Section 7.2
Solving Linear Recurrence Relations

If

\[a_{g(n)} = f(a_{g(0)}, a_{g(1)}, \ldots, a_{g(n-1)}) \]

find a closed form or an expression for \(a_{g(n)} \).

Recall:

- **nth degree polynomials have n roots:**
 \[a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 = 0 \]
 - If the coefficients are real then the roots are real or occur in complex conjugate pairs.

Recall the **quadratic formula**: If

\[ax^2 + bx + c = 0 \text{ then } x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

We assume you remember how to solve linear systems.
\[Ax = b. \]

where A is an n x n matrix.

Solving recurrence relations can be very difficult unless the recurrence equation has a special form:

- \(g(n) = n \) (single variable)
- the equation is linear:
 - sum of previous terms
 - no transcendental functions of the \(a_i \)'s
 - no products of the \(a_i \)'s
- constant coefficients: the coefficients in the sum of the \(a_i \)'s are constants, independent of n.
- degree k: \(a_n \) is a function of only the previous k terms in the sequence
- homogeneous: If we put all the \(a_i \)'s on one side of the equation and everything else on the right side, then the right side is 0.

Otherwise inhomogeneous or nonhomogeneous.
Examples:

- \(a_n = (1.02) a_{n-1} \)
 - linear
 - constant coefficients
 - homogeneous
 - degree 1

- \(a_n = (1.02) a_{n-1} + 2^{n-1} \)
 - linear
 - constant coefficients
 - nonhomogeneous
 - degree 1

- \(a_n = a_{n-1} + a_{n-2} + a_{n-3} + 2^{n-3} \)
 - linear
 - constant coefficients
 - nonhomogeneous
 - degree 3

- \(a_n = ca_{n/m} + b \)
 - g does not have the right form

- \(a_n = na_{n-1} + n^2 a_{n-2} + a_{n-1}a_{n-2} \)
 - nonlinear
 - coefficients are not constants
 - homogeneous
 - degree 2

Solution Procedure
- linear
- constant coefficients
- homogeneous
- degree k

\[a_n = c_1a_{n-1} + c_2a_{n-2} + \ldots + c_{n-k}a_{n-k} \]

1. Put all \(a_i \)'s on the left side of the equation, everything else on the right. If nonhomogeneous, stop (for now).

\[a_n - c_1a_{n-1} - c_2a_{n-2} - \ldots - c_{n-k}a_{n-k} = 0 \]

2. Assume a solution of the form \(a_n = b^n \).

3. Substitute the solution into the equation, factor out the lowest power of \(b \) and eliminate it.

\[b^n - c_1b^{n-1} - c_2b^{n-2} - \ldots - c_{n-k}b^{n-k} = 0 \]

\[b^{n-k}[b^k - c_1b^{k-1} - \ldots - c_{n-k}] = 0 \]

4. The remaining polynomial of degree \(k \),

\[b^k - c_1b^{k-1} - \ldots - c_{n-k} \]

is called the characteristic polynomial.

Find its \(k \) roots, \(r_1, r_2, \ldots, r_k \).

5. If the roots are distinct, the general solution is

\[a_n = \alpha_1r_1^n + \alpha_2r_2^n + \ldots + \alpha_kr_k^n \]
6. The coefficients \(\alpha_1, \alpha_2, \ldots, \alpha_k \) are found by enforcing the initial conditions.

Solve the resulting linear system of equations:

\[
\begin{align*}
a_0 &= \alpha_1 r_1^0 + \alpha_2 r_2^0 + \ldots + \alpha_k r_k^0 \\
a_1 &= \alpha_1 r_1^1 + \alpha_2 r_2^1 + \ldots + \alpha_k r_k^1 \\
\vdots \\
a_{k-1} &= \alpha_1 r_1^{k-1} + \alpha_2 r_2^{k-1} + \ldots + \alpha_k r_k^{k-1}
\end{align*}
\]

Example:

\[a_{n+2} = 3a_{n+1}, \ a_0 = 4\]

- Bring subcripted variables to one side:

\[a_{n+2} - 3a_{n+1} = 0.\]

- Substitute \(a_n = b^n \) and factor lowest power of \(b \):

\[b^{n+1}(b - 3) = 0 \text{ or } b - 3 = 0\]

- Find the root of the characteristic polynomial:

\[r_1 = 3\]

- Compute the general solution:

\[a_n = c3^n\]

- Find the constants based on the initial conditions:
\[a_0 = c(3^0) \text{ or } c = 4\]

- Produce the specific solution:

\[a_n = 4(3^n)\]

Example:

\[a_n = 3a_{n-2}, \quad a_0 = a_1 = 1\]

- \(a_n - 3a_{n-2} = 0\)

Note: the \(a_{n-1}\) term has a coefficient of 0.

- \(b^{n-2}(b^2 - 3) = 0 \text{ or } b^2 - 3 = 0\)

- \(r_1 = \sqrt{3}, \quad r_2 = -\sqrt{3}\)

- \(a_n = \alpha_1 \sqrt{3}^n + \alpha_2 (-\sqrt{3})^n\)

- Solve the linear system for \(\alpha_1, \alpha_2\):

\[
\begin{align*}
 a_0 &= 1 = \alpha_1 \sqrt{3}^0 + \alpha_2 (-\sqrt{3})^0 = \alpha_1 + \alpha_2 \\
 a_1 &= 1 = \alpha_1 (\sqrt{3})^1 + \alpha_2 (-\sqrt{3})^1 = \alpha_1 \sqrt{3} - \alpha_2 \sqrt{3}
\end{align*}
\]

Solve the first equation for the first variable and substitute in the second equation:

\[
\alpha_1 = 1 - \alpha_2 \\
1 = (1 - \alpha_2) \sqrt{3} - \alpha_2 \sqrt{3} = \sqrt{3} - \alpha_2 2\sqrt{3}
\]
\[\alpha_2 = \frac{\sqrt{3} - 1}{2\sqrt{3}} \]
\[\alpha_1 = 1 - \frac{\sqrt{3} - 1}{2\sqrt{3}} = \frac{\sqrt{3} + 1}{2\sqrt{3}} \]

If a root \(r_1 \) has multiplicity \(p \), then the solution is
\[a_n = \alpha_1 r_1^n + \alpha_2 n r_1^n + \ldots + \alpha_p n^{p-1} r_1^n + \ldots \]

Example:
\[a_n = 6a_{n-1} - 9a_{n-2}, a_0 = a_1 = 1 \]

- Recurrence system:
\[a_n - 6a_{n-1} + 9a_{n-2} = 0 \]

- Find roots of characteristic polynomial
\[\begin{cases} b^2 - 6b + 9 = 0 \\ (b - 3)^2 = 0 \end{cases} \]

- Roots are equal:
\[b_1 = b_2 = 3 \]

- General solutions is
\[a_n = \alpha_1 3^n + \alpha_2 n 3^n \]
• Solve for coefficients:

\[
\begin{align*}
a_0 &= 1 = \alpha_1 + 0 \\
a_1 &= 1 = 1(3^1) + \alpha_2 (1)(3^1) \\
\alpha_2 &= -\frac{2}{3}
\end{align*}
\]

You finish.

Nonhomogeneous Recurrence Relations

• linear
• constant coefficients
• degree k

\[a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_{n-k} a_{n-k} + f(n)\]

\[a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_{n-k} a_{n-k}\]

is the associated *homogeneous* recurrence equation

TELESCOPING

Note: we introduce the technique here because it will be useful to solve recurrence systems associated with divide and conquer algorithms later.
For recurrences which are

- first degree

\[a_n = \alpha a_{n-1} + f(n) \]

Method:

- back substitute
- force the coefficient of \(a_{n-k} \) on the left side to agree with the coefficient of \(a_{n-k} \) in the previous equation
- stop when we get to the initial condition on the right side
- add the left sides of the equations and the right sides of the equations and cancel like terms
- add the remaining terms together to get a formula for \(a_n \).

Example:

- \(a_n = 2a_{n-1} + 1, a_0 = 3 \)
- Write down the equation:

\[a_n = 2a_{n-1} + 1 \]
• Write the equation for a_{n-1}:

$$a_{n-1} = 2a_{n-2} + 1$$

• Multiply by the constant which appears as a coefficient of a_{n-1} in the previous equation so the two will cancel when we add both sides:

$$2a_{n-1} = 2^2a_{n-2} + 2$$

• Write down the equation for a_{n-2} and multiply both sides by the coefficient of a_{n-2} in the previous equation:

$$a_{n-2} = 2a_{n-3} + 1$$

becomes

$$2^2a_{n-2} = 2^3a_{n-3} + 2^2$$

• Continue until the initial condition appears on the right hand side:

$$a_1 = 2a_0 + 1$$

becomes

$$2^{n-1}a_1 = 2^n a_0 + 2^{n-1}$$

• Add both sides of the equations and cancel identical terms:

$$a_n = (2a_{n-1}) + 1$$

$$(2a_{n-1}) = [2^2a_{n-2}] + 2$$
\[
[2^2 a_{n-2}] = 2^3 a_{n-3} + 2^2
\]

\[
\cdot
\]

\[
\cdot
\]

\[
2^{n-1} a_1 = 2^n a_0 + 2^{n-1}
\]

\[
a_n = 2^n a_0 + \sum_{i=0}^{n-1} 2^i
\]

- Substitute \(a_0\) and simplify \(\sum_{i=0}^{n-1} 2^i\) to get the solution:

\[
a_n = 3(2^n) + 2^n - 1 = 2^{n+2} - 1
\]

Note: solution to nonhomogeneous case is sum of solution to associated homogeneous recurrence system and a particular solution to the nonhomogeneous case.

Theorem:

Let \(\{a_n^P\}\) be a *particular* solution to the nonhomogeneous equation and let \(\{a_n^H\}\) be the solution to the associated homogeneous recurrence system. Then every solution to the nonhomogeneous equation is of the form

\[
\{a_n^H + a_n^P\}
\]

Particular solution?
Theorem:

Assume a linear nonhomogeneous recurrence equation with constant coefficients with the nonlinear part $f(n)$ of the form

$$f(n) = (b_t n^t + b_{t-1} n^{t-1} + ... + b_1 n + b_0) s^n$$

If s is not a root of the characteristic equation of the associated homogeneous recurrence equation, there is a particular solution of the form

$$(c_t n^t + c_{t-1} n^{t-1} + ... + c_1 n + c_0) s^n$$

If s is a root of multiplicity m, a particular solutions is of the form

$$n^m (c_t n^t + c_{t-1} n^{t-1} + ... + c_1 n + c_0) s^n$$

Example:

From the previous example the associated homogeneous recurrence equation is

$$a_n - 2a_{n-1} = 0$$

and

$$f(n) = 1$$

The root of the characteristic polynomial is 2 so the solution to the homogeneous part is
\[a_n^H = \alpha 2^n \]

and a particular solution to the nonhomogeneous equation is

\[\{a_n^p\} = c_0. \]

Substituting \(c_0 \) into the nonhomogeneous equation we get

\[c_0 - 2c_0 = 1 \]

or

\[c_0 = -1 \]

Therefore the general solution is

\[\alpha 2^n - 1 \]

Using the initial condition we have

\[\alpha 2^0 - 1 = 3 \] or \(\alpha = 4 = 2^2 \)

Hence, the solution is

\[a_n = 2^{n+2} - 1 \]

which is the same solution we obtained by telescoping.