Logic Control (Example)

Reservoir

\[\text{tank}_1 \]
\[\text{tank}_2 \]

\[V_1 \]
\[V_2 \]
\[h_1 \]
\[h_2 \]
\[b_1 \]
\[b_2 \]
\[W_1 \]
\[W_2 \]

* State aggregation:
 \[\text{height}_i < b_i \Rightarrow \text{low}_i \]
 \[\text{height}_i > h_i \Rightarrow \text{high}_i \]
 \[\text{otherwise} \Rightarrow \text{medium}_i \]

* Level sensors:
 \[\text{low}_i \Leftrightarrow b_i = 0 \]
 \[\text{high}_i \Leftrightarrow h_i = 1 \]

* Valve actuators:
 \[V_i, W_i = \text{on} \] push button actuator: m

Control spec.

- Initially tanks low
 - m pushed \(\Rightarrow \) open both valves
 - \text{tank}_i \text{ full} \Rightarrow \text{close value } V_i, \text{ open value } W_i
 - \text{tank}_i \text{ low} \Rightarrow \text{close value } W_i
 - Tanks low, m pushed again \Rightarrow \text{resume filling both tanks}
Notation and Signals

\[f(t) \]
\[\uparrow f(t) \]
\[\downarrow f(t) \]

\[f : \text{boolean signal} \]
\[\uparrow f, \downarrow f : \text{event signals} \]

Definition: \(\uparrow a \oplus \uparrow b, \quad a \uparrow b, \quad \uparrow a \uparrow b \) etc.

State machine/Automaton representation

- Each node represents a state:
 - \(w_2 = 1 \) node: tank 1 low, tank 2 medium or high
- Each arc represents a transition of state or event label
Relay Ladder logic. Description of Controller

RLL graphical language for encoding a logic/automaton in PLC
- Each "rung" corresponds to a Boolean equation
- Pair of vertical bars represent rung inputs; rung output represented by circled crossed bar represents Boolean complement (physical relays)
- AND/OR by series/parallel placement of bars

\[q_1 = b'_1 b'_2 \]
\[v_1 = (q_1 m + v_1) h'_1 \]
\[v'_1 w_1 = (v_1 h_1 + w_1) b_1 \]
\[v_2 = (q_1 m + v_2) h'_2 \]
\[v'_2 w_2 = (v_2 h_2 + w_2) b_2 \]

- Any automaton can be encoded by RLL
- Limited by limited descriptive power of automata
- RLL encoding may not be directly obvious from control spec.