
i) Input $x=v_{\text {in }}$, output $y=v_{\text {out }}$

2 Lab assignment

1. Compute the impulse response $h(t)$ of system (i).
2. Compute the response of system (i) with parameters $R=500 k \Omega, C=1 \mu F$, input $x=1 V$ and initial condition $y(0)=0$. Plot it with the simulation result (using ode45) in the same figure.
3. Compute the response of system (i) with parameters $R=500 k \Omega, C=1 \mu F$, input $x=\sin (2 \pi t) V$ and initial condition $y(0)=0$. Plot it with the simulation result in the same figure.
4. Derive the impulse response of

$$
\begin{equation*}
y[k]-0.5 y[k-1]=x[k] \tag{1}
\end{equation*}
$$

4. Compute the response of system (1) with input $x[k]=0.8^{k}$. Plot it with the simulation result in the same figure.
5. Derive the impulse response of

$$
\begin{equation*}
y[k]-1.3 y[k-1]+0.4 y[k-2]=x[k] \tag{2}
\end{equation*}
$$

6. Compute the response of system (2) with input $x[k]=1$. Plot it with the simulation result in the same figure.
