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ABSTRACT

In order to summarize a video consisting of a sequence oérdiff
ent activities, there are three fundamental problems:kingcthe
objects of interest, detecting the activity change time i@ubgniz-
ing the new activity. This paper presents an algorithm fdredng
all these three tasks simultaneously and presents resul®w it

activity model, and the whole process repeats. A diagrartaaxpg
our overall approach is shown in Figure 1. We present exmarim
tal results on automatically tracking and indexing a ref@l Video
sequence of different activities.
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sented by a model for the dynamics of the shape of the human
contour (shape of landmarks uniformly chosen on the outer ¢
tour). Measures are designed for detecting both graduasitians
and sudden changes between activity models.

1. INTRODUCTION

In order to index and summarize human activity sequencessnéc-
essary to i) track the activities, ii) detect the change foora activity
to the next and ii) recognize the next activity. We developpeaeh
framework forpersistent and simultaneousacking and recogni-
tion of human activities consisting of the following stepkieh take
place in aloop: (i) modeling the appearance and motion gisiac-
tivity sequences and tracking them, (ii) detecting a chdrma one
activity to the next, and (iii) classifying which is the neadtivity to
change to and start tracking it. This paper presents anitdgofor
achieving all these three tasks and presents results ort lbaw iised
for indexing and summarizing a long sequence consistingffefre
ent human activities. Human activities are represented impdel
for the dynamics of the shape [1] of the human body contowash
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Fig. 1. Overall approach for simultaneous tracking and recogmiti
The recognition module for using Tracking Error is shown ba t
right. An analogous module operates for using ELL as well.

1.1. Réation to Previous Work

There has been much recent work on human activity recogr@o
9, 10, 11]. Key-frame segmentation methods [12] only detieet
switching instances and often require the entire video tavMadable
a-priori. Video surveillance methods also address thelpnob of
tracking and recognition, but usually the tracks are ole@ifirst,
followed by recognition [13, 2].

Simultaneous tracking of the moving persons and recognitfo

of k landmarks uniformly chosen on the outer contour). This is mo activities has been performed in many applications usingrahic

tivated by the fact that the shape of the body changes in theseo
of various activities. Moreover, the shape representdfipmakes
the method insensitive to camera zoom (scale changesy|dtam
and in-plane rotation.

Tracking is performed using a particle filter that uses a amoti
model taken from [2] and a piecewise stationary shape dycemi
model [3]. A nonlinear observation equation that relates phe-
dicted landmark configuration with the input image. The pigise
stationary model used here is similar in spirit to switchiedar dy-
namic systems [4], but in our case the state space model limean
Note that in our framework, the tracked observations arel tise
recognize an activity, the corresponding dynamical moéethach
drives the tracking for the next frame. The tracking aldoritis thus
similar in spirit to the well-known CONDENSATION algorith{b],
but differs from it in (i) the use of local shape deformatiodn
els (as compared to only affine deformation modeling in [§]);
performing simultaneous recognition and tracking usingnde de-
tection statistics like ELL [6] and tracking error [7]. Tleesieasures
can handle both slow and sudden changes of activities and asr
a feedback signal, which initiates a search for switching twew

Bayesian Network (DBN) model tracked by a Rao-Blackwetlize
particle filter [14, 15, 4, 16]. The events are recognizedragk-
ing discrete state space variables (whose dynamics is ddfinthe
DBN) using a particle filter (PF) and moving object motion iedn
eled by a linear dynamical system tracked by a Kalman filtside
the PF. [4] performs figure tracking by defining a DBN to swibeh
tween various linear dynamical systems (also called Switdhin-
ear Dynamical System or SLDS). Discrete state space vasdlave
also been used in many other joint recognition and trackomyexts
in video analysis, e.g. Chapter 16 of [15] (Condensatiorgésture
tracking and recognition), [17, 18].

Using a discrete mode as a state variable requires knowlafdge
its dynamics. In cases when this is not known, one can chaose t
detect a change by using tracking error (TE) [7] or the rdggmb-
posed ELL statistic [6] and then recognize the new actiwtyratch-
ing it with the activities in the database. TE based modetchirig
and re-initialization [7] is a common technique in systemd eon-
trol literature. But in computer vision it has been used vattly
limited success because of the difficulty of re-initialinat In the
current application, we are able to do this successfullysoAfor



gradual changes, we are able to prevent large loss of trapkdc-  direction to each predicted landmark until we find an edgetpd

curring by using ELL which is able to detect a change beforaco we treat this as the observed landmark location. Thus theredson

plete loss of track. likelihood is
We start by describing the state space model (Section 2), fol

lowed by tracking using filters, change detection and reitimgn 1 2

strategy (Section 3). We then show detailed experimentsaaad p(le] Xi) oc exp{— Z 2rkK||qk — flaw, GAII"}, )

lyze the results (Section 4). =1

K

where K is the shape vector dimension;, is the variance of the
2. STATE SPACE MODEL FOR ACTIVITY SEQUENCES k'™ landmark,g is thek'™ predicted landmark, i.eq: = ¥;  and
f(gr, G¢) = T is the nearest edge point gf along its normal
Our state space is the shape and global motion (scale amtétans-  direction.
lation) of k£ landmark points used to represent the outer contour of
t.he.object of interest. In past work [2, 3], we .have extendngstg- 3. TRACKING, CHANGE DETECTION, RECOGNITION
tistical theory for landmark shapes [1] to define stochadbfitamic
models for shape deformation. We model the motion/defdonatf 31 Tracking using Particle Filters
a changing configuration of landmark points as scaled Eeatiano-
tion (translation, rotation, isotropic scaling) of a “mestrape” plus  In this paper, we use a particle filter for “tracking”, i.eor bbtaining
its non-rigid deformation. The term “shape activity” is dse de- ~ observations on the fly by tracing along the normals of thelipted
note a particular stochastic model for shape deformatiomd#fine  configurationY;, to search for the closest edge (as described in Sec-
a “stationary shape activity” (SSA) as one for which the mglampe  tion 2.2). The particle filter (PF) is a sequential Monte Gamlethod
remains constant with time and the deformation model isostaty ~ (sequential importance sampling plus resampling) whiciviges at
[2]. A piecewise stationary shape activity (PSSA) modelf@idels  eacht, an N sample Monte Carlo approximation to the prediction
a shape activity with slowly varying “mean shape” (approated as  distribution, 7,,_; (dz) = Pr(X: € dz|Y1.:—1), which is used
piecewise constant). It is represented by a sequence of @8As to search for new observed landmarks. These are then used to u
nonstationary transitions which we detect using ELL [6]racking  datem,;_, to get the filtering (posterior) distribution,,(dx) =
error [7]. Pr(X: € dz|Y1.+). We use a particle filter because the observation
The state vectoX; = [v, s¢, 0, ar, b)) Wherevy = v(z, p) model is nonlinear and the posterior can temporarily becomki-
denotes the tangent coordinates [1] of the shapecomputed in  model when there are false edges due to background clutter.
the tangent space @f and s¢, 0;, a;, b, denote the isotropic scale,
rotation, x and y translation. Complex notation taken frdthif 32 Change Point Detection
used simplify writing of equations” denotes conjugate transpose
of a complex vector angl = v/—1. The predicted configuration of As explained earlier, each activity is represented by an 64
landmark points at timeis h(X;) = z:s:e’% + a; + jb; wherethe ~ PSSA (sequence of SSAs) model, for example the bendingsacros

shapez: = (1 — viv) "/ p + v activity shown in Figure 2 is composed of 3 SSA pieces. The se-
We use the same global motion model as in [2]. We describe thguénce of activities forms along PSSA. We use ELL [6] anddrag
shape dynamical model below. error [7] described below to detect the change time from @& ®

the next. If the change is gradual as, for example within aivigc
) ) . . (e.g. see bending across activity and the ELL plot in Figyretz
2.1. Piecewise Stationary Shape Activity (PSSA) Model loss of track is small and slow. For such examples, ELL dstéet
We refer the reader to [3] for more details about the PSSA nodechange faster than tracking error. For our state space mgbklis
Let the “mean shape” change timesthe, t,.,, t,s, ... and the cor- ~ computed as

responding means be, po, us, ... Betweent,, , <t < t,,,

s 1 and thusv ve(2¢, pj—1). During this interval, the 1 & T

t = Mj—1 t = V2, hj—1)- ) N _ L )T =1 (4)

dynamics is similar to that for an SSA, i.e., ELLy = N Zl v’ Xy v+ constant 4)

vz, i-1) = Avve-1(ze-1, p—1) + e, ne ~ N(0, o e) whereN is the number of particles arid, is the covariance matrix
o= (1-— v;“vt)lmuj,l + vy 1) of the tangent coordinates for the current stationary piece

If the activity change is sudden, it will cause the PF, aneétLto
At the change time instant, = ¢, , u: = p; and so the tangent the dynamical model of a particular activity, to lose tradken the
coordinatev;_1 needs to be recalculated in the new tangent spacactivity changes. This is because under the existing agtimbdel

with respect tqu; = ;. This is achieved as follows [3]: with which the PF operates, the new observations would agpea
. have very large observation noise. Thus the tracking efrg) (7]
vic1 (21, p5) = [I — pipglze—1€’ Laiamg) (2)  (Euclidian norm of the error between the mean predictedrieardl

configuration and the observed one) will increase when theityc
Once this is done, the equations of (1) apply with mean spape  changes and this can be used to detect the change times.

2.2. Observation Model 3.3. Model Switchingto a New Activity

We perform edge detection on the imafieand use the edge map, Once the change has been detected, the next problem is t® dete
G = Y(I:), to obtain the observed landmarks, C G:. Our  mine the correct activity from the class of previously leatmactiv-
method is inspired by [5]. Given the predicted location ofdmarks, ity models. This is known as the problemmibdel switching This
Y, = h(X:) = zs:e?% + a; + jb, we search along the normal is done by projecting the observed landmark configurafibnonto



the mean shape for each of the learned activities and ctgpdsin
one with the largest projection or the smallest projectioordmea-
sured using Procrustes distance [1]). In practice, thiomedor a
few frames before a final decision is made, since individuzahis of
different activities may be similar. If the distance is abavcertain
threshold for all activities in the database, we decidettmaturrent
activity is not within the learned database and this is iat#id.

3.4. Simultaneous Tracking, Change Detection and Recognition
(Simul-TraCR) Algorithm

the ELL plot are the average value of ELL for that activity qae
(equal to the effective rank afl,) and change is declared when
ELL significantly exceeds this value. ELL is always computedt.
the SSA that is being used to track the current frame. ELLadigte
change before significant loss of track and hence we swittheto
next SSA piece without the tracking error ever increaseseagbly
(varies about an average value of about 60). The first imagfeein
bottom row is frame 54 .As can be seen the landmarks on thertaft
are very close to each other and overlapping (change indagpaif
underlying continuous contour). Thus there is a changeair thr-
der. Landmark shape is sensitive to the ordering of landsnanki

We now outline the main steps of the simultaneous trackind) anthis is detected as a sudden increase in ELL.

recognition algorithm, incorporating change detection amodel
switching. For simplicity, let us assume that there are tetiva

ties in the sequencel; and A.. For the first frame iM 1, the region
of interest (a person or a group of people) is detected base¢beo
application requirements (not part of this paper) and tmeespond-
ing model for the activity is determined as in Section 3.3teAthis

initialization, the algorithm now proceeds as follows.

In Figure 3, we show some frames from a set of individual &ctiv
ties stitched together and the Tracking Error plot. Sineesittivities
were stitched together by us, the transitions from one tméx¢ are
sudden. This models a situation where disparate activityos (i.e.,
not a continuous sequence) are stitched together, like igi@ldi-
brary. These are detected easily using the increase inifigaEkror.
The plot is for the following sequence: Act3, Act4, Act8, Acnd

Track Based on the detected region and the chosen dynamic#lct7. One frame for each activity along with the trackingoeris

model, the particle filter is used to track the activity. Ma&s for
determining the accuracy of the tracking algorithm (TE ahd.)E
are computed for each frame.

Change Detection When the fidelity measures exceed a cer-

tain threshold (details in Section 4) for a few consecutianes,
a change is detected.

also shown. The number of frames that are used to recogniae-an
tivity is called the “delay” due to model switching. The falNing
observations were made in the experimentation processA&ar
Act8 and Act9, the delay needed to get correct recognitidhbei
very small, while Act3 and Act4 need longer delays to find the c
rect model to switch to. This is because initial poses of theytin

Model Switching Once the change is detected, the new shapeé\ct3 and Act4 is very similar to other activities.
vector is obtained from the edge map of image frame and atsearc
is initiated for the correct activity model. Once the cotractivity
model is identified, we use this and go back to Track.

Note that change detection and switching may be between difl-n this paner. we proposed a novel svstem for indexing and
ferent portions of the same activity, specifically, for thativities IS paper, we prop Vel Sy Indexing

: . atatfi . - rizing (tracking object of interest) a video consisting adexjuence
in which a non-stationary dynamical model is needed. of human activities. This is achieved through an algorittumi-

multaneous and persistent tracking and recognition. Weausan-
linear, piecewise stationary model defined on the shape wfahu
body contour to represent activities. The activity chariges are
We now show examples of our Simul-TraCR algorithm for index- detected using ELL and Tracking Error statistics. The #itiv are
ing and summarizing (tracking) a sequence consisting ofifférd  recognized by comparing the tracked observations agaipstoa
ent activities captured in video. The training and testieguences database. We demonstrate the effectiveness of our systestmolay

were captured separately on different days. The binariieoi®tte  jng experimental results on real life video of differentieities.
denoting the contour of the person in every frame of tilaning
sequence is obtained using background subtraction. Tideniarks
were obtained by uniformly sampling the silhouette contoline
global motion and shape is computed for the landmark corstgur . o ) )
at each frame [1]. This is used to learn the parameters ofyhe d [11 |- Ddr)gjen aggng- MardiaStatistical Shape Analysidohn Wiley
namical model for each SSA activity as discussed in [2]. &téist- and sons, 199s. .
ing sequence, the silhouette is pre-computed only in the fiashédr [2] ﬁct?(/?;;vsan,lé\ éoﬁt?&gggvgzgyﬁl\jm flgr. I\C/IZSi”r?F;gae’foriiTlape
if the background information is available; otherwise we mso- sh : ith Aoolication to Ab | Acti 'tg Detecti g”
tion segmentation over a few initial frames to obtain thaaikette. IESE(_::I?ra\rqul on I[?ﬁz;gcyz llgrr:)cgssi, é;gg:r 5 O%IF:/' y Detection,
Thergafter it is obtained as the output of the traclqng adlt‘!m,. as [3] N. Vaswani and R. Chellappa, “NonStationary Shape Activ
explained above. The database we collected consists oftildlias ties.” in Proc. of IEEE Conf. on Decision and Contr@005
_(\{vhose composition make up a number of normal everyd_ay-activ[4] T-3 Cham and J. M. Rehg, “A multiple hypothesis ap.ph)ac
ities), bending across, walking towards camera and berdmag, to figure tracking,” inProc. of IEEE Conference on Computer
leaning forward and backward, leaning sideward, lookinguad, Vision and Pattern Recognition
turning head, turning upper body, squatting, bending watihds out-  [5] M. Isard and A. Blake, “Condensation: Conditional Degsi
stretched, and walking. We will refer to thé" activity as Acto. Propagation for Visual Tracking,” International Journal of

In Figure 2, we show four frames from the 3 stationary pieces  computer Visionpp. 5-28, 1998.
(SSAs) that constitute Actl (Bending Across) and the ELLisack-  [6] N. Vaswani, “Change Detection in Partially Observed hion
ing error plots. The first row shows one frame from each piece -

ear Dynamic Systems with Unknown Change Parameters,” in
Standing Straight (SS), Half Bent (HB) and Fully Bent (FBheT American Control Conferenc@004.
transitions SS-HB and HB-FB were gradual and hence aretdetec [7] Y. Bar-Shalom and T. E. Fortmanfracking and Data Associ-

by ELL faster than by Tracking Error. The pink horizontald@in ation, Academic Press, 1988.

5. CONCLUSIONS

4. EXPERIMENTAL RESULTS

6. REFERENCES



Tracking Error

Fig. 2. Tracking Actl (Bending Across). The top row has one framefeach SSA piece of this activity - Standing Straight (SSJf Bent
(HB) and Fully Bent (FB). Bottom row, first image is another #FBme where there is change in the ordering of landmarks theaarm
(detected by the increase in ELL after frame 50). Second énmthe ELL plot. ELL detects the gradual transitions SS-HB HB-FB. The
last image is the Tracking Error plot. ELL detects the chabgfre large loss of track and we switch to the next model. cdéffracking
Error never increases too much.

0 am a0 40 S0 0 70 80 o 1000
Time

Act9 Act7 Tracking Error

Fig. 3. One frame for each activity along with superimposed tmaglarror is shown. Tracking error to detect switches in a iraditivity
sequence. The switches between activities are suddennibhisls a situation where disparate activity videos (i@t arcontinuous sequence)
are stitched together, like in a digital library. The tragkierror increases when an activity switch happens. Oncenduel switch occurs
and the new model is able to track properly, the trackingreyoes down

[8] N. Lobo P. Smith, M. Shah, “Integrating and employing mul nition using relational markov networks,” iroc. of the Inter-
tiple levels of zoom for activity recognition,” iRroc. of IEEE national Joint Conference on Atrtificial Intelligenc2005.
Conference on Computer Vision and Pattern Recogni@®d4.  [15] A. Doucet, N.de Freitas, and N. Gordor§equential Monte

[9] L. Zelnik-Manor and M. Irani, “Temporal factorizatiorsvspa- Carlo Methods in PracticeSpringer, 2001. , ,
tial factorization,” inProc. of European Conference on Com- [16] D.Wilsonand C. Atkeson, “Simultaneous Tracking andikc
puter Vision 2004 ity Recognition (STAR) Using Many Anonymous, Binary Sen-

sors,” inProceedings of PERVASIVZ005.

[17] S.K. Zhou, R. Chellappa, and B. Moghaddam, “Visual krac
ing and Recognition Using Appearance-Adaptive Models in
Particle Filters,”IEEE Trans. on Image Processingl. 13, no.

[10] S. M. Khan and M. Shah, “Detecting group activities @gsin
rigidity of formation,” in ACM Multimedia 2005.
[11] D.M. Gavrila, “The Visual Analysis of Human Movement: A

Survey,” Computer Vision and Image Understandingl. 73, 11, pp. 1491-1506, November 2004.

no. 1, pp. 82-98, January 1999. ~ [18] M. Harville and D. Li, “Fast, integrated person tracfiand ac-
[12] Y. Zhaiand M. Shah, “A general framework for temporaled tivity recognition with plan-view templates from a singleseo

scene segmentation,” iAroc. of International Conf. on Com- camera,” inProc. of IEEE Computer Society Conf. on Computer

puter Vision 2005. Vision and Pattern Recognitip2004, pp. Il: 398—405.

[13] W.E.L. Grimson, L. Lee, R. Romano, and C. Stauffer, ‘i
Adaptive Tracking to Classify and Monitor Activities in at&f’
in Proc. of IEEE Computer Society Conf. on Computer Vision
and Pattern Recognitiqri998, pp. 22-31.

[14] L.Liao, D. Fox, and H. Kautz, “Location-based activiBcog-



