Local control

- Def: Supervisor called local if it can control only those events that it can also observe.

Observation mask: \(M_{\text{loc}} : \Sigma \rightarrow \Sigma_{\text{loc}} \cup \Sigma_{\text{loc}} \) (projection type).

- Uncontrollable events for local supervisor: \(\Sigma_{u,\text{loc}} = \Sigma u \cup (\Sigma - \Sigma_{\text{loc}}) \)

- Stronger condition needed for existence of supervisors

- **Normality:** \(M(s) = m^{+}, \ s \in pr(k), \ t \in L(G) \Rightarrow t \in pr(k). \)
 equivalently, \(M^{-1}M (pr(k)) \cap L(G) \leq pr(k) \)

- **Fact:** Normality \(\Rightarrow \) Observability (normality is stronger condition)

- **Theorem:**
 1. \(K \Sigma_{u,\text{loc}} \)-controllable, \(M_{\text{loc}} \)-observable \(\iff \)
 2. \(K \Sigma_{u} \)-controllable, \(M_{\text{loc}} \)-normal \(\iff \)
 3. \(K \Sigma_{u,\text{loc}} \)-controllable, \(M_{\text{loc}} \)-normal.

\((1 \Rightarrow 2) \): Sufficient to show \(M_{\text{loc}} \)-normality. Suppose for contradiction

\(M^{-1}M (pr(k)) \cap L(G) \neq pr(k) \). Let \(s \) smallest string in \(M^{-1}M (pr(k)) \cap L(G) \). Let \(s \in L(G) \). Then \(s \neq \emptyset \), since \(\emptyset \in pr(k) \). So \(s = \emptyset \sigma \).

Since \(\emptyset \in pr(k) \), \(s = \emptyset \sigma \in L(G) \), and \(K \Sigma_{u,\text{loc}} \)-controllable \(\Rightarrow \emptyset \notin \Sigma_{u,\text{loc}} \)

\(\Rightarrow \emptyset \notin \Sigma_{\text{loc}} \) \(\Rightarrow M(\emptyset) \neq \emptyset \).

Since \(\emptyset \in M^{-1}M (pr(k)) \), there exists \(t = \emptyset \sigma \in pr(k) \), \(M(t) = M(\emptyset) = M(\emptyset) \) \(\sigma \) contradicts normality to observability.

\((2 \Rightarrow 3) \): Sufficient to show \(\Sigma_{u,\text{loc}} \)-controllability. Suppose for contradiction

\(pr(k) \Sigma_{u,\text{loc}} \cap L(G) \neq pr(k) \). Pick smallest \(s \in pr(k) \Sigma_{u,\text{loc}} \cap L(G) \). \(s = \emptyset \sigma \) with \(\emptyset \in \Sigma_{u,\text{loc}} \Rightarrow \emptyset \in \Sigma_{\text{loc}} \Rightarrow M(\emptyset) = \emptyset \). So \(M(s) = M(\emptyset) \).

This contradicts normality since \(\emptyset \in pr(k) \), \(s \in L(G) = pr(k) \).

\((3 \Rightarrow 1) \): obvious.
Test for Normality

- Need to test \(M^* M \{ \text{pr}(k) \} \cup \text{L}(\mathcal{E}) \subseteq \text{pr}(k) \)
- Construct \(SNRM \) by adding transitions in \(S \) st. \(\text{L}(SNRM) = M^* M \{ \text{pr}(k) \} \)

- \((y_1, y_2, y_3)\) a transition in \(S \) \(\Rightarrow\) add \((y_1, y_1', y_2)\) where \(M(y') = M(y) \)
 \(M(y) = \varepsilon \) \(\Rightarrow\) add \((y, y, y)\) at every state \(y \) of \(S \)

- Then \(k \) normal iff \(\text{L}(SNRM) \cap \text{L}(S) \cap \text{L}(\overline{S}) = \emptyset \)

 computational complexity: \(O(mn^2) \)

- Normality is preserved under union & intersection (for pre-determinised) exist.

 Acceptor for supremal normal sublanguage:

- start with \(S \Rightarrow L_m(S) = L_e(S) = K \), \(L(S) = \Sigma^* \)
- add transition \(\delta \) as above to obtain \((S)_{NRM} \Rightarrow L_m((S)_{NRM}) = M^* M \{ \text{pr}(k) \} \)
- determinize \((S)_{NRM}\) to get \(\hat{S} \Rightarrow L_m(\hat{S}) = M^* M \{ \text{pr}(k) \} \), \(L(\hat{S}) = \Sigma^* \)

- Consider \(G \mid \epsilon \| S \Rightarrow L_m(G \mid \epsilon \| S) = K \), \(L(G \mid \epsilon \| S) = L(S) \).

- A typical state looks like \(r = (x, y, \hat{y}) \), where \(x \in X, y \neq y' \) for \(y' \neq y \), \(\hat{y} = \hat{y}_1, \ldots, \hat{y}_r \) \(\in \hat{Y} \)

- \(r_i \) and \(r_2 \) are called matching if \(\hat{y}_i = \hat{y}_2 \)

For each string leading to \(r_1 \), exists indistinguishable string leading to \(r_2 \)

(a) \(\mathcal{E}_0 := \{ y \mid \text{second coordinate is a dump state} \} \)

(b) \(\mathcal{E}' := \mathcal{E}_K \cup \{ r \in \epsilon \mid \exists \text{ matching } r' \in \mathcal{E}_K \} \)

\(\mathcal{E}_K := \mathcal{E}' \cup \{ r \in \epsilon \mid \text{r does not belong to trim component of } \epsilon \} \)

(c) Stop when \(\mathcal{E}_K = \mathcal{E}_{K+1} \); else \(k = k+1 \), goto (b).
Maximally Permissive Supervision

- Consider \(\sup P\left[\tilde{M}^{-1} \tilde{M}\left(pr(H)\right)\right] \land L(G) \leq pr(H) \)
 \[f(H) \quad g(H) \]

- \(f \) monotone, not disjunctive; \(g \) monotone, not conjunctive

\[\sup 0(k) := \sup \{H \in K \mid H \text{ observable}\}, \quad \inf \delta(k) := \inf \{H \in K \mid H \text{ observable}\} \]

need not exist.

- Example:

\[\begin{array}{ccc}
\delta & b & \rho \\
G & M & M(b) = M(b) \neq \emptyset \\
\end{array} \]

\(K_1 = \{b\}, \quad K_2 = \{aa\} \Rightarrow \text{both } K_1, K_2 \text{ observable.} \)

\(K = K_1 \cup K_2 = \{b, aa\} \text{ not observable since } b, a \in \text{pr}(k); \quad M(b) = M(b), \quad M(b) = M(b) \)

\(ba \in L(G) \) - pr(K).

\(K_1 = \{b\}, \quad K_2 = \{aa, ba, aa, aa\} \quad K_2 = \{b, aa, ba\} \Rightarrow \text{both } K_1, K_2 \text{ observable} \)

\(K = K_1 \land K_2 = \{b, aa\} \text{ not observable.} \)

- Extremal prefix-closed and observable languages:

- Consider \(\sup P\left[\tilde{M}^{-1} \tilde{M}\left(pr(H)\right)\right] \land L(G) \leq pr(H) \) and \(pr(H) \leq H \)

Equivalently, \(\sup P\left[\tilde{M}^{-1} \tilde{M}\left(pr(H)\right)\right] \land L(G) \leq H \)

\(\Rightarrow (2) \) obvious; \((2) \) implies 1st inequality of \((1) \); for 2nd inequality of \((1) \) use:

Also, \(pr(H) \leq \sup P\left[\tilde{M}^{-1} \tilde{M}\left(pr(0)\right)\right] \land L(G) \leq H \)

- \(f \) monotone, not disjunctive; \(g \) conjunctive

\(\sup \partial 0(k) \text{ need not exist}; \quad \inf \partial 0(k) \text{ exists} \)

Since \(f \) is idempotent,

\[\inf \partial 0(k) = K \cup (f(k) \land L(G)) = \sup P\left[\tilde{M}^{-1} \tilde{M}\left(pr(0)\right)\right] \land L(G). \]

- Since \(\sup 0(k), \sup \partial 0(k), \sup \partial 0(k) \) do not exist, maximally permissive control under partial observation does not exist.
• A unique maximally permissive supervisor under partial obs. does not exist.

 "Sub-optimal" solution: \(\text{sup } \text{PCN}(K) \) or \(\text{sup } \text{RCN}(K) \)

 Alternative: Find an observable sublanguage of \(K \):

 \[
 K_{p0} = K - \left[\tilde{M}^{-1} \tilde{M} \left(- \left(L \left(\text{pc} (K) \right) \cap K_2 \right) \right) \right] \Sigma^* .
 \]

 Then: Suppose \(K \) is prefix-closed, then

 1) \(\text{sup } \text{PCN}(K) \leq K_{p0} \leq K \)

 2) \(K_{p0} \) is prefix-closed and observable

 3) \(K_{p0} \) is controllable, whenever \(K \) is controllable

• If \(K \) is not prefix-closed, the replace \(K \) by \(\text{sup } \text{PC}(K) \).

• Above computation is also useful in design of local supervisors.

 \[
 \text{sup } \text{PC} \left(\bigcup_{u \in M_{in2}} (K) \right) = \left[\text{sup } \text{PC} \left(\text{rule } 1, 2 \right) \right] \text{po}_{M_{in2}}.
 \]

 I.e., a modular computation is possible.
Consider $M^{-1} M (pr(H)) \cap L(G) \leq pr(H)$

If disjunctive, g monotone but not conjunctive; $f^{-1}(H) = [M^{-1} M(H)] \Sigma^*$

So $\sup N(K) = \{ H \in K | H \text{ normal} \}$ exists; $\inf N(K) = \{ H \in K | H \text{ normal} \}$ may not exist

Iterative computation of $\sup N(K)$:

$k_0 = K$; $k_{i+1} = k_i - f^{-1}(L(k_i) - g(k_i)) = k_i - [M^{-1} M(L(G) - pr(k_i))] \Sigma^*$.

Extremal prefix-closed and normal languages:

consider $(M^{-1} M (pr(H)) \cap L(G) \leq pr(H)) \land [pr(H) \leq H] \iff [M^{-1} M (pr(H)) \land L(G) \leq H]$.

If disjunctive, g conjunctive $\Rightarrow \sup PN(K)$ and $\inf PN(K)$ exist.

If idempotent, so

$\sup PN(K) = k - f^{-1}(L(k) - k) = k - [M^{-1} M (L(G) - k)] \Sigma^*$

$\inf PN(K) = k U [f(k) \land L(G)] = M^{-1} M (pr(k) \land L(G))$.

Extremal prefix-closed / relative-closed, controllable and normal languages:

$\sup PCN(K)$ and $\inf PCN(K)$ can be computed iteratively.

A modular computation is possible when any pair of controllable and uncontrollable events whenever indistinguishable are both observable, i.e.,

$\sigma_1 \in I_u$, $\sigma_2 \in I - I_u$, $M(\sigma_1) = M(\sigma_2) \Rightarrow M(\sigma_1) = M(\sigma_2) = E$, equivalently,

$M^{-1} [M(\sigma_1) - \Sigma^*] \leq \Sigma_u$

(A projection mask satisfies this condition)

Under this condition: $\sup PCN(K) = \sup N (\sup PC(K))$

$\sup RCN(K) = \sup N (\sup RC(K))$

($\sup N$ and $\inf N$ computations preserve prefix closure and relative closure)