Homework 2: due 01/26/18 EE 324: Signals and Systems II

1 Continuous time systems

Which of the following systems are dynamical? Stable? Causal? Time-invariant? Linear?

1. y(t) = 5x(t)2. $y(t) = x(t)^4$ 3. $y(t) = x(t-1)^2$ 4. $\frac{dy}{dt} = x(t)$ 5. $\frac{dy}{dt} = y(t) + x(t)$ 6. $\frac{dy}{dt} = -y(t) + x(t)^2$ 7. $\frac{dy}{dt} = -y(t) + x(t+4)$ 8. $\frac{dy}{dt} = tx(t)$

2 Discrete time systems

Which of the following systems are dynamical? Stable? Causal? Time-invariant? Linear?

1. y[k] = 2x[k]2. $y[k] = x[k+1]^2$ 3. y[k] - y[k-1] = x[k]4. y[k] - y[k-1] = x[k] - x[k-1]5. $y[k] - y[k-1] = x[k+1]^3$ 6. y[k] = ky[k-1] + x[k]7. y[k+1] - y[k] = x[k+1] + x[k-1]8. $y[k] - y[k-1] = x[k]/k^2$

3 System modeling

Derive the differential equations associated with the following systems

1. Input $x = v_{in}$, output $y = v_{out}$

2. Input x = V, output $y = i_a$

