The Envelope Theorem

Oscar Volij

Iowa State University
The unconstrained case

Consider a simple maximization problem

$$\max_x f(x, \theta)$$ (1)

where x is a choice variable and θ is a parameter that we do not control. We assume that f is a concave function of x so that the first order conditions are not only necessary but sufficient for maximization.
An interior solution of (1) satisfies the following first order conditions:

\[
\frac{\partial f}{\partial x}(x, \theta) = 0 \rightarrow x^*(\theta)
\]

Let’s plug this optimal value into the objective function and define the optimal value of the objective function as a function of \(\theta \).

\[
V(\theta) \equiv f(x^*(\theta), \theta).
\]
The question

We are interested in what happens to the optimal value of f when the parameter θ changes. Formally, we are interested in

$$\frac{dV}{d\theta}(\theta).$$

Note that V will change both because θ affects f and because it also affects the optimal choice of x.
To answer this question we take derivatives:

\[\frac{dV}{d\theta}(\theta) = \frac{\partial f}{\partial x}(x^*(\theta), \theta) \frac{\partial x^*}{\partial \theta}(\theta) + \frac{\partial f}{\partial \theta}(x^*(\theta), \theta) \]
To answer this question we take derivatives:

\[
\frac{dV}{d\theta}(\theta) = \left. \frac{\partial f}{\partial x}(x^*(\theta), \theta) \right|_{0} \frac{\partial x^*}{\partial \theta}(\theta) + \frac{\partial f}{\partial \theta}(x^*(\theta), \theta)
\]
To answer this question we take derivatives:

\[
\frac{dV}{d\theta}(\theta) = \frac{\partial f}{\partial x}(x^*(\theta), \theta) \frac{\partial x^*}{\partial \theta}(\theta) + \frac{\partial f}{\partial \theta}(x^*(\theta), \theta)
\]

\[
= \frac{\partial f}{\partial \theta}(x^*(\theta), \theta)
\]
To answer this question we take derivatives:

\[
\frac{dV}{d\theta}(\theta) = \frac{\partial f}{\partial x}(x^*(\theta), \theta) \frac{\partial x^*}{\partial \theta}(\theta) + \frac{\partial f}{\partial \theta}(x^*(\theta), \theta) \tag{0}
\]

\[
= \frac{\partial f}{\partial \theta}(x^*(\theta), \theta)
\]

where the second equality follows from (2).
This proves the simple version of the envelope theorem: the total rate of change in the optimal value of the objective function due to a small change in the parameter θ is simply the rate of change in the objective function f evaluated at the optimal value of x.

$$\frac{dV}{d\theta}(\theta) = \frac{\partial f}{\partial \theta}(x^*(\theta), \theta)$$
The constrained case

Consider a simple maximization problem

$$\max_{x} f(x, \theta) \quad (3)$$

s.t. $g(x, \theta) \leq 0$

where x is a choice variable and θ is a parameter that we do not control. We assume that f is a concave function of x and that g is a convex function of x so that the first order conditions are not only necessary but sufficient for maximization.
The Lagrangian

The Lagrangian is the following:

\[L(x, \theta) = f(x, \theta) - \lambda g(x, \theta) \]

An interior solution of (3) where the constraint is binding satisfies the following first order conditions:

\[\frac{\partial L}{\partial x}(x, \theta) = 0 \]

\[\frac{\partial L}{\partial \theta}(x, \theta) = 0. \]
First Order Conditions

Equivalently

\[\frac{\partial f}{\partial x}(x, \theta) = \lambda \frac{\partial g}{\partial x}(x, \theta) \] \hspace{1cm} (5)

\[g(x, \theta) = 0 \] \hspace{1cm} (6)

The solution to this equation is the maximizer we are looking for. Let’s denote it by \(x^*(\theta) \). It is clearly a function of \(\theta \).
Implications

Note that by plugging $x^*(\theta)$ into the constraint function g, we get the following identity (see (6)):

$$g(x^*(\theta), \theta) \equiv 0.$$

Taking derivatives we get

$$\frac{\partial g}{\partial x}(x^*(\theta), \theta) \frac{\partial x^*}{\partial \theta}(\theta) + \frac{\partial g}{\partial \theta}(x^*(\theta), \theta) = 0$$

or

$$\frac{\partial g}{\partial x}(x^*(\theta), \theta) \frac{\partial x^*}{\partial \theta}(\theta) = -\frac{\partial g}{\partial \theta}(x^*(\theta), \theta) \quad \text{(7)}$$
Let's plug this optimal value into the objective function and define the optimal value of the objective function as a function of θ.

\[
V(\theta) \equiv f(x^*(\theta), \theta).
\]

We are interested in what happens to the optimal value of f when the parameter θ changes. Formally, we are interested in

\[
\frac{dV}{d\theta}(\theta).
\]

Note that V will change both because θ affects f and because it also affect the optimal choice of x.

The answer

To answer this question we take derivatives:

\[
\frac{dV}{d\theta}(\theta) = \frac{\partial f}{\partial \theta}(x^*(\theta), \theta) + \frac{\partial f}{\partial x}(x^*(\theta), \theta) \frac{\partial x^*}{\partial \theta}(\theta) + \lambda \frac{\partial g}{\partial x}(x^*(\theta), \theta) \frac{\partial x^*}{\partial \theta}(\theta)
\]

\[
= \frac{\partial f}{\partial \theta}(x^*(\theta), \theta) + \lambda \frac{\partial g}{\partial x}(x^*(\theta), \theta) \frac{\partial x^*}{\partial \theta}(\theta) - \lambda \frac{\partial g}{\partial \theta}(x^*(\theta), \theta)
\]

\[
= \frac{\partial f}{\partial \theta}(x^*(\theta), \theta) - \lambda \frac{\partial g}{\partial \theta}(x^*(\theta), \theta) + \frac{\partial L}{\partial \theta}(x^*(\theta), \theta)
\]

where the second equality follows from (5), the third one from (7), and the last one from (4).
This proves the envelope theorem: the total rate of change in the optimal value of the objective function due to a small change in the parameter θ is simply the rate of change in the Lagrangian L evaluated at the optimal value of x.

\[
\frac{dV}{d\theta}(\theta) = \frac{\partial L}{\partial \theta}(x^*(\theta), \theta)
\]