Online Sparse + Low-Rank Matrix Recovery

Namrata Vaswani

Iowa State University
Web: http://www.ece.iastate.edu/~namrata

(joint work with Wei Lu, Chenlu Qiu and Brian Lois)
Acknowledgements

- This talk is based on joint work with my students
 - Wei Lu and Jinchun Zhan (online sparse matrix recovery – Modified-CS)
 - Chenlu Qiu and Brian Lois (online sparse + low-rank matrix recovery / robust PCA)

- Funded by NSF grants CCF-1117125 and CCF-0917015

- Other collaborators: Han Guo (new student) and Prof. Leslie Hogben (Math, ISU)
Recovery from incomplete data: the question

- In many applications, data acquisition is slow, e.g. in MRI, acquire one Fourier coefficient of the cross-section of interest at a time
 - Question: can we recover the cross-section’s image from undersampled data?
Recovery from incomplete data: the question

In many applications, data acquisition is slow, e.g. in MRI, acquire one Fourier coefficient of the cross-section of interest at a time

- Question: can we recover the cross-section’s image from undersampled data?

- Yes: if spatially-limited or if exploit sparsity of the image in an appropriate domain
Recovery from incomplete data: the question

- In many applications, data acquisition is slow, e.g. in MRI, acquire one Fourier coefficient of the cross-section of interest at a time
 - Question: can we recover the cross-section’s image from undersampled data?
 - Yes: if spatially-limited or if exploit sparsity of the image in an appropriate domain

- In many other applications, data acquisition is fast but cannot see everything, e.g. in video,
 \[\text{image} = \text{background} + \text{foreground} \]
 - Question: can we recover two image sequences from one?
Recovery from incomplete data: the question

- In many applications, data acquisition is slow, e.g. in MRI, acquire one Fourier coefficient of the cross-section of interest at a time
 - Question: can we recover the cross-section’s image from undersampled data?
 - Yes: if spatially-limited or if exploit sparsity of the image in an appropriate domain

- In many other applications, data acquisition is fast but cannot see everything, e.g. in video,
 \[
 \text{image} = \text{background} + \text{foreground}
 \]
 - Question: can we recover two image sequences from one?
 - Yes: if exploit the low-rank structure of the background sequence and sparseness of the foreground
Sparse recovery: Magnetic Resonance Imaging (MRI)

- (a) Shepp-Logan phantom: 256 × 256 image
- (b) MR imaging pattern: 256-point DFT along 22 radial lines
- (c) Inverse-DFT
- (d) Basis Pursuit solution (uses sparsity: gives exact recovery!)

Example taken from [Candes, Romberg, Tao, T-IT, Feb 2006]
Sparse recovery / Compressive sensing [Mallat et al'93], [Feng,Bresler’96], [Gordinsky,Rao’97], [Chen,Donoho’98], [Candes,Romberg,Tao’05],[Donoho’05]

- Recover a sparse vector x, with support size at most s, from

$$y := Ax + w$$

when A is a known fat matrix and $\|w\|_2 \leq \epsilon$ (small noise).
Sparse recovery / Compressive sensing [Mallat et al'93], [Feng,Bresler'96], [Gordinsky,Rao'97], [Chen,Donoho'98], [Candes,Romberg,Tao'05], [Donoho'05]

- Recover a sparse vector x, with support size at most s, from

$$y := Ax + w$$

when A is a known fat matrix and $\|w\|_2 \leq \epsilon$ (small noise).
Sparse recovery / Compressive sensing [Mallat et al'93], [Feng,Bresler’96], [Gordinsky,Rao’97], [Chen,Donoho’98], [Candes,Romberg,Tao'05],[Donoho’05]

- Recover a sparse vector x, with support size at most s, from $y := Ax + w$ when A is a known fat matrix and $\|w\|_2 \leq \epsilon$ (small noise).

- Solution by convex relaxation: ℓ_1 minimization [Chen,Donoho’98]:

$$\min \|\tilde{x}\|_1 \text{ subject to } \|y - A\tilde{x}\|_2 \leq \epsilon$$

if $\delta_{2s}(A) < 0.4$, error bounded by $C\epsilon$ [Candes et al’05,’06,’08]

- restricted isometry constant (RIC) $\delta_s(A)$: smallest real $\neq 0$ s.t.

$$(1 - \delta_s)\|x\|_2^2 \leq \|Ax\|_2^2 \leq (1 + \delta_s)\|x\|_2^2$$

for all s-sparse vectors x [Candes,Tao,T-IT'05]
Sparse recovery / Compressive sensing [Mallat et al’93], [Feng,Bresler’96], [Gordinsky,Rao’97], [Chen,Donoho’98], [Candes,Romberg,Tao’05],[Donoho’05]

- Recover a sparse vector x, with support size at most s, from
 $$y := Ax + w$$
 when A is a known fat matrix and $\|w\|_2 \leq \epsilon$ (small noise).

- Solution by convex relaxation: ℓ_1 minimization [Chen,Donoho’98]:
 $$\min \|\tilde{x}\|_1 \text{ subject to } \|y - A\tilde{x}\|_2 \leq \epsilon$$
 if $\delta_{2s}(A) < 0.4$, error bounded by $C\epsilon$ [Candes et al’05,’06,’08]

 - restricted isometry constant (RIC) $\delta_s(A)$: smallest real \neq s.t.
 $$(1 - \delta_s)\|x\|_2^2 \leq \|Ax\|_2^2 \leq (1 + \delta_s)\|x\|_2^2$$
 for all s-sparse vectors x [Candes,Tao,T-IT’05]

- Applications: projection imaging - MRI, CT, astronomy, single-pixel camera
Low-rank matrix recovery (completion)

- Recover a low-rank matrix from a subset of its entries

\[Y := P_\Omega(L) \]

\(\Omega \) is the set of missing entries \([\text{Fazel et al, Recht et al, 2009}]\)

- Applications: recommendation system design, e.g. Netflix problem; survey data analysis, ...
 - \(\ell_k \): ratings of movies by user \(k \)
 - a given user will rate only a subset of all the movies: missing entries; goal: complete the matrix in order to recommend movies
 - matrix is low-rank: user preferences governed by only a few factors
Sparse + Low-rank matrix recovery

- Separate a low-rank matrix L and a sparse matrix X from
 \[Y := X + L \]
 or from a subset of entries of $(X + L)$
 - if L or range(L) is the quantity of interest: robust PCA
 - if X is quantity of interest: robust sparse recovery

- Applications: video analytics (e.g. for surveillance, tracking, mobile video chat, occlusion removal, …) [Candes et al, 2009]
 \[X = [x_1, x_2, \ldots, x_t, \ldots x_{t_{\text{max}}}], \quad L = [\ell_1, \ell_2, \ldots \ell_t, \ldots \ell_{t_{\text{max}}}] \]
 - ℓ_t: bg - usually slow changing, global (dense) changes
 - x_t: fg - sparse, consists of one or more moving objects (technically x_t: (fg-bg) on fg support)

- Other apps: detecting anomalous connectivity patterns in social networks or in computer networks; functional MRI based brain activity detection; recommendation system design
Sparse + Low-rank matrix recovery

- Separate a low-rank matrix L and a sparse matrix X from
 \[Y := X + L \]
 or from a subset of entries of $(X + L)$
 - if L or range(L) is the quantity of interest: robust PCA
 - if X is quantity of interest: robust sparse recovery

- Applications: video analytics (e.g. for surveillance, tracking, mobile video chat, occlusion removal, ...)
 \[X = [x_1, x_2, \ldots, x_t, \ldots x_{t_{\text{max}}}], \quad L = [\ell_1, \ell_2, \ldots, \ell_t, \ldots \ell_{t_{\text{max}}}] \]
 - ℓ_t: bg - usually slow changing, global (dense) changes
 - x_t: fg - sparse, consists of one or more moving objects (technically $x_t: (\text{fg-bg})$ on fg support)

- Other apps: detecting anomalous connectivity patterns in social networks or in computer networks; functional MRI based brain activity detection; recommendation system design
Our work: the question

- How to solve the above problems for dynamically arriving data?
 - e.g., dynamic or functional MRI, online video analytics, ...

- Option 1: batch methods
 - recover the entire sequence in a batch fashion (e.g. for sparse recovery - use Fourier sparsity along the time axis)
 - slow and memory-intensive
Our work: the question

- How to solve the above problems for dynamically arriving data?
 - e.g., dynamic or functional MRI, online video analytics, ...

- Option 1: batch methods
 - recover the entire sequence in a batch fashion (e.g. for sparse recovery - use Fourier sparsity along the time axis)
 - slow and memory-intensive

- Option 2: do not use past knowledge
 - fast and memory-efficient, but will need more measurements
Our work: the question

- How to solve the above problems for dynamically arriving data?
 - e.g., dynamic or functional MRI, online video analytics, ...

- Option 1: batch methods
 - recover the entire sequence in a batch fashion (e.g. for sparse recovery - use Fourier sparsity along the time axis)
 - slow and memory-intensive

- Option 2: do not use past knowledge
 - fast and memory-efficient, but will need more measurements

- Option 3: design recursive algorithms (our work)
 - use previously recovered images and current observed data to recover the current image
 - fast and memory-efficient and need fewer measurements
Our work: Online (recursive) solutions

- Developed provably accurate recursive solutions for
 - “online” sparse matrix recovery
 (recursive recovery of sparse signal sequences) \([KF-CS, ICIP’08]\)
 - brief overview
 - “online” sparse + low-rank matrix recovery
 (online or recursive robust PCA) \([Qiu,Vaswani,Allerton 2010]\)
 - most of this talk

- The “online” problem as we define it uses extra assumptions

- In this talk “recursive” \(\Leftrightarrow\) “online” (used interchangeably)
Recursive recovery of sparse seq’s: Problem \cite{Vaswani2008}

- Given measurements
 \[y_t := Ax_t + w_t, \quad \|w_t\|_2 \leq \epsilon, \quad t = 0, 1, 2, \ldots \]

- \(A = H\Phi \) (given): \(n \times m, \quad n < m \)
 - \(H \): measurement matrix, \(\Phi \): sparsity basis matrix
 - e.g., in MRI: \(H = \) partial Fourier, \(\Phi = \) inverse wavelet

- \(y_t \): measurements (given)
- \(x_t \): sparsity basis vector
- \(N_t \): support set of \(x_t \)
- \(w_t \): small noise

- Goal: recursively reconstruct \(x_t \) from \(y_0, y_1, \ldots y_t \),
 - i.e. use only \(y_t \) and \(\hat{x}_{t-1} \) for recovering \(x_t \)

\(^1\) N. Vaswani, Kalman Filtered Compressed Sensing, ICIP, 2008
Recursive recovery of sparse seq’s: Problem \cite{Vaswani,ICIP’08}

- Given measurements

 \[y_t := Ax_t + w_t, \quad \|w_t\|_2 \leq \epsilon, \quad t = 0, 1, 2, \ldots \]

 \[A = H\Phi \text{ (given): } n \times m, \ n < m \]

 \[H: \text{ measurement matrix, } \Phi: \text{ sparsity basis matrix} \]

 \[\text{e.g., in MRI: } H = \text{ partial Fourier, } \Phi = \text{ inverse wavelet} \]

 \[y_t: \text{ measurements (given)} \]

 \[x_t: \text{ sparsity basis vector} \]

 \[N_t: \text{ support set of } x_t \]

 \[w_t: \text{ small noise} \]

- Goal: recursively reconstruct \(x_t \) from \(y_0, y_1, \ldots y_t \),

 \[\text{i.e. use only } y_t \text{ and } \hat{x}_{t-1} \text{ for recovering } x_t \]

 \[\text{Use slow support change: } |N_t \setminus N_{t-1}| \approx |N_{t-1} \setminus N_t| < |N_t| \]

 \[\text{also use slow signal value change when valid} \]

\[1\] N. Vaswani, Kalman Filtered Compressed Sensing, ICIP, 2008
Introduction

Online Sparse Matrix Recovery

Online Sparse + Low-Rank Matrix Recovery

Brief Overview

Recursive recovery of sparse seq’s: Solutions [KF-CS, ICIP’08]. [LS-CS, T-SP, Aug10]

- Introduced Kalman filtered CS (KF-CS) and Least Squares CS (LS-CS):
 - first recursive algorithms that needed fewer measurements for accurate recovery than simple ℓ_1
 - able to obtain time-invariant error bounds on LS-CS error under weaker RIP assumptions (fewer meas’s) than simple ℓ_1

- But these could not achieve exact recovery with fewer meas’s than what simple ℓ_1 needed
 - solved by Modified-CS
Recursive recovery of sparse seq’s: Modified-CS \[\text{[Modified-CS, ISIT’09, T-SP’10, T-IT’15]}\]

- Idea: support at \(t - 1\), \(N_{t-1}\), is a good predictor of \(N_t\)
- Reformulate: Sparse Recovery with Partial Support Knowledge \(\mathcal{T}\)
 - \(\text{support}(x) = \mathcal{T} \cup \Delta \setminus \Delta_e: \Delta, \Delta_e\) unknown

\[\min_{\tilde{x}} \|\tilde{x}\|_1 \text{subject to } \|y - A\tilde{x}\|_2 \leq \epsilon\]

\[\text{Provably exact recovery in noise-free case if } \delta_s + |\Delta| + |\Delta_e| < 0.\]

\[\text{[Vaswani, Lu, ISIT’09, T-SP’10]}\]

\[\text{For noisy case: time-invariant error bounds under a realistic signal change model and } \delta_s < 0.\]

\[\text{[Zhan, Vaswani, ISIT’13, T-IT’15 (to appear)]}\]

\[\text{Regularized modified-CS & modified-CS-residual: also use slow signal value change (when valid); significant advantage over existing work for dynamic MRI}\]
Recursive recovery of sparse seq’s: Modified-CS [Modified-CS, ISIT’09, T-SP’10, T-IT’15]

- Idea: support at $t - 1$, \mathcal{N}_{t-1}, is a good predictor of \mathcal{N}_t
- Reformulate: Sparse Recovery with Partial Support Knowledge \mathcal{T}
 - support$(x) = \mathcal{T} \cup \Delta \setminus \Delta_e$: Δ, Δ_e unknown
- Modified-CS: tries to find a vector \tilde{x} that is sparsest outside \mathcal{T} among all vectors satisfying the data constraint

$$
\min_{\tilde{x}} \|\tilde{x}_{\mathcal{T}^c}\|_1 \text{ subject to } \|y - A\tilde{x}\|_2 \leq \epsilon
$$
Recursive recovery of sparse seq’s: Modified-CS

[Modified-CS, ISIT’09, T-SP’10, T-IT’15]

- **Idea:** support at \(t - 1, \mathcal{N}_{t-1} \), is a good predictor of \(\mathcal{N}_t \)

- **Reformulate:** Sparse Recovery with Partial Support Knowledge \(\mathcal{T} \)
 - \(\text{support}(x) = \mathcal{T} \cup \Delta \setminus \Delta_e \): \(\Delta, \Delta_e \) unknown

- **Modified-CS:** tries to find a vector \(\tilde{x} \) that is sparsest outside \(\mathcal{T} \)
 among all vectors satisfying the data constraint

\[
\min_{\tilde{x}} \| \tilde{x}_{\mathcal{T}^c} \|_1 \text{ subject to } \| y - A\tilde{x} \|_2 \leq \epsilon
\]

- **Provably exact recovery in noise-free case if** \(\delta_{s+|\Delta|+|\Delta_e|} < 0.4 \)
 [Vaswani, Lu, ISIT’09, T-SP’10]

- **For noisy case:** time-invariant error bounds under a realistic signal change model and \(\delta_{s+|\Delta|+|\Delta_e|} < 0.4 \)
 [Zhan, Vaswani, ISIT’13, T-IT’15 (to appear)]

- **Regularized modified-CS & modified-CS-residual:** also use slow signal value change (when valid);
 significant advantage over existing work for dynamic MRI

Namrata Vaswani

Online Sparse + Low-Rank Recovery
Recursive recovery of sparse seq’s: Modified-CS [Modified-CS, ISIT’09, T-SP’10, T-IT’15]

- Idea: support at \(t - 1, \mathcal{N}_{t-1} \), is a good predictor of \(\mathcal{N}_t \)

- Reformulate: Sparse Recovery with Partial Support Knowledge \(\mathcal{T} \)
 - support(\(\mathcal{N} \)) = \(\mathcal{T} \cup \Delta \setminus \Delta_e \): \(\Delta, \Delta_e \) unknown

- Modified-CS: tries to find a vector \(\tilde{x} \) that is sparsest outside \(\mathcal{T} \)
 among all vectors satisfying the data constraint

\[
\min_{\tilde{x}} \| \tilde{x}_{\mathcal{T}^c} \|_1 \text{ subject to } \| y - A\tilde{x} \|_2 \leq \epsilon
\]

- Provably exact recovery in noise-free case if \(\delta_{\text{s+|\Delta|+|\Delta_e|}} < 0.4 \)
 [Vaswani, Lu, ISIT’09, T-SP’10]

- For noisy case: time-invariant error bounds under a realistic signal change model and \(\delta_{\text{s+k}s_a} < 0.4 \) [Zhan, Vaswani, ISIT’13, T-IT’15 (to appear)]
Recursive recovery of sparse seq’s: Modified-CS [Modified-CS, ISIT’09, T-SP’10, T-IT’15]

- Idea: support at \(t - 1, \mathcal{N}_{t-1} \), is a good predictor of \(\mathcal{N}_t \)
- Reformulate: Sparse Recovery with Partial Support Knowledge \(\mathcal{T} \)
 - \(\text{support}(x) = \mathcal{T} \cup \Delta \setminus \Delta_e: \Delta, \Delta_e \) unknown
- Modified-CS: tries to find a vector \(\tilde{x} \) that is sparsest outside \(\mathcal{T} \) among all vectors satisfying the data constraint
 \[
 \min_{\tilde{x}} \|\tilde{x}_{\mathcal{T}^c}\|_1 \quad \text{subject to} \quad \|y - A\tilde{x}\|_2 \leq \epsilon
 \]
- Provably exact recovery in noise-free case if \(\delta_{s + |\Delta| + |\Delta_e|} < 0.4 \) [Vaswani, Lu, ISIT’09, T-SP’10]
- For noisy case: time-invariant error bounds under a realistic signal change model and \(\delta_{s + k\delta_s} < 0.4 \) [Zhan, Vaswani, ISIT’13, T-IT’15 (to appear)]
- Regularized modified-CS & modified-CS-residual: also use slow signal value change (when valid);
 - significant advantage over existing work for dynamic MRI
Online Robust PCA: background

- Principal Components’ Analysis (PCA): estimate the low-dimensional subspace that best approximates a given dataset
 - SVD on data matrix, compute top left singular vectors

- Robust PCA: PCA in presence of outliers; many useful heuristics in older work, e.g., RSL [De la Torre et al, 2003]

- Online robust PCA: start with a good initial estimate of the low-dimensional subspace, keep updating it as more data comes in, while being robust to outliers
Online Robust PCA: background

- Principal Components’ Analysis (PCA): estimate the low-dimensional subspace that best approximates a given dataset
 - SVD on data matrix, compute top left singular vectors

- Robust PCA: PCA in presence of outliers; many useful heuristics in older work, e.g., RSL [De la Torre et al, 2003]

- Online robust PCA: start with a good initial estimate of the low-dimensional subspace, keep updating it as more data comes in, while being robust to outliers

- [Candes et al, 2009] posed robust PCA as: separate low-rank matrix L, sparse X from

\[Y := X + L \]
A practical provably correct solution: PCP

- [Candes et al, 2009; Chandrasekharan et al, 2009; Hsu et al, 2011] introduced and studied a convex opt program called PCP:

\[
\begin{align*}
\min_{\tilde{X}, \tilde{L}} & \quad \|\tilde{L}\|_* + \lambda \|\tilde{X}\|_1 \\
\text{s.t.} & \quad Y = \tilde{X} + \tilde{L}
\end{align*}
\]

- If (a) left and right singular vectors of L are dense enough; (b) support of X is generated uniformly at random; (c) rank and sparsity are bounded, then PCP exactly recovers X and L from $Y := X + L$ w.h.p. [Candes et al, 2009]

 - [Chandrasekharan et al, 2009; Hsu et al, 2011]: similar flavor; replace ‘unif rand support’ by upper bound on # of nonzeros in any row of X.

- first set of guarantees for a practical robust PCA approach
A practical provably correct solution: PCP

- [Candes et al, 2009; Chandrasekharan et al, 2009; Hsu et al, 2011] introduced and studied a convex opt program called PCP:

\[
\min_{\tilde{X}, \tilde{L}} \|\tilde{L}\|_* + \lambda \|\tilde{X}\|_1 \quad \text{s.t.} \quad Y = \tilde{X} + \tilde{L}
\]

- If (a) left and right singular vectors of \(L \) are dense enough; (b) support of \(X \) is generated uniformly at random; (c) rank and sparsity are bounded, then PCP exactly recovers \(X \) and \(L \) from \(Y := X + L \) w.h.p. [Candes et al, 2009]

- [Chandrasekharan et al, 2009; Hsu et al, 2011]: similar flavor; replace ‘unif rand support’ by upper bound on \# of nonzeros in any row of \(X \).

- First set of guarantees for a practical robust PCA approach

- Much later work on the \textit{batch} robust PCA problem w/ guarantees
Need for an online method

- Disadvantages of batch methods:
 - slower especially for online applications;
 - memory intensive;
 - do not allow infrequent/slow support change of columns of X
 - reason: this can result in X being rank deficient

- Video analytics: need online solution; and have occasionally static or slow moving fg objects

- Functional MRI: the activated brain region does not change a lot from frame to frame

- Network anomaly detection: need online solution; anomalous behavior continues for a period of time after begins
Figure: ReProCS: proposed. Frames $t = t_0 + 60, 120, 199, 475, 1148$.
Introduction

Online Sparse Matrix Recovery

Online Sparse + Low-Rank Matrix Recovery

Background, Problem Formulation and Related Work
ReProCS Algorithm and Correctness Result
Proof Outline and Experiments

Figure: ReProCS: proposed. Frames $t = t_0 + 60, 120, 199, 475, 1148$.
“Online” sparse + low-rank recovery / robust PCA problem

[Qiu, Vaswani, Allerton'10,'11] [Guo, Qiu, Vaswani, T-SP’14] ²

Given sequentially arriving n-length data vectors y_t satisfying

\[y_t := \ell_t, \quad t = 1, 2, \ldots, t_0 \]

and

\[y_t := x_t + \ell_t, \quad t = t_0 + 1, t_0 + 2, \ldots, t_{\text{max}} \]

- x_t's are sparse vectors with support sets, T_t, of size at most s;
- its support sets T_t have at least some changes over time

² C. Qiu and N. Vaswani, Real-time Robust Principal Components' Pursuit, Allerton, 2010
H. Guo, C. Qiu, N. Vaswani, An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences From Their Sum”, IEEE Trans.SP, Aug 2014
“Online” sparse + low-rank recovery / robust PCA problem

[Qiu, Vaswani, Allerton’10,’11] [Guo, Qiu, Vaswani, T-SP’14] ²

Given sequentially arriving n-length data vectors y_t satisfying

$$y_t := \ell_t, \quad t = 1, 2, \ldots, t_0$$

and

$$y_t := x_t + \ell_t, \quad t = t_0 + 1, t_0 + 2, \ldots, t_{\text{max}}$$

- x_t’s are sparse vectors with support sets, T_t, of size at most s;
- its support sets T_t have at least some changes over time
- ℓ_t’s lie in a slowly-changing low-dimensional subspace of \mathbb{R}^n;
 - $\iff \ell_t = P_t a_t$ w/ $\|(I - P_{t-1} P_{t-1}') \ell_t\|_2 \ll \|\ell_t\|_2$ (P_t: tall)

² C. Qiu and N. Vaswani, Real-time Robust Principal Components' Pursuit, Allerton, 2010
H. Guo, C. Qiu, N. Vaswani, An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences From Their Sum”, IEEE Trans.SP, Aug 2014
“Online” sparse + low-rank recovery / robust PCA problem

[Qiu, Vaswani, Allerton’10,’11] [Guo, Qiu, Vaswani, T-SP’14] ²

- Given sequentially arriving \(n \)-length data vectors \(y_t \) satisfying

 \[
y_t := \ell_t, \quad t = 1, 2, \ldots, t_0
 \]

 and

 \[
y_t := x_t + \ell_t, \quad t = t_0 + 1, t_0 + 2, \ldots, t_{\text{max}}
 \]

 - \(x_t \)'s are sparse vectors with support sets, \(T_t \), of size at most \(s \);
 - its support sets \(T_t \) have at least some changes over time
 - \(\ell_t \)'s lie in a slowly-changing low-dimensional subspace of \(\mathbb{R}^n \);
 - \(\ell_t = P_t a_t \) w/ \(\| (I - P_{t-1} P_{t-1}^{'}) \ell_t \|_2 \ll \| \ell_t \|_2 \) (\(P_t \): tall)
 - left singular vectors of the matrix \(L_t := [\ell_1, \ell_2, \ldots \ell_t] \) are dense

² C. Qiu and N. Vaswani, Real-time Robust Principal Components’ Pursuit, Allerton, 2010
H. Guo, C. Qiu, N. Vaswani, An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences From Their Sum”, IEEE Trans.SP, Aug 2014
“Online” sparse + low-rank recovery / robust PCA problem

[Qiu, Vaswani, Allerton'10,'11] [Guo, Qiu, Vaswani, T-SP’14] ²

Given sequentially arriving \(n \)-length data vectors \(y_t \) satisfying

\[
y_t := \ell_t, \quad t = 1, 2, \ldots, t_0
\]

and

\[
y_t := x_t + \ell_t, \quad t = t_0 + 1, t_0 + 2, \ldots, t_{\max}
\]

▶ \(x_t \)'s are sparse vectors with support sets, \(T_t \), of size at most \(s \);
▶ its support sets \(T_t \) have at least some changes over time
▶ \(\ell_t \)'s lie in a slowly-changing low-dimensional subspace of \(\mathbb{R}^n \);
 ▶ \(\Leftrightarrow \ell_t = P_t a_t \) w/ \(\| (I - P_{t-1} P_{t-1}') \ell_t \|_2 \ll \| \ell_t \|_2 \) (\(P_t \): tall)
▶ left singular vectors of the matrix \(L_t := [\ell_1, \ell_2, \ldots \ell_t] \) are dense

▶ Goal: recursively estimate \(x_t, \ell_t \) and range(\(L_t \)) at all \(t > t_0 \).

² C. Qiu and N. Vaswani, Real-time Robust Principal Components’ Pursuit, Allerton, 2010
H. Guo, C. Qiu, N. Vaswani, An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences From Their Sum”, IEEE Trans.SP, Aug 2014
“Online” sparse + low-rank recovery / robust PCA problem

[Qiu, Vaswani, Allerton’10,’11] [Guo, Qiu, Vaswani, T-SP’14] \(^3\)

- Initial outlier-free seq \(y_t = \ell_t\) for first \(t_0\) frames needed to estimate the initial subspace \(P_{t_0}\). Easy to obtain in many apps, e.g.,
 - in video surveillance, easy to get a short background-only training sequence before fg objects start appearing
 - for fMRI, this corresponds to acquiring a short sequence without any activation

\(^3\) C. Qiu and N. Vaswani, Real-time Robust Principal Components’ Pursuit, Allerton, 2010
H. Guo, C. Qiu, N. Vaswani, An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences From Their Sum”, IEEE Trans.SP, Aug 2014
“Online” sparse + low-rank recovery / robust PCA problem

[Qiu, Vaswani, Allerton'10,'11] [Guo, Qiu, Vaswani, T-SP’14] ³

• Initial outlier-free seq $y_t = \ell_t$ for first t_0 frames needed to estimate the initial subspace P_{t_0}. Easy to obtain in many apps, e.g.,
 • in video surveillance, easy to get a short background-only training sequence before fg objects start appearing
 • for fMRI, this corresponds to acquiring a short sequence without any activation

• Note: extension of all our ideas to the undersampled case $y_t = Ax_t + B\ell_t$ is easy (relevant to MRI apps)

³ C. Qiu and N. Vaswani, Real-time Robust Principal Components’ Pursuit, Allerton, 2010
H. Guo, C. Qiu, N. Vaswani, An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences From Their Sum”, IEEE Trans.SP, Aug 2014
Related work

Batch robust PCA and performance guarantees
- Older work, e.g. RSL [de la Torre et al, IJCV’03]; PCP and much later work on provably correct robust PCA solutions

Recursive / incremental / online robust PCA algorithms
- Older work (before PCP): [Li et al, ICIP 2003] iRSL: doesn’t work
- [Qiu, Vaswani, Allerton’10, Allerton’11, T-SP’14]: ReProCS (Recursive Projected CS)
- [Balzano et al, CVPR 2012]: GRASTA
- [Mateos et al, JSTSP 2013]: batch, online; online: not enough info, no code

Online robust PCA performance guarantees: almost no work
- [Qiu, Vaswani, Lois, Hogben, ISIT’13, T-IT’14]: partial result;
- [Lois, Vaswani, ICASSP’15, arXiv:1409.3959]: complete correctness result
- [Feng et al, NIPS’13 OR-PCA Stoch Opt]: partial result and only asymptotic
Some definitions

- P is a basis matrix $\iff P'P = I$

- “Estimate P” \iff estimate range(P): subspace spanned by col’s of P

- “\hat{P} is an accurate estimate of P” \iff
 \[
 \text{SE}(\hat{P}, P) := \| (I - \hat{P}\hat{P}')P \|_2 \ll 1
 \]
ReProCS algorithm [Qiu,Vaswani,Allerton’10,Allerton’11],[Guo,Qiu,Vaswani,T-SP’14] 4

Recall: for $t > t_0$, $y_t := x_t + \ell_t$, $\ell_t = P_t a_t$, P_t: tall $n \times r$ basis matrix

4 C. Qiu and N. Vaswani, Real-time Robust Principal Components’ Pursuit, Allerton, 2010
H. Guo, C. Qiu, N. Vaswani, An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences From Their Sum”, IEEE Trans.SP, Aug 2014
Recall: for $t > t_0$, $y_t := x_t + \ell_t$, $\ell_t = P_t a_t$, P_t: tall $n \times r$ basis matrix

Initialize: compute $\hat{P}_0 = $ top left singular vectors of $[\ell_1, \ell_2, \ldots \ell_{t_0}]$.

4. C. Qiu and N. Vaswani, Real-time Robust Principal Components’ Pursuit, Allerton, 2010
H. Guo, C. Qiu, N. Vaswani, An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences From Their Sum”, IEEE Trans.SP, Aug 2014
Recall: for $t > t_0$, $y_t := x_t + \ell_t$, $\ell_t = P_t a_t$, P_t: tall $n \times r$ basis matrix

Initialize: compute $\hat{P}_0 = \text{top left singular vectors of } [\ell_1, \ell_2, \ldots \ell_{t_0}]$.

For $t > t_0$, do

- **Projection:** compute $\tilde{y}_t := \Phi_t y_t$, where $\Phi_t := I - \hat{P}_{t-1} \hat{P}_{t-1}'$

 - then $\tilde{y}_t = \Phi_t x_t + \beta_t$, $\beta_t := \Phi_t \ell_t$ is small “noise” because of slow subspace change
ReProCS algorithm [Qiu, Vaswani, Allerton'10, Allerton'11], [Guo, Qiu, Vaswani, T-SP’14]

Recall: for \(t > t_0 \), \(y_t := x_t + \ell_t, \ell_t = P_t a_t \), \(P_t \): tall \(n \times r \) basis matrix

Initialize: compute \(\hat{P}_0 \) = top left singular vectors of \([\ell_1, \ell_2, \ldots, \ell_{t_0}]\).

For \(t > t_0 \), do

- **Projection:** compute \(\tilde{y}_t := \Phi_t y_t \), where \(\Phi_t := I - \hat{P}_{t-1} \hat{P}'_{t-1} \)
 - then \(\tilde{y}_t = \Phi_t x_t + \beta_t \), \(\beta_t := \Phi_t \ell_t \) is small “noise” because of slow subspace change

- **Noisy Sparse Recovery:** \(\ell_1 \) min + support estimate + LS: get \(\hat{x}_t \)
 - denseness of \(P_t \)'s \(\Rightarrow \) sparse \(x_t \) recoverable from \(\tilde{y}_t \)

4 C. Qiu and N. Vaswani, Real-time Robust Principal Components’ Pursuit, Allerton, 2010
H. Guo, C. Qiu, N. Vaswani, An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences From Their Sum”, IEEE Trans.SP, Aug 2014
ReProCS algorithm [Qiu,Vaswani,Allerton’10,Allerton’11],[Guo,Qiu,Vaswani,T-SP’14]\(^4\)

Recall: for \(t > t_0 \), \(y_t := x_t + \ell_t \), \(\ell_t = P_t a_t \), \(P_t \): tall \(n \times r \) basis matrix

Initialize: compute \(\hat{P}_0 = \) top left singular vectors of \([\ell_1, \ell_2, \ldots, \ell_{t_0}]\).

For \(t > t_0 \), do

- Projection: compute \(\tilde{y}_t := \Phi_t y_t \), where \(\Phi_t := I - \hat{P}_{t-1} \hat{P}'_{t-1} \)
 - then \(\tilde{y}_t = \Phi_t x_t + \beta_t \), \(\beta_t := \Phi_t \ell_t \) is small “noise” because of slow subspace change

- Noisy Sparse Recovery: \(\ell_1 \) min + support estimate + LS: get \(\hat{x}_t \)
 - denseness of \(P_t \)'s \(\Rightarrow \) sparse \(x_t \) recoverable from \(\tilde{y}_t \)

- Recover \(\ell_t \): compute \(\hat{\ell}_t = y_t - \hat{x}_t \)

\(^4\)C. Qiu and N. Vaswani, Real-time Robust Principal Components’ Pursuit, Allerton, 2010
H. Guo, C. Qiu, N. Vaswani, An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences From Their Sum”, IEEE Trans.SP, Aug 2014
Recall: for \(t > t_0 \), \(y_t := x_t + \ell_t \), \(\ell_t = P_t a_t \), \(P_t \): tall \(n \times r \) basis matrix

Initialize: compute \(\hat{P}_0 = \) top left singular vectors of \([\ell_1, \ell_2, \ldots, \ell_{t_0}]\).

For \(t > t_0 \), do

- **Projection:** compute \(\tilde{y}_t := \Phi_t y_t \), where \(\Phi_t := I - \hat{P}_{t-1} \hat{P}_{t-1}' \)
 - then \(\tilde{y}_t = \Phi_t x_t + \beta_t \), \(\beta_t := \Phi_t \ell_t \) is small “noise” because of slow subspace change

- **Noisy Sparse Recovery:** \(\ell_1 \) min + support estimate + LS: get \(\hat{x}_t \)
 - denseness of \(P_t \)'s \(\Rightarrow \) sparse \(x_t \) recoverable from \(\tilde{y}_t \)

- **Recover \(\ell_t \):** compute \(\hat{\ell}_t = y_t - \hat{x}_t \)

- **Subspace update:** update \(\hat{P}_t \) every \(\alpha \) frames by projection-PCA

Why ReProCS works [Qiu, Vaswani, Lois, Hogben, T-IT, 2014]

- Slow subspace change: noise β_t seen by sparse recovery step is small
- Denseness of columns of $P_t \Rightarrow$ RIC of $\Phi_t = I - \hat{P}_{t-1} \hat{P}'_{t-1}$ is small
 - denseness assump: $(2s) \max_t \max_i \| (P_{t-1})_{i,:} \|_2^2 \leq 0.09$
 - easy to show [Qiu, Vaswani, Lois, Hogben, T-IT, 2014]:
 \[
 \delta_{2s}(\Phi_t) = \max_{|T| \leq 2s} \| I_T' \hat{P}_{t-1} \|_2^2 \leq (2s) \max_i \| (\hat{P}_{t-1})_{i,:} \|_2^2 \leq 0.09 + 0.05
 \]
 (here: 0.05 is due to the small error b/w \hat{P}_{t-1} and P_{t-1})
- Above two facts + any result for ℓ_1 min: x_t is accurately recovered; and hence $\ell_t = y_t - x_t$ is accurately recovered

5 C. Qiu, N. Vaswani, B. Lois and L. Hogben, Recursive Robust PCA or Recursive Sparse Recovery in Large but Structured Noise, IEEE Trans. IT, 2014
Why ReProCS works [Qiu,Vaswani,Lois,Hogben,T-IT,2014]

- Slow subspace change: noise β_t seen by sparse recovery step is small
- Denseness of columns of $P_t \Rightarrow$ RIC of $\Phi_t = I - \hat{P}_{t-1} \hat{P}'_{t-1}$ is small
 - denseness assump: $(2s) \max_t \max_i \| (P_{t-1})_i : \|_2^2 \leq 0.09$
 - easy to show [Qiu,Vaswani,Lois,Hogben,T-IT,2014]:
 \[
 \delta_{2s}(\Phi_t) = \max_{|T| \leq 2s} \| I_T' \hat{P}_{t-1} \|_2^2 \leq (2s) \max_i \| (\hat{P}_{t-1})_i : \|_2^2 \leq 0.09 + 0.05
 \]
 (here: 0.05 is due to the small error b/w \hat{P}_{t-1} and P_{t-1})
- Above two facts + any result for ℓ_1 min: x_t is accurately recovered; and hence $\ell_t = y_t - x_t$ is accurately recovered
- Most of the work: show accurate subspace recovery $\hat{P}_t \approx P_t$
 - std PCA results not applicable: $e_t := \ell_t - \hat{\ell}_t = x_t - \hat{x}_t$ correlated w/ ℓ_t

\[\text{Qiu, N. Vaswani, B. Lois and L. Hogben, Recursive Robust PCA or Recursive Sparse Recovery in Large but Structured Noise, IEEE Trans. IT, 2014}\]
ReProCS algorithm: why projection-PCA needed

Let $e_t := \ell_t - \hat{\ell}_t = \hat{x}_t - x_t$

- Perturbation seen by standard PCA,

\[
\frac{1}{\alpha} \sum_t \hat{\ell}_t \hat{\ell}'_t - \frac{1}{\alpha} \sum_t \ell_t \ell'_t = \frac{1}{\alpha} \sum_t \ell_t e'_t + \left(\frac{1}{\alpha} \sum_t \ell_t e'_t \right)' + \frac{1}{\alpha} \sum_t e_t e'_t
\]

- When e_t and ℓ_t uncorrelated & e_t zero mean: first two terms are close to zero w.h.p.
ReProCS algorithm: why projection-PCA needed

- Let $e_t := \ell_t - \hat{\ell}_t = \hat{x}_t - x_t$

- Perturbation seen by standard PCA,

$$
\frac{1}{\alpha} \sum_t \hat{\ell}_t \hat{\ell}'_t - \frac{1}{\alpha} \sum_t \ell_t \ell'_t = \frac{1}{\alpha} \sum_t \ell_t e'_t + \left(\frac{1}{\alpha} \sum_t \ell_t e'_t \right)' + \frac{1}{\alpha} \sum_t e_t e'_t
$$

- When e_t and ℓ_t uncorrelated & e_t zero mean: first two terms are close to zero w.h.p.

- In ReProCS, e_t is correlated with ℓ_t;
ReProCS algorithm: why projection-PCA needed

- let \(e_t := \ell_t - \hat{\ell}_t = \hat{x}_t - x_t \)

- perturbation seen by standard PCA,

\[
\frac{1}{\alpha} \sum_t \hat{\ell}_t \hat{\ell}_t' - \frac{1}{\alpha} \sum_t \ell_t \ell_t' = \frac{1}{\alpha} \sum_t \ell_t e_t' + \left(\frac{1}{\alpha} \sum_t \ell_t e_t' \right)' + \frac{1}{\alpha} \sum_t e_t e_t'
\]

- when \(e_t \) and \(\ell_t \) uncorrelated & \(e_t \) zero mean: first two terms are close to zero w.h.p.

- in ReProCS, \(e_t \) is correlated with \(\ell_t \); thus first two terms are the dominant ones; if condition \(\# \) of \(\frac{1}{\alpha} \sum_t \ell_t \ell_t' \) large: perturbation not be small compared to its min eigenvalue

\[\text{ReProCS algorithm: why projection-PCA needed}\]

\[\text{let } e_t := \ell_t - \hat{\ell}_t = \hat{x}_t - x_t\]

\[\text{perturbation seen by standard PCA,}\]

\[
\frac{1}{\alpha} \sum_t \hat{\ell}_t \hat{\ell}_t' - \frac{1}{\alpha} \sum_t \ell_t \ell_t' = \frac{1}{\alpha} \sum_t \ell_t e_t' + \left(\frac{1}{\alpha} \sum_t \ell_t e_t' \right)' + \frac{1}{\alpha} \sum_t e_t e_t'
\]

\[\text{when } e_t \text{ and } \ell_t \text{ uncorrelated & } e_t \text{ zero mean: first two terms are close to zero w.h.p.}\]

\[\text{in ReProCS, } e_t \text{ is correlated with } \ell_t; \text{ thus first two terms are the dominant ones; if condition } \# \text{ of } \frac{1}{\alpha} \sum_t \ell_t \ell_t' \text{ large: perturbation not be small compared to its min eigenvalue}\]
ReProCS algorithm: why projection-PCA needed

- Let $e_t := \ell_t - \hat{\ell}_t = \hat{x}_t - x_t$

- Perturbation seen by standard PCA,

$$\frac{1}{\alpha} \sum_t \hat{\ell}_t \hat{\ell}_t' - \frac{1}{\alpha} \sum_t \ell_t \ell_t' = \frac{1}{\alpha} \sum_t \ell_t e_t' + \left(\frac{1}{\alpha} \sum_t \ell_t e_t' \right)' + \frac{1}{\alpha} \sum_t e_t e_t'$$

- When e_t and ℓ_t uncorrelated & e_t zero mean: first two terms are close to zero w.h.p.

- In ReProCS, e_t is correlated with ℓ_t; thus first two terms are the dominant ones; if condition # of $\frac{1}{\alpha} \sum_t \ell_t \ell_t'$ large: perturbation not be small compared to its min eigenvalue

- By sin θ theorem [Davis, Kahan, 1970],

$$\|(I - \hat{P} \hat{P}')P\|_2 \lesssim \frac{\|\text{perturbation}\|_2}{\lambda_{\min}(\frac{1}{\alpha} \sum_t \ell_t \ell_t') - \|\text{perturbation}\|_2}$$

(P: eigenvectors with nonzero eigenvalues of $\frac{1}{\alpha} \sum_t \ell_t \ell_t'$)
ReProCS algorithm: why projection-PCA needed

- let \(e_t := \ell_t - \hat{\ell}_t = \hat{x}_t - x_t \)
- perturbation seen by standard PCA,
 \[
 \frac{1}{\alpha} \sum_t \hat{\ell}_t \hat{\ell}_t' - \frac{1}{\alpha} \sum_t \ell_t \ell_t' = \frac{1}{\alpha} \sum_t \ell_t e_t' + \left(\frac{1}{\alpha} \sum_t \ell_t e_t' \right)' + \frac{1}{\alpha} \sum_t e_t e_t'
 \]
- when \(e_t \) and \(\ell_t \) uncorrelated & \(e_t \) zero mean: first two terms are close to zero w.h.p.
- in ReProCS, \(e_t \) is correlated with \(\ell_t \); thus first two terms are the dominant ones; if condition \# of \(\frac{1}{\alpha} \sum_t \ell_t \ell_t' \) large: perturbation not be small compared to its min eigenvalue
- by sin \(\theta \) theorem [Davis,Kahan, 1970],
 \[
 \| (I - \hat{P} \hat{P}') P \|_2 \lesssim \frac{\| \text{perturbation} \|_2}{\lambda_{\min} \left(\frac{1}{\alpha} \sum_t \ell_t \ell_t' \right) - \| \text{perturbation} \|_2}
 \]
 \((P: \text{eigenvec's with nonzero eigenval's of } \frac{1}{\alpha} \sum_t \ell_t \ell_t')\)
ReProCS correctness result [Lois,Vaswani, arXiV:1409.3959],[Qiu,Vaswani,Lois,Hogben,T-IT’14]⁶

For most videos (i.e. w.p. at least 1 − n⁻¹₀),

- the region occupied by the foreground objects (support of xₜ) is exactly recovered at all times, and

⁶ B. Lois and N. Vaswani, A Correctness Result for Online Robust PCA, arXiV:1409.3959.
For most videos (i.e. w.p. at least $1 - n^{-10}$),

- the region occupied by the foreground objects (support of x_t) is exactly recovered at all times, and
- foreground and background images are accurately recovered at all times ($\|x_t - \hat{x}_t\|_2 = \|\ell_t - \hat{\ell}_t\|_2 \leq b$)

6 B. Lois and N. Vaswani, A Correctness Result for Online Robust PCA, arXiV:1409.3959.
For most videos (i.e. w.p. at least $1 - n^{-10}$),

- the region occupied by the foreground objects (support of x_t) is exactly recovered at all times, and

- foreground and background images are accurately recovered at all times ($\|x_t - \hat{x}_t\|_2 = \|\ell_t - \hat{\ell}_t\|_2 \leq b$)

- the background subspace recovery error decays to a small value within a short delay of a subspace change time,

if

6 B. Lois and N. Vaswani, A Correctness Result for Online Robust PCA, arXiV:1409.3959.
an initial background-only training sequence is available (to get an accurate initial subspace estimate)
▶ an initial background-only training sequence is available (to get an accurate initial subspace estimate)

▶ the background images change slowly (ℓ_t lies in a slowly changing low-dimensional subspace)
- an initial background-only training sequence is available (to get an accurate initial subspace estimate)
- the background images change slowly (ℓ_t lies in a slowly changing low-dimensional subspace)
- background changes (w.r.t. a mean background image) are dense,
an initial background-only training sequence is available (to get an accurate initial subspace estimate)

the background images change slowly (ℓ_t lies in a slowly changing low-dimensional subspace)

background changes (w.r.t. a mean background image) are dense,

there is some motion of the foreground objects at least once every so often (there is some change in the support of x_t’s)

Details follow in the next few slides …
ReProCS correctness result: Support change - examples

1. *(random motion)* all support sets mutually disjoint
 ▶ this satisfies our model as long as \(s \in O\left(\frac{n}{\log n} \right) \)
ReProCS correctness result: Support change - examples

1. *(random motion)* all support sets mutually disjoint
 - this satisfies our model as long as \(s \in O\left(\frac{n}{\log n}\right) \)

2. *(infrequent motion)* a 1D object of length \(s \) that moves at least once every \(\beta \) frames; and, when it moves, it moves down by at least \(s/\varrho \) pixels
 - and by no more than \(b_2 s \) indices
 - this satisfies our model as long as \(s \in O\left(\frac{n}{\log n}\right) \) and \(\varrho^2 \beta \leq 0.01 \alpha \)
ReProCS correctness result: Support change - examples

1. *(random motion)* all support sets mutually disjoint
 ▶ this satisfies our model as long as \(s \in O\left(\frac{n}{\log n}\right) \)

2. *(infrequent motion)* a 1D object of length \(s \) that moves at least once every \(\beta \) frames; and, when it moves, it moves down by at least \(s/\varrho \) pixels
 ▶ and by no more than \(b_2s \) indices
 ▶ this satisfies our model as long as \(s \in O\left(\frac{n}{\log n}\right) \) and \(\varrho^2 \beta \leq 0.01\alpha \)

3. *(slow motion)* an object of length \(s \) moves down by at least one pixel in every frame
 ▶ this satisfies our model as long as \(s \in O(\log n) \)
ReProCS correctness result: Support change - examples

(a) disjoint supports (b) infrequent motion (c) slow moving

Figure: In any of these we could have randomly selected pixels (need not be a block) at a given time and also random ordering across time
ReProCS correctness result: Subspace change model

\(\ell_t\)'s are zero mean, bounded and mutually independent r.v.'s with covariance matrix \(\Sigma_t\) that is low-rank and “slowly changing”

- \(\Sigma_t \overset{EVD}{=} P_t \Lambda_t P_t'\) where \(P_t = P_j\) for \(t \in [t_j, t_{j+1} - 1]\), \(j = 1, 2, \ldots J\)

- \(P_j\) is a tall \(n \times r_j\) basis matrix that changes as

\[P_j = [P_{j-1} \setminus P_{j,\text{old}}, P_{j,\text{new}}]\]

- “slow change”: \(\lambda^+_{\text{new}}(d) := \max_{t \in [t_j, t_{j+d}]} \lambda_{\max}(\Lambda_{t,\text{new}})\) is small and \(t_{j+1} - t_j\) is large
ReProCS correctness result: Subspace change model

\(\ell_t \)'s are zero mean, bounded and mutually independent r.v.'s with covariance matrix \(\Sigma_t \) that is low-rank and "slowly changing"

\[\Sigma_t \overset{EVD}{=} P_t \Lambda_t P_t' \quad \text{where} \quad P_t = P_j \quad \text{for} \quad t \in [t_j, t_{j+1} - 1], \ j = 1, 2, \ldots J \]

\[P_j \text{ is a tall } n \times r_j \text{ basis matrix that changes as} \]

\[P_j = [P_{j-1} \setminus P_{j,\text{old}}, P_{j,\text{new}}] \]

"slow change": \[\lambda^+_{\text{new}}(d) := \max_{t \in [t_j, t_{j+d}]} \lambda_{\text{max}}(\Lambda_{t,\text{new}}) \text{ is small and} \]

\[t_{j+1} - t_j \text{ is large} \]

Define

\[c := \max_j \text{rank}(P_{(j),\text{new}}), \ \gamma_{\text{new}}(d) := \max_{t \in [t_j, t_{j+d}]} \| a_{t,\text{new}} \|_\infty \]

\[r := r_0 + Jc, \ \lambda^+ := \max_t \lambda_{\text{max}}(\Lambda_t), \ \gamma := \max_t \| a_t \|_\infty \]
Theorem

Consider ReProCS. Pick a $\zeta \leq \min \left(\frac{10^{-4} \lambda_0^-}{(r_0+Jc)^2 \lambda^+}, \frac{1}{(r_0+Jc)^3 \gamma^2} \right)$. If ReProCS algorithm parameters α, K, ξ, ω are set appropriately, and if
Theorem
Consider ReProCS. Pick a $\zeta \leq \min \left(\frac{10^{-4} \lambda_0^{-}}{(r_0+Jc)^2 \lambda^+}, \frac{1}{(r_0+Jc)^3 \gamma^2} \right)$. If ReProCS algorithm parameters α, K, ξ, ω are set appropriately, and if

1. initial subspace accurately estimated: $\| (I - \hat{P}_0 \hat{P}_0^T) P_0 \|_2 \leq r_0 \zeta$
2. “slow subspace change” holds:
 - projection of ℓ_t along new direc’s small for first d frames after t_j: for a $d \geq (K + 2) \alpha$, $\lambda_{\text{new}}^+(d) \leq 3 \lambda_0^-$ and $\gamma_{\text{new}}(d) \leq 0.05 x_{\text{min}}$
 - and delay between change times is large: $(t_{j+1} - t_j) > d$,

Namrata Vaswani
Theorem
Consider ReProCS. Pick a $\zeta \leq \min \left(\frac{10^{-4} \lambda_0^-}{(r_0 + Jc)^2 \lambda^+}, \frac{1}{(r_0 + Jc)^3 \gamma^2} \right)$. If ReProCS algorithm parameters α, K, ξ, ω are set appropriately, and if

1. initial subspace accurately estimated: $\| (I - \hat{P}_0 \hat{P}'_0) P_0 \|_2 \leq r_0 \zeta$
2. “slow subspace change” holds:
 - projection of ℓ_t along new direc’s small for first d frames after t_j: for a $d \geq (K + 2)\alpha$, $\lambda^+_{\text{new}}(d) \leq 3\lambda_0^-$ and $\gamma_{\text{new}}(d) \leq 0.05x_{\text{min}}$
 - and delay between change times is large: $(t_{j+1} - t_j) > d$,
3. subspace basis matrices are dense enough:
 $$(2s) \max_i \| (P_{j,\text{new}})_i \|_2^2 \leq 0.0004 \text{ and } (2s) \max_i \| (P_J)_i \|_2 \leq 0.09$$
Theorem

Consider ReProCS. Pick a \(\zeta \leq \min \left(\frac{10^{-4} \lambda_0^-}{(r_0 + Jc)^2 \lambda^+}, \frac{1}{(r_0 + Jc)^3 \gamma^2} \right) \). If ReProCS algorithm parameters \(\alpha, K, \xi, \omega \) are set appropriately, and if

1. initial subspace accurately estimated: \(\| (I - \hat{P}_0 \hat{P}'_0) P_0 \|_2 \leq r_0 \zeta \)

2. “slow subspace change” holds:
 - projection of \(\ell_t \) along new direc’s small for first \(d \) frames after \(t_j \): for a \(d \geq (K + 2) \alpha \), \(\lambda^+_{\text{new}}(d) \leq 3 \lambda_0^- \) and \(\gamma_{\text{new}}(d) \leq 0.05 x_{\text{min}} \)
 - and delay between change times is large: \((t_{j+1} - t_j) > d \),

3. subspace basis matrices are dense enough:
 \[
 (2s) \max_i \|(P_{j,\text{new}})_{i,:}\|_2^2 \leq 0.0004 \quad \text{and} \quad (2s) \max_i \|(P_{j})_{i,:}\|_2 \leq 0.09
 \]

4. support of \(x_t \) has size smaller than \(s \) and changes enough,
 - e.g., moves down by at least \(s/10 \) pixels at least once every \(\alpha/500 \) frames,
then, with probability at least $1 - n^{-10}$,

1. $\text{support}(x_t)$ is exactly recovered at all times,

2. $SE_t := \|(I - \hat{P}_t \hat{P}_t')P_t\|_2$ reduces to $(r + c)\zeta$ within $(K + 2)\alpha$ frames after t_j,

3. $\|\ell_t - \hat{\ell}_t\|_2 = \|x_t - \hat{x}_t\|_2 \leq b \ll \|x_t\|_2$

Notice: no bound needed on λ^+ or on γ: the result allows large but structured ℓ_t

Details:

Discussion: Contributions

- To our knowledge, first correctness result for online robust PCA
 - or online sparse + low-rank recovery / online sparse recovery in large but structured noise
 - online algorithm: faster; less storage needed: only $O(n \log n)$ instead of $O(nt_{\text{max}})$
Discussion: Contributions

- To our knowledge, first correctness result for online robust PCA
 - or online sparse + low-rank recovery / online sparse recovery in large but structured noise
 - online algorithm: faster; less storage needed: only $O(n \log n)$ instead of $O(nt_{\text{max}})$
- Allows significantly more correlated support change than PCP
 - ReProCS allows the fraction of nonzeros per row of X to be $O(1)$;
 - PCP only allows this to be $O\left(\frac{1}{\text{rank}(L)}\right)$ [Hsu et al’2011] or needs uniformly random support [Candes et al]
Discussion: Contributions

- To our knowledge, first correctness result for online robust PCA
 - or online sparse + low-rank recovery / online sparse recovery in large but structured noise
 - online algorithm: faster; less storage needed: only $O(n \log n)$ instead of $O(nt_{\text{max}})$

- Allows significantly more correlated support change than PCP
 - ReProCS allows the fraction of nonzeros per row of X to be $O(1)$;
 - PCP only allows this to be $O\left(\frac{1}{\text{rank}(L)}\right)$ [Hsu et al.’2011] or needs uniformly random support [Candes et al]

- New proof techniques needed: useful for various other problems
 - almost all existing robust PCA results are for batch approaches
 - previous PCA results require $e_t := \ell_t - \hat{\ell}_t$ uncorrelated w/ ℓ_t
Discussion: Limitations

- Needs knowledge of bounds on γ_{new} and c to set algorithm parameters
Discussion: Limitations

- Needs knowledge of bounds on γ_{new} and c to set algorithm parameters

- Needs a tighter bound on rank and sparsity compared to PCP
 - let $s_{\text{mat}} := |\text{support}(X)|$ and $r_{\text{mat}} := \text{rank}(L)$
 - we allow $s_{\text{mat}} \in O\left(\frac{nt_{\text{max}}}{\log n}\right)$ and $r_{\text{mat}} \in O(\log n)$
 - PCP allows $s_{\text{mat}} \in O(nt_{\text{max}})$ and $r_{\text{mat}} \in O\left(\frac{n}{\log^2 n}\right)$
Discussion: Limitations

- Needs knowledge of bounds on γ_{new} and c to set algorithm parameters

- Needs a tighter bound on rank and sparsity compared to PCP
 - let $s_{mat} := |\text{support}(X)|$ and $r_{mat} := \text{rank}(L)$
 - we allow $s_{mat} \in O\left(\frac{nt_{max}}{\log n}\right)$ and $r_{mat} \in O(\log n)$
 - PCP allows $s_{mat} \in O\left(nt_{max}\right)$ and $r_{mat} \in O\left(\frac{n}{\log^2 n}\right)$
 - result for ReProCS-deletion relaxes above (ongoing)
Discussion: Limitations

- Needs knowledge of bounds on γ_{new} and c to set algorithm parameters
- Needs a tighter bound on rank and sparsity compared to PCP
 - let $s_{mat} := |\text{support}(X)|$ and $r_{mat} := \text{rank}(L)$
 - we allow $s_{mat} \in O\left(\frac{nt_{max}}{\log n}\right)$ and $r_{mat} \in O(\log n)$
 - PCP allows $s_{mat} \in O(\sqrt{nt_{max}})$ and $r_{mat} \in O\left(\frac{n}{\log^2 n}\right)$
 - result for ReProCS-deletion relaxes above (ongoing)
- Needs
 - initial subspace knowledge and slow subspace change
 - both are usually practically valid
 - zero-mean & mutually independent assump. on ℓ_t’s over t
 - models independent random variations around a fixed bg mean
 - can replace it by a more practical AR model (ongoing)
Discussion: Limitations

- Needs knowledge of bounds on γ_{new} and c to set algorithm parameters

- Needs a tighter bound on rank and sparsity compared to PCP
 - let $s_{\text{mat}} := |\text{support}(X)|$ and $r_{\text{mat}} := \text{rank}(L)$
 - we allow $s_{\text{mat}} \in O\left(\frac{nt_{\text{max}}}{\log n}\right)$ and $r_{\text{mat}} \in O(\log n)$
 - PCP allows $s_{\text{mat}} \in O\left(nt_{\text{max}}\right)$ and $r_{\text{mat}} \in O\left(\frac{n}{\log^2 n}\right)$
 - result for ReProCS-deletion relaxes above (ongoing)

- Needs
 - initial subspace knowledge and slow subspace change
 - both are usually practically valid
 - zero-mean & mutually independent assump. on ℓ_t’s over t
 - models independent random variations around a fixed bg mean
 - can replace it by a more practical AR model (ongoing)

- Only ensures accurate recovery of x_t, ℓ_t, not exact
Some Generalizations

- Direct application to online matrix completion
- Easy extension to $y_t = Ax_t + B\ell_t$
Some Generalizations

- Direct application to online matrix completion
- Easy extension to \(y_t = Ax_t + B\ell_t \)
- Relax independence assumption on \(\ell_t \)'s, replace by AR model (ongoing) – almost exactly same result
Some Generalizations

- Direct application to online matrix completion
- Easy extension to $y_t = Ax_t + B\ell_t$
- Relax independence assumption on ℓ_t’s, replace by AR model (ongoing) – almost exactly same result
- Result for ReProCS-deletion – ReProCS that also deletes direc’s (ongoing):
 - needs an extra clustering assumption on the eigenvalues for a certain period of time after subspace change has stabilized;
 - but relases denseness requirement and so allows $r_{\text{mat}} \in O(n)$ instead of $r_{\text{mat}} \in O(\log n)$
Online Matrix Completion

- Can provide a provably accurate solution for online matrix completion; that also allows highly correlated set of unknown entries
 - but requires slow subspace change and initial subspace knowledge

- Low-rank matrix completion is a special case with known \(T_t = \text{support}(x_t) \)
 - in MC: \(T_t \) is the set of unknown entries of \(\ell_t \) at time \(t \)

- ReProCS for online matrix completion:
 - Assume: accurate initial subspace knowledge, \(\hat{P}_0 \).
 - Compute \(\Phi_t := (I - \hat{P}_{t-1} \hat{P}'_{t-1}) \)
 - Given \(T_t \), get an estimate of \(\ell_t \) as
 \[
 \hat{\ell}_t = (I - I_{T_t}(\Phi_t) T_t^\dagger \Phi_t)y_t
 \]
 - Use projection-PCA as before to update the subspace estimate
ReProCS algorithm - recap \[Qiu,Vaswani,Allerton'10,Allerton'11\]^7

Initialize: given \hat{P}_0 with range$(\hat{P}_0) \approx \text{range}([\ell_1, \ell_2, \ldots \ell_{t_0}])$

For $t > t_0$,

- **Projection**: compute $\tilde{y}_t := \Phi_t y_t$, where $\Phi_t := I - \hat{P}_{t-1} \hat{P}'_{t-1}$
 - then $\tilde{y}_t = \Phi_t x_t + \beta_t$, $\beta_t := \Phi_t \ell_t$ is small “noise”

- **Noisy Sparse Recovery**: $\ell_1 \text{ min } + \text{ support estimate } + \text{ LS}: \text{ get } \hat{x}_t$
 - $\hat{x}_{t,cs} = \arg \min_x \|x\|_1 \text{ s.t. } \|\tilde{y}_t - \Phi_t x\|_2 \leq \xi$
 - $\hat{T}_t = \{i : |(\hat{x}_{t,cs})_i| > \omega\}$
 - $\hat{x}_t = I\hat{T}_t (A_{\hat{T}_t}' A_{\hat{T}_t})^{-1} A_{\hat{T}_t}' y_t$

- **Get** $\hat{\ell}_t = y_t - \hat{x}_t$

- **Subspace update**: update \hat{P}_t every α frames by projection-PCA

^7 C. Qiu and N. Vaswani, Real-time Robust Principal Components' Pursuit, Allerton, 2010
C. Qiu and N. Vaswani, Recursive Sparse Recovery in Large but Correlated Noise, Allerton 2011
ReProCS algorithm: projection PCA

Assume $t_{j+1} - t_j > (K + 2)\alpha$; recall: t_j: subspace change times

\[
\hat{P}_t = \hat{P}_{(j),*} \\
\hat{P}_{t,\text{new}} = [.] \\
\hat{P}_t = [\hat{P}_{(j),*} \hat{P}_{(j),\text{new},1}] \\
\hat{P}_t = [\hat{P}_{(j),*} \hat{P}_{(j),\text{new},k}] \\
\hat{P}_t = [\hat{P}_{(j),*} \hat{P}_{(j),\text{new},K}] = \hat{P}_{(j+1),*}
\]

<table>
<thead>
<tr>
<th>t_j</th>
<th>\hat{t}_j</th>
<th>$\hat{t}_j + \alpha$</th>
<th>$\hat{t}_j + 2\alpha$</th>
<th>$\hat{t}_j + k\alpha$</th>
<th>$\hat{t}_j + (k+1)\alpha$</th>
<th>$\hat{t}_j + K\alpha$</th>
<th>$t_j + d$</th>
<th>t_{j+1}</th>
</tr>
</thead>
</table>

\[\|a_{t,\text{new}}\|_\infty \leq \gamma_{\text{new}} \]

let $\hat{P}_{j,*} := \hat{P}_{j-1}$ be an (accurate) estimate of the previous subspace at $t = \hat{t}_j + k\alpha$, $k = 1, 2, \ldots K$,

- $\hat{P}_{j,\text{new},k} \leftarrow \text{SVD} \left((I - \hat{P}_{j,*} \hat{P}'_{j,*})[\hat{l}_{\hat{t}_j+(k-1)\alpha+1}, \ldots \hat{l}_{\hat{t}_j+k\alpha}], \text{thresh} \right)$
- update $\hat{P}_t = [\hat{P}_{j,*}, \hat{P}_{j,\text{new},k}]$
Proof idea: Why projection PCA works?

- Before the first proj-PCA, i.e. for \(t \in [t_j, \hat{t}_j + \alpha] \),
 - \(P_t = [P^*, P_{\text{new}}] \), \(\hat{P}_{t-1} = [\hat{P}^*] \Rightarrow \beta_t \) (noise seen by sparse rec step) and hence \(e_t = \hat{x}_t - x_t = \ell_t - \hat{\ell}_t \) is largest
 - \(e_t \) still not too large due to slow subspace change; and \(e_t \) is sparse and supported on \(T_t \)
 - at \(t = \hat{t}_j + \alpha \), get \(\hat{P}_{\text{new},1} \): estimate is good because of above:
 \[
 \text{SE}(P_{\text{new}}, \hat{P}_{\text{new},1}) := \| (I - \hat{P}_{\text{new},1}\hat{P}_{\text{new},1}') P_{\text{new}} \|_2 < 0.6
 \]
Proof idea: Why projection PCA works?

- Before the first proj-PCA, i.e. for $t \in [t_j, \hat{t}_j + \alpha]$,
 - $P_t = [P_*, P_{\text{new}}]$, $\hat{P}_{t-1} = [\hat{P}_*]$ $\Rightarrow \beta_t$ (noise seen by sparse rec step) and hence $e_t = \hat{x}_t - x_t = \ell_t - \hat{\ell}_t$ is largest
 - e_t still not too large due to slow subspace change; and e_t is sparse and supported on \mathcal{T}_t
 - at $t = \hat{t}_j + \alpha$, get $\hat{P}_{\text{new},1}$: estimate is good because of above:
 $\text{SE}(P_{\text{new}}, \hat{P}_{\text{new},1}) := \| (I - \hat{P}_{\text{new},1} \hat{P}_{\text{new},1}') P_{\text{new}} \|_2 < 0.6$

- For $t \in [\hat{t}_j + \alpha + 1, \hat{t}_j + 2\alpha]$,
 - $P_t = [P_*, P_{\text{new}}]$, $\hat{P}_{t-1} = [\hat{P}_*, \hat{P}_{\text{new},1}]$ $\Rightarrow \beta_t$ and hence e_t smaller; and e_t is sparse and supported on \mathcal{T}_t
 - at $t = \hat{t}_j + 2\alpha$, get $\hat{P}_{\text{new},2}$; estimate better because of above

- Continuing this way, show $\text{SE}(P_{\text{new}}, \hat{P}_{\text{new},k}) < 0.6^k + 0.4c\zeta$; pick K so $\text{SE}(P_{\text{new}}, \hat{P}_{\text{new},K}) < c\zeta$
Proof Outline: k-th projection-PCA interval

Conditioned on accurate recovery so far,

- slow subspace change, denseness assumption, appropriate support threshold and LS ensure that $e_t := x_t - \hat{x}_t = \hat{l}_t - l_t$ satisfies

$$e_t = l_T [\Phi_T \Phi_T']^{-1} l_T \Phi l_t$$

where $\Phi := I - \hat{P}_{t-1} \hat{P}_{t-1}'$

and

$$\|[\Phi_T \Phi_T']^{-1}\|_2 \leq 1.2$$

- by sin θ theorem [Davis,Kahan,1970],

$$\text{SE}(\hat{P}_{\text{new},k}, P_{\text{new}}) \lesssim \frac{\|\text{perturbation}\|_2}{\lambda_{\text{new}} - \|\text{perturbation}\|_2}$$

$$\|\text{perturbation}\|_2 \lesssim 2\|\frac{1}{\alpha} \sum_t (I - \hat{P}_* \hat{P}_*) l_t e'_t\|_2 + \frac{1}{\alpha} \sum_t e_t e'_t\|_2$$

- use matrix Hoeffding ineq [Tropp,2012] to bound these terms w.h.p.
Proof Outline: k-th projection-PCA interval – 2

Conditioned on accurate recovery so far,

- the dominant perturbation term

$$\text{dom} := \mathbb{E} \left[\frac{1}{\alpha} \sum_{t=\hat{t}_j+(k-1)\alpha}^{\hat{t}_j+k\alpha} (I - \hat{P}_\prec \hat{P}_\prec') \ell_t e'_t \right] \approx \frac{1}{\alpha} \sum_t A_t B'_t$$

where $A_t := P_\text{new} \Lambda_{t,\text{new}} P'_\text{new}$ and $B_t := I_{T_t} [\Phi_{T_t} \Phi_{T_t}]^{-1} I_{T_t}'$

- use slow subspace change to get

$$\left\| \frac{1}{\alpha} \sum_t A_t A'_t \right\|_2 \leq \max_t \| A_t \|_2^2 \leq \lambda^+_{\text{new}}(d)^2 \leq 9 \lambda_{0}^{-2}$$

- use model on T_t to show that

$$\left\| \frac{1}{\alpha} \sum_t B_t B'_t \right\|_2 = \left\| \frac{1}{\alpha} \sum_t I_{T_t} [\Phi_{T_t} \Phi_{T_t}]^{-2} I_{T_t}' \right\|_2 \leq \frac{1}{\alpha} 1.2^2 \varrho^2 \beta \leq 0.02$$
Proof Outline: \(k \)-th projection-PCA interval – 2

Conditioned on accurate recovery so far,

- the dominant perturbation term

\[
dom := \mathbb{E} \left[\frac{1}{\alpha} \sum_{t=\hat{t}_j+(k-1)\alpha}^{\hat{t}_j+k\alpha} (I - \hat{P}_\ast \hat{P}_\ast') \ell_t e'_t \right] \approx \frac{1}{\alpha} \sum_t A_t B'_t
\]

where \(A_t := P_{\text{new}} \Lambda_{t,\text{new}} P'_{\text{new}} \) and \(B_t := l_{T_t}[\Phi_{T_t} \Phi_{T_t}]^{-1} l_{T_t}' \)

- use slow subspace change to get

\[
\| \frac{1}{\alpha} \sum_t A_t A'_t \|_2 \leq \max_t \| A_t \|_2^2 \leq \lambda_{\text{new}}^+(d)^2 \leq 9 \lambda_0^{-2}
\]

- use model on \(T_t \) to show that

\[
\| \frac{1}{\alpha} \sum_t B_t B'_t \|_2 = \| \frac{1}{\alpha} \sum_t l_{T_t}[\Phi_{T_t} \Phi_{T_t}]^{-2} l_{T_t}' \|_2 \leq \frac{1}{\alpha} 1.2^2 \varrho^2 \beta \leq 0.02
\]

- use Cauchy-Schwartz to get \(\| \text{dom} \|_2 \lesssim \sqrt{0.02} \cdot 3 \lambda_0^{-1} \)
Proof Outline: Overall idea

- Define subspace error, \(\text{SE}(P, \hat{P}) := \| (I - \hat{P} \hat{P}') P \|_2 \).

- Start with \(\text{SE}(P_{j-1}, \hat{P}_{j-1}) \leq r_{j-1} \zeta \ll 1 \) at \(t = t_j - 1 \).
 1. First show that \(t_j \leq \hat{t}_j \leq t_j + 2 \alpha \)
 2. Analyze projected sparse recovery for \(t \in [\hat{t}_j, \hat{t}_j + \alpha) \)
 3. Analyze proj-PCA at \(t = \hat{t}_j + \alpha : \text{SE}(P_{j,\text{new}}, \hat{P}_{j,\text{new},1}) \leq 0.6 \)
 4. Repeat for each of the \(K \) projection-PCA intervals: show that \(\text{SE}(P_{j,\text{new}}, \hat{P}_{j,\text{new},k}) \leq 0.6^k + 0.4c\zeta \)
 5. Pick \(K \) s.t. \(0.6^K + 0.4c\zeta \leq c\zeta \). Set \(\hat{P}_j = [\hat{P}_{(j-1)}, \hat{P}_{j,\text{new},K}] \)

- Thus, at \(t = \hat{t}_j + K\alpha - 1 \),
 \[
 \text{SE}(P_j, \hat{P}_j) \leq \text{SE}(P_{j-1}, \hat{P}_{j-1}) + \text{SE}(P_{j,\text{new}}, \hat{P}_{j,\text{new},K}) \leq r_{j-1} \zeta + c\zeta = r_j \zeta
 \]

- \(t_{j+1} - t_j > (K + 2)\alpha \) implies \(\text{SE}(P_j, \hat{P}_j) \leq r_j \zeta \) at \(t = t_{j+1} - 1 \)
Experiments \cite{Guo,Qiu,Vaswani,TSP'14}^8

1. Real background simulated foreground: background of moving lake water video with a simulated moving rectangular object overlaid on it; object intensity similar to background intensity and object moving slowly (making it a difficult seq)

2. Real videos

^8 H. Guo, C. Qiu, N. Vaswani, An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences From Their Sum”, IEEE Trans. SP, Aug 2014
Figure: Recovery error (Monte Carlo over 100 realizations). Black: batch methods, Red: online methods, Red Circles: ReProCS
Introduction

Online Sparse Matrix Recovery

Online Sparse + Low-Rank Matrix Recovery

Background, Problem Formulation and Related Work

ReProCS Algorithm and Correctness Result

Proof Outline and Experiments

Figure: Online: ReProCS (proposed method) and GRASTA, Batch:
Introduction
Online Sparse Matrix Recovery
Online Sparse + Low-Rank Matrix Recovery
Background, Problem Formulation and Related Work
ReProCS Algorithm and Correctness Result
Proof Outline and Experiments

Figure: Background layer recovery at $t = t_{\text{train}} + 60, 120, 199, 475, 1148$.

Namrata Vaswani
Algorithm parameters

Recall that \(\zeta \leq \min\left(\frac{10^{-4}}{(r_0+Jc)^2 f}, \frac{1}{(r_0+Jc)^3 \gamma^2_*}\right) \).

- \(\xi = \sqrt{c} \gamma_{\text{new}} + \sqrt{\zeta} (\sqrt{r_0 + Jc} + \sqrt{c}) \);
- \(\omega \) satisfies \(7 \xi \leq \omega \leq \omega_{\text{min}} - 7 \xi \);
- \(K = \left\lceil \frac{\log(0.16c\zeta)}{\log(0.4)} \right\rceil \);
- \(\alpha = C(\log(6KJ) + 11 \log(n)), \quad C \geq C_{\text{add}} := 20^2 \cdot 8 \cdot 96^2 \frac{(1.2 \xi)^4}{(c \zeta \lambda^-)^2} \);
- If we assume that min and max eigenvalues are seen in the training data, then can estimate \(\lambda^-, \lambda^+, \gamma_* \) from training data.
Summary

- To the best of our knowledge, this is the first correctness result for online sparse + low-rank recovery
 - equivalently also for online robust PCA / recursive sparse recovery in large but structured noise

- Advantages
 - online algorithm: faster; less storage needed; removes a key limitation of PCP: allows more correlated support change

- New proof techniques needed to obtain our results
 - almost all existing robust PCA results are for batch approaches
 - previous finite sample PCA results are not useful: assume $e_t := \hat{l}_t - l_t$ is uncorrelated with l_t
References

4. C. Qiu and N. Vaswani, Real-time Robust Principal Components’ Pursuit, Allerton, 2010