Supervisor for discrete event plant

- Deterministic discrete event plant with model \((K_m, K)\)
 or equivalently, \(G := (X, \Sigma, X_0, X_M)\)

 Example: \(G = M, \|M \parallel TU\) (in previous example)

- For control purposes: \(\Sigma = \Sigma_u \cup (\Sigma - \Sigma_u)\)

 \[\downarrow\] \[\downarrow\]
 uncontrollable controllable

 \[
 \text{supervisor: } f : K \rightarrow 2^{\Sigma - \Sigma_u}
 \]

 \(\forall s \in K : f(s) \subseteq \Sigma - \Sigma_u\) is set of controllable events disabled
 followed by execution of trace \(s\)

 \[
 \text{disabled events}
 \]

 \[
 f : K \rightarrow 2^{\Sigma - \Sigma_u}
 \]

- Controlled language model = \((K^f_m, K^f)\)

 \[\exists \in K^f : [\exists \in K^f, \exists \in K, \sigma \notin f(\exists) \Leftrightarrow [\exists \in K^f]\]

 \[K^f_m := K^f \cap K_m\] (marked lang. that survives undisturb)

- \((K^f_m, K^f)\) is a language model \(\Leftrightarrow K^f_m \subseteq K^f = pr(K^f) \neq \emptyset\)

 \(\Rightarrow pr(K^f_m) \subseteq K^f\) (may exist generated trace \(\Delta \in K^f\) which is not a prefix of marked trace \(\Rightarrow pr(K^f_m) \Rightarrow\) system may "block"

- \(f\) called nonblocking if \(pr(K^f_m) = K^f \Leftrightarrow K^f \subseteq pr(K^f_m)\)

 (each generated trace is a prefix of some marked trace).
Supervisor restricts behavior of plant
This can also be achieved by synchronous composition:

- Let \(S := (Y, \Sigma, \beta, y_0, Y_m) \) be supervisor state machine
 \[L(G11S) = L(G) \land L(S) \quad ; \quad L_m(G11S) = L_m(G) \land L_m(S). \]

- \(S \) restricts the behavior of \(G \). Additional conditions:
 1. \(S \) must not disable any uncontrollable event, i.e.,
 \[\forall e \in L(G11S), \sigma \in \Sigma, \sigma e \in L(G) \Rightarrow \sigma e \in L(G11S), \text{ i.e., } L(G11S) \Sigma_u \land L(G) \subseteq L(G11S). \]
 2. \(S \) must also satisfy:
 \[L_m(G11S) = L(G11S) \land L_m(G). \]

- \(S \) called \(\Sigma_u \)-enabling if \(L(G11S) \Sigma_u \land L(G) \subseteq L(G11S) \)
- non-marking if \(L_m(G11S) = L(G11S) \land L_m(G) = L(G) \land L_m(G) \)
- non-blocking if \(pr(L_m(G11S)) = L(G11S). \)

Note: \(S \) non-marking if \(L_m(S) = L(S) \), i.e., each state in \(S \) is marked.

Example:

\[\Sigma_u = \{ a, b \}. \]

\[f(\varepsilon) = f(b) = f(ab) = \emptyset \]
\[f(a) = f(aba) = f(ba) = \{ a \} \]

\[L(G11S) \Sigma_u \land L(G) \subseteq L(G11S) \Rightarrow S \ \Sigma_u \text{-enabling.} \]
\[a \in L(S) \land L_m(G) - L_m(G11S) \Rightarrow S \text{ not non-marking.} \]
\[pr(L_m(G11S)) \subseteq L(G11S) \Rightarrow S \text{ not non-blocking.} \]