Section 8.3
Representing Relations

Connection Matrices

Let R be a relation from

$$A = \{a_1, a_2, \ldots, a_m\}$$

to

$$B = \{b_1, b_2, \ldots, b_n\}.$$

Definition: An $m \times n$ connection matrix M for R is defined by

$$M_{ij} = 1 \text{ if } <a_i, b_j> \text{ is in } R,$$

$$= 0 \text{ otherwise.}$$

Example:

We assume the rows are labeled with the elements of A and the columns are labeled with the elements of $B.$

Let

$$A = \{a, b, c\}$$

$$B = \{e, f, g, h\}$$

$$R = \{<a,e>, <c, g>\}$$
Then the connection matrix M for R is

$$
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
$$

Note: the order of the elements of A and B matters.

Theorem: Let R be a binary relation on a set A and let M be its connection matrix. Then

- R is reflexive iff $M_{ii} = 1$ for all i.
- R is symmetric iff M is a symmetric matrix: $M = M^T$
- R is antisymmetric if $M_{ij} = 0$ or $M_{ji} = 0$ for all $i \neq j$.

Combining Connection Matrices

Definition: the *join* of two matrices M_1, M_2, denoted $M_1 \lor M_2$, is the component wise boolean ‘or’ of the two matrices.

Fact: If M_1 is the connection matrix for R_1 and M_2 is the connection matrix for R_2 then the join of M_1 and M_2, $M_1 \lor M_2$, is the connection matrix for $R_1 \cup R_2$.

Definition: the meet of two matrices M_1, M_2, denoted $M_1 \land M_2$ is the componentwise boolean ‘and’ of the two matrices.

Fact: If M_1 is the connection matrix for R_1 and M_2 is the connection matrix for R_2 then the meet of M_1 and M_2, $M_1 \land M_2$ is the connection matrix for $R_1 \cap R_2$.

Obvious questions:

Given the connection matrix for two relations, how does one find the connection matrix for

- The complement?
- The relative complement?
- The symmetric difference?

The Composition

Definition: Let

M_1 be the connection matrix for R_1 and

M_2 be the connection matrix for R_2.
The boolean product of two connection matrices M_1 and M_2, denoted $M_1 \otimes M_2$, is the connection matrix for the composition of R_2 with R_1, $R_2 \circ R_1$.

$$(M_1 \otimes M_2)_{ij} = \bigvee_{k=1}^{n} [(M_1)_{ik} \wedge (M_2)_{kj}]$$

Why?

In order for there to be an arc $<x, z>$ in the composition then there must be and arc $<x, y>$ in R_1 and an arc $<y, z>$ in R_2 for some y!

The Boolean product checkes all possible y’s. If at least one such path exists, that is sufficient.

Note: the matrices M_1 and M_2 must be conformable: the number of columns of M_1 must equal the number of rows of M_2.

If M_1 is mxn and M_2 is nxp then $M_1 \otimes M_2$ is mxp.
Example:

\[
\begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
\end{bmatrix}
\]

\[M_1=\begin{bmatrix}
0 & 0 \\
0 & 1 \\
1 & 0 \\
0 & 1 \\
\end{bmatrix}\]

\[M_2=\begin{bmatrix}
0 & 0 \\
0 & 1 \\
1 & 0 \\
0 & 1 \\
\end{bmatrix}\]

\[M_1 \otimes M_2 =\begin{bmatrix}
0 & 1 \\
0 & 1 \\
\end{bmatrix}\]

\[(M_1 \otimes M_2)_{12} = [(M_1)_{11} \land (M_2)_{12}] \lor [(M_1)_{12} \land (M_2)_{22}] \lor [(M_1)_{13} \land (M_2)_{32}] \lor [(M_1)_{14} \land (M_2)_{42}]\]
\[[0 \land 0] \lor [1 \land 1] \lor [0 \land 0] \lor [0 \land 1] = 1 \]

Note:

- there is an arc in \(R_1 \) from node 1 in A to node 2 in B
- there is an arc in \(R_2 \) from node 2 in B to node 2 in C.
- Hence there is an arc in \(R_2 \circ R_1 \) from node 1 in A to node 2 in C.

A useful result:

\[M_{R^n} = M^n_R \]

Digraphs

(see section 8.1)

Given the digraphs for \(R_1 \) and \(R_2 \), find the digraphs for

- \(R_2 \cup R_1 \)
- \(R_2 \cap R_1 \)
- \(R_2 - R_1 \)
\[R_2 \oplus R_1 \]
\[\overline{R}_1 \]