Switchless Matching Networks for Dual-Band Class-E Power Amplifiers

Yifei Li, Zhen Zhang and Nathan M. Neihart

Iowa State University

MWSCAS 2014-College Station, TX.

IOWA STATE UNIVERSITY Department of Electrical and Computer Engineering

Dual-Band Matching Networks for Power Amplifiers

Proposed Dual-Band Matching Networks for Class E PA

Simulation Results

♦ Conclusion

Motivations

- Multi-band radio is a basic requirement for today's wireless devices
- Non-contiguous Carrier Aggregation requires concurrent operation
- Simultaneous tasks

Motivation for Dual-Band/Multi-Band Power Amplifier

Outline

Motivations

Dual-Band Output Matching Networks for Power Amplifiers

- Switch-Based
- Transmission-Line Based
- Lumped Element Based

Proposed Dual-Band Matching Networks for Class E PA

Simulation Results

Conclusion

Single and Dual-Band Output Matching Networks

- Output matching networks converts 50Ω antenna load to desired load impedance (Z_{Load}) seen by the transistor
- Usually low impedance
- Single-band OMN: conversion only achieved at one frequency
- Dual-band OMN: conversion can be achieved at two frequencies
- We care about:
 - desired impedance
 - loss

Switch-Based Output Matching Networks

Disadvantages

- Extra cost of RF switches
- Extra loss of RF switches
- Does not support concurrent operation

Advantages

- Simple design
- Can be extended to multiple bands

Transmission Line and Lumped Element Output Matching Networks

Transmission line OMN

- Disadvantages: Large area
- Advantages: Low loss

Lump element OMN

- Advantages: Small area.
- Disadvantages: Circuit complexity an loss increase with number of supported frequency bands (beyond 3 bands)
- This particular lumped element OMN has no control on harmonics

Danish Kalim et al, IEEE International Microwave Symposium Digest(MTT), Jun. 2011, PP.1-4. Koji Uchida et al, IEEE Asian-Pacific Microwave Conference Proceedings, Dec.2005.

Outline

Motivations

Dual-Band Matching Networks for Power Amplifiers

Proposed Dual-Band Output Matching Networks for Class E PA

- All Lumped Element Output Matching Network
- Transformer-Based Output Matching Network

Simulation Results

Conclusion

Conventional Single-Band Output Matching Network for Class E PA

- Desired Z_{Load}=7+j8 Ω at the design frequency, and high absolute impedance at harmonics
- Part A realizes real-to-real impedance conversion, providing real part of desired impedance, R_L, at design frequency
- Part B provides X_L at the design frequency and high impedance at harmonics

$$S \xrightarrow{L_x} C_o \xrightarrow{L_o} C_s$$

$$= jX_L + R_L$$

$$R_L$$

$$I0/22$$

Proposed Dual-Band Output Matching Networks for Class E PA

Desired impedance: 7+j8 Ω @ 800MHz and 1900MHz

Proposed all-lumped element output matching network

Proposed transformer-based output matching network

All-Lumped Element Dual-Band OMN

- First consider the real-to-real impedance conversion
- Part A converts 50Ω to 7Ω at both frequencies
- C_{sL}, L_{pL} form equivalent low-band
 L match
- C_{sH}, L_{pH} form equivalent high-band
 L match
- Component values in equivalent single-band MNs can be calculated at each frequency

All-Lumped Element Dual-Band OMN

Now consider the positive reactance

Part B provides +j8 Ω at both frequencies and high impedance at their harmonics

♦ How to determine C_o

Trade off between harmonic impedance (loss in power transistor) and loss in the matching network

Transformer-Based Dual-Band OMN

- Part B provides +j8 Ω at both frequencies, and high impedance at their harmonics
- Green box acts as a variable inductor
 - Red part of the expression is what we used
 - The rest is parasitic resistance

Loss Optimization of Transformer-Based OMN

Loss model

Total loss in terms of parasitic resistance is expressed as

Parasitic
$$Res(\Omega) = \omega L_1 \frac{\frac{k^2 a}{Q}}{\left(\frac{1}{a} - a\right)^2 + \frac{1}{Q^2}} + \frac{\omega L_1}{Q_x} \begin{bmatrix} Q_x \text{ is the quality factor of} \\ L_1 \text{ at each frequency} \end{bmatrix}$$

Parasitic resistance from the primary winding

Reflected parasitic resistance from the secondary winding

Loss Optimization of Transformer-Based OMN

Trade off between OMN loss and transistor loss

- Higher harmonic impedance -> low loss in transistor
- To increase the impedance at the 2nd harmonic of low band, ω_0 should be closer to $2f_L$.
- ω_o is set at 2π *1.25G rad/s
 - Higher loss in high band OMN
 - Higher loss in low band power transistor

Outline

Motivations

Dual-Band Matching Networks for Power Amplifiers

Proposed Dual-Band Matching Networks for Class E PA

♦ Simulation Results

Conclusion

Simulation Results

Simulation environment

- HBT power transistor with 3.5V power supply
- **TDK MHG0603 (mm) inductors**
- Murata GJM 0603 (mm) capacitor
- Low DC resistance (mΩ) 1µH choke Inductor
- Operation frequencies: 800MHz and 1900MHz
- Substrate: 2-layer PCB with a thickness of 864µm, average dielectric constant of 3.57, metal thickness of 18µm, average loss tangent of 0.0036

Component values

L _s (nH)		C _s (p	C _s (pF)		∍ (nH)	C _P (pF)	
2.5		6.6	6.6		2.3	7.2	
		L ₁ (nH)	L ₂ (r	nH)	C ₂ (pF)	C ₃ (pF)	k
All-lumped		7	3.7		3.5	3.6	-
Transformer -based		8.1	4		4.1	4.5	0.6

Simulation Results

♦ All-lumped output matching network

- At 800MHz, η=71%@30.2dBm
- At 1.9GHz, η=68%@29dBm

Transformer-based output matching network

■ At 800MHz, η=75%@30.1dBm

Simulated Performance Comparison

Ref	Frequency Band (GHz)	Simulated output Power* (watt/V ²)	Simulated Efficiency (%)	Load Type
[2]	0.9/1.8	0.011	η=44/40	Switch- based/off chip
[3]	1.9/2.3/ 2.6/3.5	0.02	η=64/62 /59/58	On-chip
[4]	1.81/2.65	0.0075	η=73.6/ 70.1	TLs
[6]**	0.8/1.5	0.05/0.026	PAE=51.6/ 51.9	Lumped/ Off chip
This work all- lump load network	0.8/1.9	0.067/0.038	η=75/67	Lumped/ Off chip
This work transformer based	0.8/1.9	0.038	η=71/68	Lumped/ Off chip

* Output power normalized to V^2_{DD}

** Measured Result

Luca Larcher et al, Design, Automation & Test in Europe Conference & Exhibition, Apr. 2009, pp.364-368. Ki Young Kim et al, IEEE Microwave and Wireless Components Letters, vol.21, no.7, July.2011. Danish Kalim et al, IEEE International Microwave Symposium Digest (MTT), Jun. 2011, pp.1-4. Koji Uchida et al, IEEE Asian-Pacific Microwave Conference Proceedings, Dec.2005.

Conclusion

- Two compact switchless dual-band output matching networks are designed for class E power amplifier which achieve drain efficiency above 67%, with transformer-based one having a little higher efficiency.
- All-lumped element OMN is preferred when area is the main concern. Transformer could be several times larger than a lumped component.
- Transformer-based OMN is preferred when performance is the main concern. Especially with advanced substrate and thick metal. In such circumstances, transformer based PA will have higher efficiency than all-lumped element PA.

Questions