Equalization

- Equalization needed to compensate for distortion introduced by transmission medium.
- Distortion
 - Amplitude distortion: amp. response not constant fn. freq.
 - Phase distortion: phase response not linear fn. freq.

(Recall for a distortionless system, amp. response = constant, and phase response = linear)

- A transmission medium that introduces distortion is called dispersive. If it is LTI system.

\[
\begin{align*}
\text{transmitted signal} & \rightarrow \text{dispersive medium} & \text{received signal} \\
H_c(j\omega) & \rightarrow \text{compensated signal} & H_e(j\omega)
\end{align*}
\]

- To distortionless behavior, \(H_c(j\omega) H_e(j\omega) = e^{-j\omega t_0} \) for some \(t_0 \), dispersive equalizer

Note: \(t_0 \) is a design parameter (along with \(H_e(j\omega) \)).

- Then \(H_e(j\omega) = \frac{e^{-j\omega t_0}}{H_c(j\omega)} \)

For a FIR filter based equalizer, \(t_0 \) is chosen to be delay corresponding to half window length, i.e.,

\(t_0 = (M/2)T \).

The sampling period \(T \) is chosen based on desired frequency-range for equalization, say \([-w_c, w_c]\).

Then from Nyquist sampling requirement, \(T = 1/(\text{band-width in Hz}) = 1/(2w_c/2\pi) = \pi/w_c \)
Equalizer Example

Consider a channel that behaves like a 1st-order Lowpass Butterworth filter:

\[H_c(j\omega) = \frac{1}{1 + j\omega/T} \]

\[H_{eq}(j\omega) = (1 + j\omega/T) e^{-j\omega T} \]

Suppose we need to design an equalizer over freq. range \(|\omega| \leq \pi\) using an order-\(N\)-digital filter:

\[H_d(j\omega) = \begin{cases} (1 + j\omega/T) e^{-j\omega (M/2)} & |\omega| \leq \pi \\ 0 & \text{otherwise} \end{cases} \]

In this example, \(\omega_c = \pi \Rightarrow T = \frac{\pi}{\omega_c} = 1. \Rightarrow \omega = \omega T = \omega.\)

Thus,

\[H_d(e^{j\omega}) = \begin{cases} (1 + j\omega/\pi) e^{-j\omega (M/2)} & |\omega| \leq \pi \\ 0 & \text{otherwise} \end{cases} \]

\[h_d[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} (1 + j\omega/\pi) e^{j\omega (n-k/2)} d\omega \]

\[= \frac{1}{2\pi} \left(2 \sin \left[\frac{\pi (n-k)}{2} \right] + \frac{\cos \left[\pi (n-k/2) \right]}{\pi (n-k/2)} - \frac{\sin \left[\pi (n-k/2) \right]}{\pi^2 (n-k/2)^2} \right) \]

\[= \begin{cases} 1 & \text{if } n = \frac{k}{2} \\ 0 & \text{otherwise} \end{cases} \]

\[h[n] = h_d[n] \cdot \text{win} \]

Fig 8.30 shows the plot.
Figure 8.30 (p. 653)
Magnitude response of Butterworth channel of order 1: dashed and dotted (— •— •) curve. Magnitude response of FIR equalizer of order \(M = 12 \): dashed (— —) curve. Magnitude response of equalized channel: continuous curve. The flat region of the overall (equalized) magnitude response is extended up to about \(\omega = 2.5 \).
FIR FILTER (Digital)
 fir1
 fir2
 fir1s
 fir1m
 fircl
 firclm
 c fir pm
 firco

IIR FILTER (Digital)
 butter
 cheby1
 Cheby2
 ellip
 bessel

Analog FILTER
 buttap
 chebap
 cheb2ap
 ellipap
 besselap

Filter Transformations
 lp2bp
 lp2bs
 lp2hp
 lp2lp

Filter Discretization
 bilinear
 impimp

Others
 maxflat
 yulewalk
 filter (num, den, input_seq) (digital)