Existence & Uniqueness (cont.)

Example: \(f(x) = \begin{bmatrix} x_1^2 \\ -\text{sat}(x_1 + x_2) \end{bmatrix} \) is cont. but not (cont.-)diff. on \(\mathbb{R}^2 \),
(but Lipschitz in \(\mathbb{R}^2 \))

\[
\|f(x) - f(y)\|_2 = \left\| \begin{bmatrix} x_1 - y_1 \\ \text{sat}(x_1 + y_2) - \text{sat}(x_1 + y_2) \end{bmatrix} \right\|_2 \\
\leq (x_1 - y_1)^2 + (\text{sat}(x_1 + y_2) - \text{sat}(x_1 + y_2))^2 \\
\leq (x_2 - y_2)^2 + ((x_1 + x_2) - (y_1 + y_2))^2 \\
\leq 2(x_1 - y_1)^2 + 2(x_1 - y_1)(x_2 - y_2) + 2(x_2 - y_2)^2 \\
\leq 2(x_1 - y_1)^2 + 3(x_2 - y_2)^2 \\
\leq 3\|x - y\|_2^2
\]

\(\Rightarrow \|f(x) - f(y)\|_2 \leq \sqrt{3}\|x - y\|_2 \). Thus globally Lipschitz (weaker than cont. diff.).

Locally Lipschitz at \((t_0, x(t_0))\) guarantees unique solution in nbhd of \((t_0, x(t_0))\),
but may extend up to \(t = t_0 + \delta\).
Further extension would require local Lipschitzness at \((t_1, x(t_1))\), etc. In general exist a max. \(T \) s.t. unique solution exists over \([t, T] \).
As \(t \to T \), the solution leaves any compact set over which \(f \) is locally Lipschitz.

Example: \(x = -x^2 \), \(x(0) = -1 \)
Here \(f = x^2 \) is cont. & cont. diff. but differential not uniformly held.
However diff. bdd on any compact set \(\Rightarrow \) Lipschitz over that compact set.
Unique solution \(x(t) = \frac{1}{t+1} \) exists over \([0, 1)\). As \(t \to 1 \), \(x \) leaves any compact set.

Question: When can the unique solution exist indefinitely?

Thm 2: \(\dot{x} = f(t, x) \) has unique solution over \([t_0, t] \) if \(f \) Lipschitz over \([t_0, t] \times \mathbb{R}^n \) and piecewise-cont. in \(t \) over \([t_0, t] \).

"Lipschitz" requirement of above thm is restrictive: \(\dot{x} = -x^3 = -f(x) \).
Here \(f \) is cont. & cont. diff., but \(\frac{df}{dt} \) not bounded. Yet unique solution exists:
\[
x(t) = \exp(x(t_0)) \sqrt{t^2 + \frac{2x^2(t_0)}{t-t_0}} + t > t_0.
\]
Example: \(\dot{x} = A(x) x + g(t) \)

\[
\Rightarrow \| f(t, x) - f(t, y) \| = \| A(x)(x-y) \| \leq \| A(x) \| \| x - y \|
\]

So if \(A(x) \) is bounded for \(t \in [t_0, t_1] \), we have that conditions of Thm 2 hold.

As we discussed, condition of Thm 2 are quite strong, and so here is another result:

Thm 3: \(\dot{x} = f(t, x) \) has unique solution for all \(t \geq t_0 \) if

- \(f \) locally Lipschitz over \([t_0, x_0] \times U \), \(U \subseteq \mathbb{R}^n \) compact set,
- \(x_0 \in U \), and solution of \(\dot{x} = f(t, x) \) does not exit \(U \).

Example: \(\dot{x} = -x^3 = f(x) \). Then \(f \) is locally Lipschitz over \([t_0, x_0] \times \mathbb{R}^n \).

Also if \(x_0 = 0 \), then system never leaves the set \(\{ x \in \mathbb{R}^n : |x| \leq 1 \} \).

(This is because \(x > 0 \Rightarrow \dot{x} < 0 \), and \(\dot{x} < 0 \Rightarrow \dot{x} > 0 \).)

Continuous dependence on initial conditions/parameters

- Does small change in \(t_0, x_0 \), or \(f \) causes small change in solution?
- Continuous dependence on \(t_0 \) since,

\[
x(t) = x(t_0) + \int_{t_0}^{t} f(s, x(s)) \, ds
\]

- \(\text{cont. dependence on } x_0 : \) Suppose \(\dot{x} = f(t, x) \) uniquely solvable over \([t_0, t_1] \). Starting \(x_0 \).

 \(\forall t \in \mathbb{R}^n - x_0 \), \(\| x(t) - x_0 \| \leq \varepsilon \) \(\forall t \in [t_0, t_1] \) and \(x(t) \) unique.

- \(\text{cont. dependence on } f : \) \(\{ f_n \} \xrightarrow{m=\infty} f \) uniformly in \(t \Rightarrow \{ x_m \} \xrightarrow{m=\infty} x \) uniformly?

Another way to study cont. dependence on \(f \), parametrize \(f \) using parameter \(\lambda \).

\(\Rightarrow \dot{x} = f(t, x, \lambda) \), which suppose has solution over \([t_0, t_1] \).

\(\forall \lambda, \| x_0 - \lambda \| \leq \theta \Rightarrow \| x(t, \lambda) - x(t, \lambda_0) \| \leq \varepsilon \) \(\forall t \in [t_0, t_1] \) and \(x(t, \lambda) \) open, connected.

Thm: \(f(t, x, \lambda) \) cont. in \((t, x, \lambda) \) & locally Lipschitz over \([t_0, t_1] \times D \{ \| x - \lambda \| \leq \theta \} \)

\(\forall \varepsilon \in \mathbb{R} : \) \(|x_0 - \lambda_0| < \delta \Rightarrow \| x(t, \lambda) - x(t, \lambda_0) \| < \varepsilon \) \(\forall t \in [t_0, t_1] \).

\(\varepsilon \)-tube around \(x(t_0, \lambda) \)
Differentiability of Solution & Sensitivity Eq.

- Under the additional requirement that \(f(t,x,\lambda) \) is continuously differentiable in \(x,\lambda \) (instead of just satisfying some Lipschitz condition) over \([t_0,t_1] \times \mathbb{R}^n \times \mathbb{R}^m\), then \(z(t,\lambda) \) is differentiable with \(\frac{\partial z}{\partial \lambda} \) near \(x_0, \lambda_0 \) where \(x_0, \lambda_0 \) such that \(\dot{z}=f(t,x,\lambda_0) \) with \(z(t_0)=x_0 \) has unique soln. over \([t_0,t_1]\).

- Further \(\dot{z}(t,\lambda) = \dot{z}(t,\lambda_0) + \dot{z}(t,\lambda_0) \), where
 \[
 \dot{z}(t,\lambda) = \left(\frac{\partial f}{\partial x} \right)_{t=t_0, \lambda=\lambda_0} (z(t,\lambda) - z(t,\lambda_0)) + \left(\frac{\partial f}{\partial \lambda} \right)_{t=t_0, \lambda=\lambda_0} \lambda - \lambda_0
 \]

- Thus if \(z(t,\lambda_0) \) is available as solution of \(\dot{z}=f(t,x,\lambda_0), z(t_0)=x_0 \), then \(z(t,\lambda) \) can be obtained by first solving eq. for "sensitivity".

- Another way to approach this is by solving the following together:
 \[
 \dot{z}=f(t,x,\lambda_0) \quad \text{with} \quad z(t_0)=x_0
 \]
 \[
 \dot{\lambda} = \left(\frac{\partial f}{\partial \lambda} \right)_{t=t_0, \lambda=\lambda_0} \lambda - \lambda_0
 \]

- These are usually solved numerically.

Example: Phase-locked-loop
 \[
 \dot{x_1} = x_2 \\
 \dot{x_2} = -c \sin x_1 - (a+b \cos x_1) x_2
 \]

\(\lambda = \begin{bmatrix} a \\ b \end{bmatrix} \) with \(\lambda_0 = \begin{bmatrix} a_0 \\ b_0 \end{bmatrix} \)

\(\Rightarrow f(x,\lambda_0) = \begin{bmatrix} x_2 \\ -c \sin x_1 - x_2 \end{bmatrix} \)

Also, \(\frac{\partial f}{\partial x} = \begin{bmatrix} 0 & 1 \\ -c \cos x_1 + b_0 \sin x_1 & -(a+b \cos x_1) \end{bmatrix} \) and \(\frac{\partial f}{\partial \lambda} = \begin{bmatrix} -x_2 & 2 \lambda_0 \sin x_1 & 0 \end{bmatrix} \)

\(\Rightarrow \frac{\partial f}{\partial \lambda} = \begin{bmatrix} -x_2 \end{bmatrix} \) (at \(\lambda = \lambda_0 \))

\(\dot{\lambda} = \begin{bmatrix} 0 & 1 \\ -c \cos x_1 & -1 \end{bmatrix} \)

\(\dot{\lambda} = \begin{bmatrix} 0 & 1 \\ -c \cos x_1 & -1 \end{bmatrix} \dot{\lambda} + \begin{bmatrix} 0 & 0 & 0 \\ -a_0 \sin x_1 & -b_0 \sin x_1 & -\sin x_1 \end{bmatrix} \) (s = \(s_{2 \times 3} \))
More on differentiability of solution & Sensitivity Equation

\[\dot{z} = f(t, z, \lambda) \quad \text{with} \quad z(t_0) = z_0 \]

\[\Rightarrow z(t, \lambda) = z_0 + \int_{t_0}^{t} f(s, z(s, \lambda), \lambda) \, ds \]

\[\Rightarrow \frac{\partial}{\partial \lambda} z(t, \lambda) = \int_{t_0}^{t} \left[\frac{\partial f}{\partial z} (s, z(s, \lambda), \lambda) z_\lambda(s, \lambda) + \frac{\partial f}{\partial \lambda} (s, z(s, \lambda), \lambda) \right] \, ds \]

Assumes \(f \) is diff. w.r.t. \(z, \lambda \)

Since \(z_\lambda(t, \lambda) \) is given as an integral \(\Rightarrow \frac{\partial}{\partial t} z_\lambda(t, \lambda) \) differentiable w.r.t. \(t \), if \(f \) is a cont. function (assumes \(f \) is cont. diff. w.r.t. \(z, \lambda \))

\[\Rightarrow \frac{\partial}{\partial t} z_\lambda(t, \lambda) = \frac{\partial f}{\partial z} (t, z(t, \lambda), \lambda) z_\lambda(t, \lambda) + \frac{\partial f}{\partial \lambda} (t, z(t, \lambda), \lambda) \]

\[\Rightarrow \dot{s} = A(t, \lambda) \, s + B(t, \lambda) \]

\[s(t_0) = \int_{t_0}^{t} \cdots \, ds \Rightarrow s(t_0) = 0 \]

\(s(t) \): Sensitivity function