Linear programming

- Graphical method
 Draw the feasible region (convex polyhedron)
 evaluate the extreme points

- Simplex method (Write the problem in Std. form, when introduce slack/excess variables to have all constraints in <= form)
 Simpler case: when all constraints have a slack variable.
 Then BV for each constraint equals slack variable for that constraint.

General case: Some constraints have excess variables, or no slack/excess variables.
 Then we need to set up an auxiliary LP by introducing aux. variable in each such constraint.
 Solve aux. LP to minimize sum of all aux. variables.
 For each constraint the BV is either a slack variable or an aux. variable.
 Solution of aux. LP = 0 \iff \exists solution for original LP.
When aux. LP has solution = 0,
Original LP can be solved by using the BVs to
be same as BVs of aux. LP.

1) Table is “ready” if in "RO" coefficients of BUs
 are all zero.

2) Table optimal? No -ve coefficient in "RO" → Optimal.
 Otherwise identify entering BV as the variable with
 most -ve coefficient in RO. (This defines pivot column)
 Identify leaving BV (i.e., identify pivot row): Pick the
 row that is most constraining by doing the ratio test
 (ignore rows whose pivot column entries are "0" or "ve")
 If all rows are “non-constraining” (Since all pivot column
 entries are "< 0") → D No leaving BV =⇒ Optimal is unbounded
 STOP
3) If entering & leaving BVs are found, then modify table with respect to new BVs. This is done by making pivot number = 1 and all other entries in pivot column = 0. Also, the pivot row will have a new BV = Enterig BV.

Repeat 1 - 3.

Aux. LP. min \(z = - \sum a_i \)

\(\Rightarrow \max \left[-z = \sum a_i \right] \)

\(\Rightarrow -z + a_1 + a_2 + \ldots + a_K = 0 \) "Row"

\(\begin{array}{cccccccc} R_0 & x_1 & \ldots & x_n & s_1 & \ldots & s_m & e_1 & \ldots & e_p \ a_1 \ldots & a_K \end{array} \)

\(\begin{array}{cccccccc} & 0 & -2 & 0 & \ldots & 0 & 1 & 1 & 1 & 0 \end{array} \)
B&B for MIP

1. STOP
 if LP has no optimal solution
2. LP has an optimal solution
 solution is feasible for MIP
 STOP
 LP version of given MIP
 ignore integer constraints
3. solution is not feasible for MIP (25 = 5.7)

 P2: a + b > 5

 P3: P1 + a ≤ 5

 STOP

 Set a new upper bound (max. problem)

 lower bound (min. problem)

 Branch

 obt. 13 inferior
 STOP