Architecture Comparison for Concurrent Multi-Band Linear Power Amplifiers

Zhen Zhang, Yifei Li, and Nathan M. Neihart

Iowa State University

MWSCAS 2015 – Fort Collins, CO

IOWA STATE UNIVERSITY Department of Electrical and Computer Engineering

Outline

Theoretical Comparisons

- Efficiency
- Linearity
- Area

Motivation

- Multiband radio is a basic requirement for today's wireless devices
- Current 4G standards propose carrier aggregation Then Intra-band and inter-band
 - Contiguous and non-contiguous

- WLAN 2 GHz

- WLAN 5 GHz

3

Motivation

Current approach consists of packing ever more separate PAs into a device

- Large area
- Complex signal routing
- Complex control
- Such architectures do not inherently support simultaneous multi-band signals
- In light of this, researchers are now beginning to develop simultaneous multi-band PA architectures

Motivation

- There are two primary approaches for realizing concurrent multi-band PAs
 Parallel Single-Band
- Multiple parallel single-band PAs
 - Larger area
 - Must have some way of combining the output signals
- Single multi-band PA
 - Fewer components
 - Theoretical drop in efficiency
- Which approach is "better"?

Drain efficiency is defined as:

$$\eta = rac{P_L}{P_{DC}}$$
 P_L – Power delivered to the load P_{DC} – Power consumed from the DC supply

 Multi-band output power is defined to be the total power in <u>ALL DESIRED</u> bands

$$\boldsymbol{P}_L = \boldsymbol{P}_{f1} + \boldsymbol{P}_{f2}$$

Assuming a linear device and 2 bands, the drain current is:

Single Stage in Parallel Single-Band

$$I_{D,PS} = I_{DC,M} + \underbrace{i_{rf,M}cos(2\pi f_M t + \theta_M)}_{\text{Load Current of single stage}}$$

Concurrent Multiband

$$I_{D,MB} = I_{DC} + i_{rf} cos(2\pi f_1 t) + i_{rf} cos(2\pi f_2 t + \theta)$$

Load Current

- The drain current swing is fixed such that $0 \le I_D \le 1$
- Parallel, single-band architecture
 - Class A: $i_{rf,M}$ = 0.5 and I_{DC} = 0.5
 - Class B: $i_{rf,M}$ = 1 and I_{DC} = 0

• Class C:
$$i_{rf,M}$$
 = 1.25 and I_{DC} = -0.25

- Single, multi-band architecture
 - Numerical methods are used to set i_{rf} and I_{DC} for each class of operation
- Sweep f_2/f_1 from 1 to 10

 Efficiency can be increased by slightly overdriving the amplifier

Non-linear model presented in <u>RF Power Amplifiers for Wireless</u> <u>Communication</u> by S. Cripps is used for this investigation

$$I_D(t) = 3V_G^2(t) - 2V_G^3(t)$$

Parallel, single-band architecture

$$V_G(t) = V_{DC} + v_{rf} cos(2\pi f_M t + \theta_M)$$

Single, multi-band architecture

$$V_G(t) = V_{DC} + v_{rf} cos(2\pi f_1 t) + v_{rf} cos(2\pi f_2 t + \theta)$$

$$v_{rf}$$
 and V_{DC} are set such that
0 ≤ $V_G(t)$ ≤ 1

 Compressed drain efficiency for parallel single-band power amplifier

• Class-A:
$$\eta_{ave} = 56\%$$

- Class-B: $\eta_{ave} = 80\%$
- Class-C: $\eta_{ave} = 84\%$
- Compressed drain efficiency for single multi-band power amplifier
 - Class-A: $\eta_{ave} = 31\%$
 - Class-B: $\eta_{ave} = 67\%$
 - Class-C: $\eta_{ave} = 75\%$
- Outputs are ideally filtered to remove all non-linear distortion at the LOAD

There is a significant drop in efficiency in the single, multi-band architecture

- Class-A: Reduction of 25%
- Class-B: Reduction of 13%
- Class-C: Reduction of 9 %

This is due to the reduced power in each band

- This is improved by overdriving the amplifier
- Variation in efficiency as a function of frequency ratio can be predicted by the peak-to-averageratio of the input
 - Lower PAR leads to higher drain efficiency

Linearity Comparison

Linearity is especially critical in concurrent multi-band systems

Parallel, single-band architecture

- Nonlinear distortion causes harmonic generation only
- Linearity of diplexer may be an issue
- No limitations on frequency separation

Single, multi-band architecture

- Nonlinear distortion causes harmonic AND intermodulation components
- Restrictions on frequency choices
 - Becomes much more complicated for larger number of bands

Both cases will require good filtering at the output

Filtering in the parallel, single-band case will depend on the diplexer

Component count can be a good indication of board area

Component Count for Parallel Single-band Architecture

	Component Count			
Input L-Match	2M			
Output L-Match	2M			
RF Chock	2M			
RF Bypass	2M			
Power Transistor	Μ			
Power Combiner	1			
Total	9M+1			
*M is the number of supported bands				

To now we have assumed ideal summation of the output signals

Practical implementations will use diplexer

Component Count for Single, Multiband Architecture

	Component Count			
Input L-Match	2M			
Output L-Match	2M			
RF Chock	2			
RF Bypass	2			
Power Transistor	1			
Power Combiner	N/A			
Total	4M+5			
*M is the number of supported bands				

♦ Area is further compared using an example implementation

- Assume a lumped-element implementation of both architectures
- Assume dual-band support
- 20% added to account for routing

Component	Area/ (Technology)	Parallel Single-Band		Single Multi-Band	
		Num. of Components	Area	Num. of Components	Area
Inductor/Capacitor (Matching Network)	0.125 mm²/ (0201)	8	1 mm ²	8	1 mm ²
RF Choke Inductor	0.5 mm²/(0402)	4	2 mm ²	2	1 mm ²
RF Bypass Capacitor	31 mm²/(2917)	4	124 mm ²	2	62 mm ²
Power Transistor	36 mm²/ Cree GaN FET	2	72 mm ²	1	36 mm ²
Diplexer	40 mm ² /Ave. 2- band diplexers	1	40 mm ²	0	
Tota	I	19	286 mm ²	13	120 mm ²

Conclusions

 Two popular power amplifier architectures for supporting concurrent multi-band signaling have been compared

Efficiency

- Parallel, single-band architecture
 - Much higher efficiency for class-A
 - Gap is reduced for class-B and -C
 - Additional reduction in efficiency due to diplexer
- Single, multi-band architecture
 - Reduced output power, per band, for the same DC bias
 - Efficiency depends upon frequency ratio as well as initial phase offset

Linearity

- Parallel, single-band architecture
 - Essentially the same linearity requirements as traditional single-band amplifiers
- Single, multi-band architecture
 - Significant harmonic and inter-modulation distortion
 - Limits the choice of frequency bands
 - Becomes more severe as the number of supported bands increases

Conclusions

Area

- Parallel, single-band architecture
 - Requires significantly more components
 - Diplexer
- Single, multi-band architecture
 - Requires only a single set of RF choke and RF bypass devices

The need for a diplexer will be the limiting factor for the parallel, single-band architecture

- Large Ranging from 0.5 to 115 mm² for dual band and 12 to 8100 mm² for triple band
- Lossy Triple-band diplexers have insertion losses of several dB
- Expensive Commercial examples cost in the dollar range
- Unclear how more than three bands can be supported

Acknowledgements

Zhen Zhang and Yifei Li

Thank You