Online Sparse + Low-Rank Matrix Recovery

Namrata Vaswani

Iowa State University
Web: http://www.ece.iastate.edu/~namrata

(joint work with Wei Lu, Chenlu Qiu and Brian Lois)

Acknowledgements

- This talk is based on joint work with my students
 - Wei Lu and Jinchun Zhan (online sparse matrix recovery Modified-CS)
 - Chenlu Qiu and Brian Lois (online sparse + low-rank matrix recovery / robust PCA)
- ► Funded by NSF grants CCF-1117125 and CCF-0917015
- ► Other collaborators: Han Guo (new student) and Prof. Leslie Hogben (Math, ISU)

- ▶ In many applications, data acquisition is slow, e.g. in MRI, acquire one Fourier coefficient of the cross-section of interest at a time
 - Question: can we recover the cross-section's image from undersampled data?

- ► In many applications, data acquisition is slow, e.g. in MRI, acquire one Fourier coefficient of the cross-section of interest at a time
 - Question: can we recover the cross-section's image from undersampled data?
 - Yes: if spatially-limited or if exploit sparsity of the image in an appropriate domain

- ► In many applications, data acquisition is slow, e.g. in MRI, acquire one Fourier coefficient of the cross-section of interest at a time
 - Question: can we recover the cross-section's image from undersampled data?
 - Yes: if spatially-limited or if exploit sparsity of the image in an appropriate domain
- ► In many other applications, data acquisition is fast but cannot see everything, e.g. in video,

image = background + foreground

Question: can we recover two image sequences from one?

- ► In many applications, data acquisition is slow, e.g. in MRI, acquire one Fourier coefficient of the cross-section of interest at a time
 - Question: can we recover the cross-section's image from undersampled data?
 - Yes: if spatially-limited or if exploit sparsity of the image in an appropriate domain
- ► In many other applications, data acquisition is fast but cannot see everything, e.g. in video,

```
image = background + foreground
```

- Question: can we recover two image sequences from one?
- Yes: if exploit the low-rank structure of the background sequence and sparseness of the foreground

Sparse recovery: Magnetic Resonance Imaging (MRI)

 ${\sf Example\ taken\ from\ [Candes,Romberg,Tao,T-IT,\ Feb\ 2006]}$

- ► (a) Shepp-Logan phantom: 256 × 256 image
- (b) MR imaging pattern:
 256-point DFT along 22 radial lines
- ▶ (c) Inverse-DFT
- (d) Basis Pursuit solution (uses sparsity: gives exact recovery!)

Sparse recovery / Compressive sensing [Mallat et al'93], [Feng,Bresler'96], [Gordinsky,Rao'97],

[Chen, Donoho'98], [Candes, Romberg, Tao'05], [Donoho'05]

Recover a sparse vector x, with support size at most s, from

$$y := Ax + w$$

when A is a known fat matrix and $\|w\|_2 \le \epsilon$ (small noise).

Sparse recovery / Compressive sensing [Mallat et al'93], [Feng,Bresler'96], [Gordinsky,Rao'97],

[Chen, Donoho'98], [Candes, Romberg, Tao'05], [Donoho'05]

Recover a sparse vector x, with support size at most s, from

$$y := Ax + w$$

when A is a known fat matrix and $\|w\|_2 \le \epsilon$ (small noise).

Sparse recovery / Compressive sensing [Mallat et al'93], [Feng, Bresler'96], [Gordinsky,Rao'97],

[Chen, Donoho'98], [Candes, Romberg, Tao'05], [Donoho'05]

 \triangleright Recover a sparse vector x, with support size at most s, from

$$y := Ax + w$$

when A is a known fat matrix and $||w||_2 \le \epsilon$ (small noise).

► Solution by convex relaxation: ℓ_1 minimization [Chen,Donoho'98]:

$$\min \|\tilde{x}\|_1$$
 subject to $\|y - A\tilde{x}\|_2 \le \epsilon$

if $\delta_{2s}(A) < 0.4$, error bounded by $C\epsilon$ [Candes et al'05,'06,'08]

restricted isometry constant (RIC) $\delta_s(A)$: smallest real # s.t.

$$(1 - \delta_s) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + \delta_s) \|x\|_2^2$$

for all s-sparse vectors x [Candes, Tao, T-IT'05]

Sparse recovery / Compressive sensing [Mallat et al'93], [Feng,Bresler'96], [Gordinsky,Rao'97],

[Chen, Donoho'98], [Candes, Romberg, Tao'05], [Donoho'05]

Recover a sparse vector x, with support size at most s, from

$$y := Ax + w$$

when A is a known fat matrix and $||w||_2 \le \epsilon$ (small noise).

► Solution by convex relaxation: ℓ_1 minimization [Chen,Donoho'98]:

$$\min \|\tilde{x}\|_1$$
 subject to $\|y - A\tilde{x}\|_2 \le \epsilon$

if $\delta_{2s}(A) <$ 0.4, error bounded by $C\epsilon$ [Candes et al'05,'06,'08]

restricted isometry constant (RIC) $\delta_s(A)$: smallest real # s.t.

$$(1 - \delta_s) \|x\|_2^2 \le \|Ax\|_2^2 \le (1 + \delta_s) \|x\|_2^2$$

for all s-sparse vectors x [Candes, Tao, T-IT'05]

 Applications: projection imaging - MRI, CT, astronomy, single-pixel camera

Low-rank matrix recovery (completion)

▶ Recover a low-rank matrix from a subset of its entries

$$Y:=\mathcal{P}_{\Omega}(L)$$

 Ω is the set of missing entries [Fazel et al, Recht et al, 2009]

- ► Applications: recommendation system design, e.g. Netflix problem; survey data analysis, ...
 - \triangleright ℓ_k : ratings of movies by user k
 - a given user will rate only a subset of all the movies: missing entries; goal: complete the matrix in order to recommend movies
 - matrix is low-rank: user preferences governed by only a few factors

Sparse + Low-rank matrix recovery

Separate a low-rank matrix L and a sparse matrix X from

$$Y := X + L$$

or from a subset of entries of (X + L)

- ▶ if L or range(L) is the quantity of interest: robust PCA
- ▶ if *X* is quantity of interest: robust sparse recovery
- ► Applications: video analytics (e.g. for surveillance, tracking, mobile video chat, occlusion removal,...) [Candes et al,2009]

$$X = [x_1, x_2, \dots, x_t, \dots, x_{t_{max}}], L = [\ell_1, \ell_2, \dots, \ell_t, \dots, \ell_{t_{max}}]$$

- ℓ_t : bg usually slow changing, global (dense) changes
- x_t: fg sparse, consists of one or more moving objects (technically x_t: (fg-bg) on fg support)

Sparse + Low-rank matrix recovery

Separate a low-rank matrix L and a sparse matrix X from

$$Y := X + L$$

or from a subset of entries of (X + L)

- ▶ if L or range(L) is the quantity of interest: robust PCA
- ▶ if *X* is quantity of interest: robust sparse recovery
- ► Applications: video analytics (e.g. for surveillance, tracking, mobile video chat, occlusion removal,...) [Candes et al,2009]

$$X = [x_1, x_2, \dots, x_t, \dots, x_{t_{max}}], L = [\ell_1, \ell_2, \dots, \ell_t, \dots, \ell_{t_{max}}]$$

- lacksquare ℓ_t : bg usually slow changing, global (dense) changes
- x_t: fg sparse, consists of one or more moving objects (technically x_t: (fg-bg) on fg support)
- ► Other apps: detecting anomalous connectivity patterns in social
- networks or in computer networks; functional MRI based brain activity detection; recommendation system design

Our work: the question

- How to solve the above problems for dynamically arriving data?
 - e.g., dynamic or functional MRI, online video analytics, ...
- Option 1: batch methods
 - recover the entire sequence in a batch fashion (e.g. for sparse recovery - use Fourier sparsity along the time axis)
 - slow and memory-intensive

Our work: the question

- How to solve the above problems for dynamically arriving data?
 - e.g., dynamic or functional MRI, online video analytics, ...
- Option 1: batch methods
 - recover the entire sequence in a batch fashion (e.g. for sparse recovery - use Fourier sparsity along the time axis)
 - slow and memory-intensive
- ▶ Option 2: do not use past knowledge
 - ► fast and memory-efficient, but will need more measurements

Our work: the question

- How to solve the above problems for dynamically arriving data?
 - e.g., dynamic or functional MRI, online video analytics, ...
- ▶ Option 1: batch methods
 - recover the entire sequence in a batch fashion (e.g. for sparse recovery - use Fourier sparsity along the time axis)
 - slow and memory-intensive
- Option 2: do not use past knowledge
 - ► fast and memory-efficient, but will need more measurements
- Option 3: design recursive algorithms (our work)
 - use previously recovered images and current observed data to recover the current image
 - fast and memory-efficient and need fewer measurements

Our work: Online (recursive) solutions

- Developed provably accurate recursive solutions for
 - "online" sparse matrix recovery (recursive recovery of sparse signal sequences) [KF-CS, ICIP'08]
 - brief overview
 - "online" sparse + low-rank matrix recovery
 (online or recursive robust PCA) [Qiu,Vaswani,Allerton 2010]
 - most of this talk
- ► The "online" problem as we define it uses extra assumptions
- ▶ In this talk "recursive" ⇔ "online" (used interchangeably)

Recursive recovery of sparse seq's: Problem [Vaswani,ICIP'08]1

Given measurements

$$y_t := Ax_t + w_t, \quad ||w_t||_2 \le \epsilon, \quad t = 0, 1, 2, \dots$$

- ightharpoonup A = HΦ (given): $n \times m$, n < m
 - ► H: measurement matrix, Φ: sparsity basis matrix
 - e.g., in MRI: H = partial Fourier, $\Phi = \text{inverse wavelet}$
- \triangleright y_t : measurements (given)
- ► x_t: sparsity basis vector
- \mathcal{N}_t : support set of x_t
- w_t: small noise
- ▶ Goal: recursively reconstruct x_t from $y_0, y_1, ..., y_t$,
 - i.e. use only y_t and \hat{x}_{t-1} for recovering x_t

Recursive recovery of sparse seq's: Problem [Vaswani,ICIP'08]1

Given measurements

$$y_t := Ax_t + w_t, \quad ||w_t||_2 \le \epsilon, \quad t = 0, 1, 2, \dots$$

- ightharpoonup A = HΦ (given): $n \times m$, n < m
 - ► H: measurement matrix, Φ: sparsity basis matrix
 - e.g., in MRI: H = partial Fourier, $\Phi = \text{inverse wavelet}$
- \triangleright y_t : measurements (given)
- ► x_t: sparsity basis vector
- \mathcal{N}_t : support set of x_t
- w_t: small noise
- ▶ Goal: recursively reconstruct x_t from $y_0, y_1, \dots y_t$,
 - i.e. use only y_t and \hat{x}_{t-1} for recovering x_t
- ▶ Use slow support change: $|\mathcal{N}_t \setminus \mathcal{N}_{t-1}| \approx |\mathcal{N}_{t-1} \setminus \mathcal{N}_t| \ll |\mathcal{N}_t|$
 - ▶ also use slow signal value change when valid

¹ N. Vaswani, Kalman Filtered Compressed Sensing, ICIP, 2008

Recursive recovery of sparse seq's: Solutions [KF-CS, ICIP'08], [LS-CS,T-SP,Aug10]

- Introduced Kalman filtered CS (KF-CS) and Least Squares CS (LS-CS):
 - \blacktriangleright first recursive algorithms that needed fewer measurements for accurate recovery than simple ℓ_1
 - ▶ able to obtain time-invariant error bounds on LS-CS error under weaker RIP assumptions (fewer meas's) than simple ℓ_1
- ▶ But these could not achieve *exact* recovery with fewer meas's than what simple ℓ_1 needed
 - solved by Modified-CS

- ▶ Idea: support at t-1, \mathcal{N}_{t-1} , is a good predictor of \mathcal{N}_t
- lacktriangle Reformulate: Sparse Recovery with Partial Support Knowledge ${\mathcal T}$
 - ▶ support $(x) = \mathcal{T} \cup \Delta \setminus \Delta_e$: Δ, Δ_e unknown

- ▶ Idea: support at t-1, \mathcal{N}_{t-1} , is a good predictor of \mathcal{N}_t
- lacktriangle Reformulate: Sparse Recovery with Partial Support Knowledge ${\mathcal T}$
 - ▶ support $(x) = \mathcal{T} \cup \Delta \setminus \Delta_e$: Δ, Δ_e unknown
- Modified-CS: tries to find a vector x̃ that is sparsest outside T among all vectors satisfying the data constraint

$$\min_{\tilde{x}} \|\tilde{x}_{\mathcal{T}^c}\|_1$$
 subject to $\|y - A\tilde{x}\|_2 \leq \epsilon$

- ▶ Idea: support at t-1, \mathcal{N}_{t-1} , is a good predictor of \mathcal{N}_t
- lacktriangle Reformulate: Sparse Recovery with Partial Support Knowledge ${\mathcal T}$
 - ▶ support $(x) = \mathcal{T} \cup \Delta \setminus \Delta_e$: Δ, Δ_e unknown
- Modified-CS: tries to find a vector x̃ that is sparsest outside T among all vectors satisfying the data constraint

$$\min_{\tilde{x}} \| \tilde{x}_{\mathcal{T}^c} \|_1$$
 subject to $\| y - A \tilde{x} \|_2 \leq \epsilon$

Provably exact recovery in noise-free case if $\delta_{s+|\Delta|+|\Delta_e|} < 0.4$ [Vaswani,Lu, ISIT'09,T-SP'10]

- ▶ Idea: support at t-1, \mathcal{N}_{t-1} , is a good predictor of \mathcal{N}_t
- lacktriangle Reformulate: Sparse Recovery with Partial Support Knowledge ${\mathcal T}$
 - support $(x) = \mathcal{T} \cup \Delta \setminus \Delta_e$: Δ, Δ_e unknown
- Modified-CS: tries to find a vector \tilde{x} that is sparsest outside \mathcal{T} among all vectors satisfying the data constraint

$$\min_{\tilde{x}} \| \tilde{x}_{\mathcal{T}^c} \|_1$$
 subject to $\| y - A \tilde{x} \|_2 \leq \epsilon$

- Provably exact recovery in noise-free case if $\delta_{s+|\Delta|+|\Delta_e|} < 0.4$ [Vaswani,Lu, ISIT'09,T-SP'10]
- ▶ For noisy case: time-invariant error bounds under a realistic signal change model and $\delta_{s+ks_a} < 0.4$ [Zhan, Vaswani, ISIT'13, T-IT'15 (to appear)]

- ▶ Idea: support at t-1, \mathcal{N}_{t-1} , is a good predictor of \mathcal{N}_t
- lacktriangle Reformulate: Sparse Recovery with Partial Support Knowledge ${\mathcal T}$
 - ▶ support $(x) = \mathcal{T} \cup \Delta \setminus \Delta_e$: Δ, Δ_e unknown
- Modified-CS: tries to find a vector \tilde{x} that is sparsest outside \mathcal{T} among all vectors satisfying the data constraint

$$\min_{\tilde{x}} \| \tilde{x}_{\mathcal{T}^c} \|_1$$
 subject to $\| y - A \tilde{x} \|_2 \leq \epsilon$

- Provably exact recovery in noise-free case if $\delta_{s+|\Delta|+|\Delta_e|} < 0.4$ [Vaswani,Lu, ISIT'09,T-SP'10]
- ▶ For noisy case: time-invariant error bounds under a realistic signal change model and $\delta_{s+ks_a} < 0.4$ [Zhan, Vaswani, ISIT'13, T-IT'15 (to appear)]
- Regularized modified-CS & modified-CS-residual: also use slow signal value change (when valid);
 - significant advantage over existing work for dynamic MRI

Online Robust PCA: background

- Principal Components' Analysis (PCA): estimate the low-dimensional subspace that best approximates a given dataset
 - SVD on data matrix, compute top left singular vectors
- ► Robust PCA: PCA in presence of outliers; many useful heuristics in older work, e.g., RSL [De la Torre et al,2003]
- ► Online robust PCA: start with a good initial estimate of the low-dimensional subspace, keep updating it as more data comes in, while being robust to outliers

Online Robust PCA: background

- Principal Components' Analysis (PCA): estimate the low-dimensional subspace that best approximates a given dataset
 - SVD on data matrix, compute top left singular vectors
- ► Robust PCA: PCA in presence of outliers; many useful heuristics in older work, e.g., RSL [De la Torre et al,2003]
- ► Online robust PCA: start with a good initial estimate of the low-dimensional subspace, keep updating it as more data comes in, while being robust to outliers
- [Candes et al,2009] posed robust PCA as: separate low-rank matrix L, sparse X from

$$Y := X + L$$

A practical provably correct solution: PCP

[Candes et al,2009; Chandrasekharan et al,2009; Hsu et al,2011] introduced and studied a convex opt program called PCP:

$$\min_{ ilde{X}, ilde{L}} \| ilde{L}\|_* + \lambda \| ilde{X}\|_1 \text{ s.t. } Y = ilde{X} + ilde{L}$$

- If (a) left and right singular vectors of L are dense enough; (b) support of X is generated uniformly at random; (c) rank and sparsity are bounded, then PCP exactly recovers X and L from Y := X + L w.h.p. [Candes et al,2009]
 - ► [Chandrasekharan et al,2009; Hsu et al,2011]: similar flavor; replace 'unif rand support' by upper bound on # of nonzeros in any row of X.
 - ▶ first set of guarantees for a practical robust PCA approach

A practical provably correct solution: PCP

[Candes et al,2009; Chandrasekharan et al,2009; Hsu et al,2011] introduced and studied a convex opt program called PCP:

$$\min_{ ilde{X}, ilde{L}} \| ilde{L}\|_* + \lambda \| ilde{X}\|_1 \text{ s.t. } Y = ilde{X} + ilde{L}$$

- If (a) left and right singular vectors of L are dense enough; (b) support of X is generated uniformly at random; (c) rank and sparsity are bounded, then PCP exactly recovers X and L from Y := X + L w.h.p. [Candes et al,2009]
 - ► [Chandrasekharan et al,2009; Hsu et al,2011]: similar flavor; replace 'unif rand support' by upper bound on # of nonzeros in any row of X.
 - ► first set of guarantees for a practical robust PCA approach
- ▶ Much later work on the *batch* robust PCA problem w/ guarantees

Need for an online method

- Disadvantages of batch methods:
 - slower especially for online applications;
 - memory intensive;
 - ▶ do not allow infrequent/slow support change of columns of X
 - reason: this can result in X being rank deficient
- Video analytics: need online solution; and have occasionally static or slow moving fg objects
- Functional MRI: the activated brain region does not change a lot from frame to frame
- ► Network anomaly detection: need online solution; anomalous behavior continues for a period of time after begins

Figure: ReProCS: proposed. Frames $t = t_0 + 60, 120, 199, 475, 1148$ 15

Figure : ReProCS: proposed. Frames $t = t_0 + 60, 120, 199, 475, 1148.$

"Online" sparse + low-rank recovery / robust PCA problem

 $\hbox{[Qiu,Vaswani,Allerton'10,'11] [Guo,Qiu,Vaswani,T-SP'14]}\ ^2$

ightharpoonup Given sequentially arriving *n*-length data vectors y_t satisfying

$$y_t := \ell_t, \quad t = 1, 2, \dots, t_0$$

and

$$y_t := x_t + \ell_t, \quad t = t_0 + 1, t_0 + 2, \dots, t_{\text{max}}$$

- x_t 's are sparse vectors with support sets, \mathcal{T}_t , of size at most s;
- ightharpoonup its support sets \mathcal{T}_t have at least some changes over time

²C. Qiu and N. Vaswani, Real-time Robust Principal Components' Pursuit, Allerton, 2010
H. Guo, C. Qiu, N. Vaswani, An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences
From Their Sum", IEEE Trans.SP, Aug 2014

"Online" sparse + low-rank recovery / robust PCA problem

[Qiu,Vaswani,Allerton'10,'11] [Guo,Qiu,Vaswani,T-SP'14] ²

ightharpoonup Given sequentially arriving *n*-length data vectors y_t satisfying

$$y_t := \ell_t, \quad t = 1, 2, \dots, t_0$$

and

$$y_t := x_t + \ell_t, \quad t = t_0 + 1, t_0 + 2, \dots, t_{\text{max}}$$

- x_t 's are sparse vectors with support sets, \mathcal{T}_t , of size at most s;
- its support sets \mathcal{T}_t have at least some changes over time
- \triangleright ℓ_t 's lie in a slowly-changing low-dimensional subspace of \mathbb{R}^n ;

$$\blacktriangleright \; \Leftrightarrow \ell_t = P_t \mathsf{a}_t \; \mathsf{w} / \; \| (\mathsf{I} - P_{t-1} P_{t-1}{}') \ell_t \|_2 \ll \| \ell_t \|_2 \; (P_t : \; \mathsf{tall})$$

²C. Qiu and N. Vaswani, Real-time Robust Principal Components' Pursuit, Allerton, 2010
H. Guo, C. Qiu, N. Vaswani, An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences
From Their Sum", IEEE Trans.SP, Aug 2014

"Online" sparse + low-rank recovery / robust PCA problem

[Qiu,Vaswani,Allerton'10,'11] [Guo,Qiu,Vaswani,T-SP'14] ²

ightharpoonup Given sequentially arriving *n*-length data vectors y_t satisfying

$$y_t := \ell_t, \quad t = 1, 2, \dots, t_0$$

and

$$y_t := x_t + \ell_t, \quad t = t_0 + 1, t_0 + 2, \dots, t_{\text{max}}$$

- x_t 's are sparse vectors with support sets, \mathcal{T}_t , of size at most s;
- its support sets \mathcal{T}_t have at least some changes over time
- ℓ_t 's lie in a slowly-changing low-dimensional subspace of \mathbb{R}^n ;
 - $\blacktriangleright \; \Leftrightarrow \ell_t = P_t \mathsf{a}_t \; \mathsf{w} / \; \| (I P_{t-1} P_{t-1}{}') \ell_t \|_2 \ll \| \ell_t \|_2 \; (P_t : \; \mathsf{tall})$
- ▶ left singular vectors of the matrix $L_t := [\ell_1, \ell_2, \dots \ell_t]$ are dense

"Online" sparse + low-rank recovery / robust PCA problem

[Qiu,Vaswani,Allerton'10,'11] [Guo,Qiu,Vaswani,T-SP'14] ²

 \triangleright Given sequentially arriving *n*-length data vectors y_t satisfying

$$y_t := \ell_t, \quad t = 1, 2, \dots, t_0$$

and

$$y_t := x_t + \ell_t, \quad t = t_0 + 1, t_0 + 2, \dots, t_{\text{max}}$$

- \triangleright x_t 's are sparse vectors with support sets, \mathcal{T}_t , of size at most s;
- its support sets \mathcal{T}_t have at least some changes over time
- ℓ_t 's lie in a slowly-changing low-dimensional subspace of \mathbb{R}^n ;
 - $\Rightarrow \ell_t = P_t a_t \text{ w} / \| (I P_{t-1} P_{t-1}') \ell_t \|_2 \ll \| \ell_t \|_2 \text{ (}P_t \text{: tall)}$
- ▶ left singular vectors of the matrix $L_t := [\ell_1, \ell_2, \dots \ell_t]$ are dense
- ▶ Goal: recursively estimate x_t , ℓ_t and range(L_t) at all $t > t_0$.

C. Qiu and N. Vaswani, Real-time Robust Principal Components' Pursuit, Allerton, 2010
H. Guo, C. Qiu, N. Vaswani, An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences
From Their Sum", IEEE Trans.SP, Aug 2014

□ ▶ ◆ □ ▶

"Online" sparse + low-rank recovery / robust PCA problem

[Qiu,Vaswani,Allerton'10,'11] [Guo,Qiu,Vaswani,T-SP'14] ³

- ▶ Initial outlier-free seq $y_t = \ell_t$ for first t_0 frames needed to estimate the initial subspace P_{t_0} . Easy to obtain in many apps, e.g.,
 - in video surveillance, easy to get a short background-only training sequence before fg objects start appearing
 - for fMRI, this corresponds to acquiring a short sequence without any activation

³C. Qiu and N. Vaswani, Real-time Robust Principal Components' Pursuit, Allerton, 2010 H. Guo, C. Qiu, N. Vaswani, An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences From Their Sum", IEEE Trans.SP, Aug 2014

"Online" sparse + low-rank recovery / robust PCA problem

[Qiu,Vaswani,Allerton'10,'11] [Guo,Qiu,Vaswani,T-SP'14] ³

- ▶ Initial outlier-free seq $y_t = \ell_t$ for first t_0 frames needed to estimate the initial subspace P_{t_0} . Easy to obtain in many apps, e.g.,
 - in video surveillance, easy to get a short background-only training sequence before fg objects start appearing
 - for fMRI, this corresponds to acquiring a short sequence without any activation
- Note: extension of all our ideas to the undersampled case $y_t = Ax_t + B\ell_t$ is easy (relevant to MRI apps)

³C. Qiu and N. Vaswani, Real-time Robust Principal Components' Pursuit, Allerton, 2010 H. Guo, C. Qiu, N. Vaswani, An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences From Their Sum", IEEE Trans.SP, Aug 2014

Related work

Batch robust PCA and performance guarantees

▶ Older work, e.g. RSL [de la Torre et al,IJCV'03]; PCP and much later work on provably correct robust PCA solutions

Recursive / incremental / online robust PCA algorithms

- ▶ Older work (before PCP): [Li et al, ICIP 2003] iRSL: doesn't work
- ► [Qiu, Vaswani, Allerton'10, Allerton'11, T-SP'14]: ReProCS (Recursive Projected CS)
- ► [Balzano et al, CVPR 2012]: GRASTA
- ▶ [Mateos et al, JSTSP 2013]: batch, online; online: not enough info, no code

Online robust PCA performance guarantees: almost no work

- [Qiu,Vaswani,Lois,Hogben, ISIT'13, T-IT'14]: partial result;
- ► [Lois, Vaswani,ICASSP'15,arXiv:1409.3959]: complete correctness result
- ► [Feng et al,NIPS'13 OR-PCA Stoch Opt]: partial result and only asymptotic

Some definitions

- ightharpoonup P is a basis matrix $\Leftrightarrow P'P = I$
- ▶ "Estimate P" \Leftrightarrow estimate range(P): subspace spanned by col's of P
- " \hat{P} is an accurate estimate of P" \Leftrightarrow SE $(\hat{P}, P) := ||(I \hat{P}\hat{P}')P||_2 \ll 1$

Recall: for $t > t_0$, $y_t := x_t + \ell_t$, $\ell_t = P_t a_t$, P_t : tall $n \times r$ basis matrix

Recall: for $t > t_0$, $y_t := x_t + \ell_t$, $\ell_t = P_t a_t$, P_t : tall $n \times r$ basis matrix

Initialize: compute $\hat{P}_0 = \text{top left singular vectors of } [\ell_1, \ell_2, \dots \ell_{t_0}].$

⁴C. Qiu and N. Vaswani, Real-time Robust Principal Components' Pursuit, Allerton, 2010
H. Guo, C. Qiu, N. Vaswani, An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences
From Their Sum", IEEE Trans.SP, Aug 2014

Recall: for $t > t_0$, $y_t := x_t + \ell_t$, $\ell_t = P_t a_t$, P_t : tall $n \times r$ basis matrix **Initialize:** compute $\hat{P}_0 =$ top left singular vectors of $[\ell_1, \ell_2, \dots \ell_{t_0}]$.

For $t > t_0$, do

- ▶ Projection: compute $\tilde{y}_t := \Phi_t y_t$, where $\Phi_t := I \hat{P}_{t-1} \hat{P}'_{t-1}$
 - ▶ then $\tilde{y}_t = \Phi_t x_t + \beta_t$, $\beta_t := \Phi_t \ell_t$ is small "noise" because of slow subspace change

Recall: for $t > t_0$, $y_t := x_t + \ell_t$, $\ell_t = P_t a_t$, P_t : tall $n \times r$ basis matrix **Initialize:** compute $\hat{P}_0 =$ top left singular vectors of $[\ell_1, \ell_2, \dots \ell_{t_0}]$. For $t > t_0$, do

- ▶ Projection: compute $\tilde{y}_t := \Phi_t y_t$, where $\Phi_t := I \hat{P}_{t-1} \hat{P}'_{t-1}$
 - ▶ then $\tilde{y}_t = \Phi_t x_t + \beta_t$, $\beta_t := \Phi_t \ell_t$ is small "noise" because of slow subspace change
- ▶ Noisy Sparse Recovery: ℓ_1 min + support estimate + LS: get \hat{x}_t
 - denseness of P_t 's \Rightarrow sparse x_t recoverable from \tilde{y}_t

⁴C. Qiu and N. Vaswani, Real-time Robust Principal Components' Pursuit, Allerton, 2010
H. Guo, C. Qiu, N. Vaswani, An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences
From Their Sum", IEEE Trans.SP, Aug 2014

□ ▶ 4 □ ▶

Recall: for $t > t_0$, $y_t := x_t + \ell_t$, $\ell_t = P_t a_t$, P_t : tall $n \times r$ basis matrix **Initialize:** compute $\hat{P}_0 = \text{top left singular vectors of } [\ell_1, \ell_2, \dots \ell_{t_0}]$. For $t > t_0$, do

- ▶ Projection: compute $\tilde{y}_t := \Phi_t y_t$, where $\Phi_t := I \hat{P}_{t-1} \hat{P}'_{t-1}$
 - ▶ then $\tilde{y}_t = \Phi_t x_t + \beta_t$, $\beta_t := \Phi_t \ell_t$ is small "noise" because of slow subspace change
- ▶ Noisy Sparse Recovery: ℓ_1 min + support estimate + LS: get \hat{x}_t
 - ▶ denseness of P_t 's \Rightarrow sparse x_t recoverable from \tilde{y}_t
- ▶ Recover ℓ_t : compute $\hat{\ell}_t = y_t \hat{x}_t$

⁴C. Qiu and N. Vaswani, Real-time Robust Principal Components' Pursuit, Allerton, 2010
H. Guo, C. Qiu, N. Vaswani, An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences
From Their Sum", IEEE Trans.SP, Aug 2014

□ ▶ 4 □ ▶

Recall: for $t > t_0$, $y_t := x_t + \ell_t$, $\ell_t = P_t a_t$, P_t : tall $n \times r$ basis matrix **Initialize:** compute $\hat{P}_0 = \text{top left singular vectors of } [\ell_1, \ell_2, \dots \ell_{t_0}]$. For $t > t_0$, do

- ▶ Projection: compute $\tilde{y}_t := \Phi_t y_t$, where $\Phi_t := I \hat{P}_{t-1} \hat{P}'_{t-1}$
 - ▶ then $\tilde{y}_t = \Phi_t x_t + \beta_t$, $\beta_t := \Phi_t \ell_t$ is small "noise" because of slow subspace change
- ▶ Noisy Sparse Recovery: ℓ_1 min + support estimate + LS: get \hat{x}_t
 - ▶ denseness of P_t 's \Rightarrow sparse x_t recoverable from \tilde{y}_t
- ▶ Recover ℓ_t : compute $\hat{\ell}_t = y_t \hat{x}_t$
- ▶ Subspace update: update \hat{P}_t every α frames by projection-PCA

⁴C. Qiu and N. Vaswani, Real-time Robust Principal Components' Pursuit, Allerton, 2010 H. Guo, C. Qiu, N. Vaswani, An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences From Their Sum", IEEE Trans.SP, Aug 2014 □ → ← 🗇 → ← 🕃 → ← 🕃 → ← . .

Why ReProCS works [Qiu,Vaswani,Lois,Hogben,T-IT,2014] 5

- Slow subspace change: noise β_t seen by sparse recovery step is small
- ▶ Denseness of columns of $P_t \Rightarrow \mathsf{RIC}$ of $\Phi_t = I \hat{P}_{t-1}\hat{P}'_{t-1}$ is small
 - denseness assump: $(2s) \max_t \max_i ||(P_{t-1})_{i,:}||_2^2 \le 0.09$
 - easy to show [Qiu,Vaswani,Lois,Hogben,T-IT,2014]:

$$\delta_{2s}(\Phi_t) = \max_{|\mathcal{T}| \leq 2s} \|I_{\mathcal{T}}' \hat{P}_{t-1}\|_2^2 \leq (2s) \max_i \|(\hat{P}_{t-1})_{i,:}\|_2^2 \leq 0.09 + 0.05$$

(here: 0.05 is due to the small error b/w \hat{P}_{t-1} and P_{t-1})

▶ Above two facts + any result for ℓ_1 min: x_t is accurately recovered; and hence $\ell_t = y_t - x_t$ is accurately recovered

⁵C. Qiu, N. Vaswani, B. Lois and L. Hogben, Recursive Robust PCA or Recursive Sparse Recovery in Large but Structured Noise, IEEE Trans. IT, 2014

Why ReProCS works [Qiu,Vaswani,Lois,Hogben,T-IT,2014] 5

- ▶ Slow subspace change: noise β_t seen by sparse recovery step is small
- ▶ Denseness of columns of $P_t \Rightarrow \mathsf{RIC}$ of $\Phi_t = I \hat{P}_{t-1}\hat{P}'_{t-1}$ is small
 - denseness assump: $(2s) \max_t \max_i ||(P_{t-1})_{i,:}||_2^2 \le 0.09$
 - easy to show [Qiu,Vaswani,Lois,Hogben,T-IT,2014]:

$$\delta_{2s}(\Phi_t) = \max_{|\mathcal{T}| \leq 2s} \|I_{\mathcal{T}}' \hat{P}_{t-1}\|_2^2 \leq (2s) \max_i \|(\hat{P}_{t-1})_{i,:}\|_2^2 \leq 0.09 + 0.05$$

(here: 0.05 is due to the small error b/w \hat{P}_{t-1} and P_{t-1})

- ▶ Above two facts + any result for ℓ_1 min: x_t is accurately recovered; and hence $\ell_t = y_t x_t$ is accurately recovered
- ▶ Most of the work: show accurate subspace recovery $\hat{P}_t \approx P_t$
 - ▶ std PCA results not applicable: $e_t := \ell_t \hat{\ell}_t = x_t \hat{x}_t$ correlated w/ ℓ_t

⁵C. Qiu, N. Vaswani, B. Lois and L. Hogben, Recursive Robust PCA or Recursive Sparse Recovery in Large but Structured Noise, IEEE Trans. IT, 2014

- $\blacktriangleright \text{ let } e_t := \ell_t \hat{\ell}_t = \hat{x}_t x_t$
- perturbation seen by standard PCA,

$$\frac{1}{\alpha} \sum_{t} \hat{\ell}_{t} \hat{\ell}'_{t} - \frac{1}{\alpha} \sum_{t} \ell_{t} \ell'_{t} = \frac{1}{\alpha} \sum_{t} \ell_{t} e'_{t} + \left(\frac{1}{\alpha} \sum_{t} \ell_{t} e'_{t} \right)' + \frac{1}{\alpha} \sum_{t} e_{t} e'_{t}$$

▶ when e_t and ℓ_t uncorrelated & e_t zero mean: first two terms are close to zero w.h.p.

- $\blacktriangleright \text{ let } e_t := \ell_t \hat{\ell}_t = \hat{x}_t x_t$
- perturbation seen by standard PCA,

$$\frac{1}{\alpha} \sum_{t} \hat{\ell}_{t} \hat{\ell}'_{t} - \frac{1}{\alpha} \sum_{t} \ell_{t} \ell'_{t} = \frac{1}{\alpha} \sum_{t} \ell_{t} e'_{t} + \left(\frac{1}{\alpha} \sum_{t} \ell_{t} e'_{t} \right)' + \frac{1}{\alpha} \sum_{t} e_{t} e'_{t}$$

- when e_t and ℓ_t uncorrelated & e_t zero mean: first two terms are close to zero w.h.p.
- ▶ in ReProCS, e_t is correlated with ℓ_t ;

- $\blacktriangleright \text{ let } e_t := \ell_t \hat{\ell}_t = \hat{x}_t x_t$
- perturbation seen by standard PCA,

$$\frac{1}{\alpha} \sum_{t} \hat{\ell}_{t} \hat{\ell}'_{t} - \frac{1}{\alpha} \sum_{t} \ell_{t} \ell'_{t} = \frac{1}{\alpha} \sum_{t} \ell_{t} e'_{t} + \left(\frac{1}{\alpha} \sum_{t} \ell_{t} e'_{t} \right)' + \frac{1}{\alpha} \sum_{t} e_{t} e'_{t}$$

- when e_t and ℓ_t uncorrelated & e_t zero mean: first two terms are close to zero w.h.p.
- ▶ in ReProCS, e_t is correlated with ℓ_t ; thus first two terms are the dominant ones; if condition # of $\frac{1}{\alpha}\sum_t \ell_t \ell_t'$ large: perturbation not be small compared to its min eigenvalue

- ▶ let $e_t := \ell_t \hat{\ell}_t = \hat{x}_t x_t$
- perturbation seen by standard PCA,

$$\frac{1}{\alpha} \sum_{t} \hat{\ell}_{t} \hat{\ell}'_{t} - \frac{1}{\alpha} \sum_{t} \ell_{t} \ell'_{t} = \frac{1}{\alpha} \sum_{t} \ell_{t} e'_{t} + \left(\frac{1}{\alpha} \sum_{t} \ell_{t} e'_{t} \right)' + \frac{1}{\alpha} \sum_{t} e_{t} e'_{t}$$

- when e_t and ℓ_t uncorrelated & e_t zero mean: first two terms are close to zero w.h.p.
- \triangleright in ReProCS, e_t is correlated with ℓ_t ; thus first two terms are the dominant ones; if condition # of $\frac{1}{2}\sum_{t}\ell_{t}\ell'_{t}$ large: perturbation not be small compared to its min eigenvalue
- by sin θ theorem [Davis, Kahan, 1970],

$$\|(I - \hat{P}\hat{P}')P\|_2 \lesssim \frac{\|\text{perturbation}\|_2}{\lambda_{\mathsf{min}}(\frac{1}{\alpha}\sum_t \ell_t \ell_t') - \|\text{perturbation}\|_2}$$

Namrata Vaswani

(P: eigenvec's with nonzero eigenval's of $\frac{1}{\alpha} \sum_{t} \ell_{t} \ell_{t}$)

- $\blacktriangleright \text{ let } e_t := \ell_t \hat{\ell}_t = \hat{x}_t x_t$
- perturbation seen by standard PCA,

$$\frac{1}{\alpha} \sum_{t} \hat{\ell}_{t} \hat{\ell}'_{t} - \frac{1}{\alpha} \sum_{t} \ell_{t} \ell'_{t} = \frac{1}{\alpha} \sum_{t} \ell_{t} e'_{t} + \left(\frac{1}{\alpha} \sum_{t} \ell_{t} e'_{t} \right)' + \frac{1}{\alpha} \sum_{t} e_{t} e'_{t}$$

- when e_t and ℓ_t uncorrelated & e_t zero mean: first two terms are close to zero w.h.p.
- ▶ in ReProCS, e_t is correlated with ℓ_t ; thus first two terms are the dominant ones; if condition # of $\frac{1}{\alpha}\sum_t \ell_t \ell_t'$ large: perturbation not be small compared to its min eigenvalue
- by sin θ theorem [Davis, Kahan, 1970],

$$\|(I - \hat{P}\hat{P}')P\|_2 \lesssim \frac{\|\text{perturbation}\|_2}{\lambda_{\mathsf{min}}(\frac{1}{\alpha}\sum_t \ell_t \ell_t') - \|\text{perturbation}\|_2}$$

(P: eigenvec's with nonzero eigenval's of $\frac{1}{\alpha} \sum_t \ell_t \ell_t \ell_t$)

ReProCS correctness result [Lois,Vaswani, arXiV:1409.3959],[Qiu,Vaswani,Lois,Hogben,T-IT'14]⁶

For most videos (i.e. w.p. at least $1 - n^{-10}$),

▶ the region occupied by the foreground objects (support of x_t) is exactly recovered at all times, and

⁶B. Lois and N. Vaswani, A Correctness Result for Online Robust PCA, arXiV:1409.3959.
C. Qiu, N. Vaswani, B. Lois and L. Hogben, Recursive Robust PCA or Recursive Sparse Recovery in Large but Structured Noise, IEEE Trans. IT, 2014.

ReProCS correctness result [Lois, Vaswani, arXiV:1409.3959], [Qiu, Vaswani, Lois, Hogben, T-IT'14]6

For most videos (i.e. w.p. at least $1 - n^{-10}$),

- ▶ the region occupied by the foreground objects (support of x_t) is exactly recovered at all times, and
- foreground and background images are accurately recovered at all times $(\|x_t \hat{x}_t\|_2 = \|\ell_t \hat{\ell}_t\|_2 \le b)$

⁶B. Lois and N. Vaswani, A Correctness Result for Online Robust PCA, arXiV:1409.3959.
C. Qiu, N. Vaswani, B. Lois and L. Hogben, Recursive Robust PCA or Recursive Sparse Recovery in Large but Structured Noise, IEEE Trans. IT, 2014.

ReProCS correctness result [Lois,Vaswani, arXiV:1409.3959],[Qiu,Vaswani,Lois,Hogben,T-IT'14]⁶

For most videos (i.e. w.p. at least $1 - n^{-10}$),

- the region occupied by the foreground objects (support of x_t) is exactly recovered at all times, and
- foreground and background images are accurately recovered at all times $(\|x_t \hat{x}_t\|_2 = \|\ell_t \hat{\ell}_t\|_2 \le b)$
- the background subspace recovery error decays to a small value within a short delay of a subspace change time,

if

⁰ B. Lois and N. Vaswani, A Correctness Result for Online Robust PCA, arXiV:1409.3959. C. Qiu, N. Vaswani, B. Lois and L. Hogben, Recursive Robust PCA or Recursive Sparse Recovery in Large but Structured Noise, IEEE Trans. IT. 2014.

► an initial background-only training sequence is available (to get an accurate initial subspace estimate)

- an initial background-only training sequence is available (to get an accurate initial subspace estimate)
- ▶ the background images change slowly (ℓ_t lies in a slowly changing low-dimensional subspace)

- an initial background-only training sequence is available (to get an accurate initial subspace estimate)
- ▶ the background images change slowly (ℓ_t lies in a slowly changing low-dimensional subspace)
- ► background changes (w.r.t. a mean background image) are dense,

- an initial background-only training sequence is available (to get an accurate initial subspace estimate)
- ▶ the background images change slowly (ℓ_t lies in a slowly changing low-dimensional subspace)
- background changes (w.r.t. a mean background image) are dense,
- there is some motion of the foreground objects at least once every so often (there is some change in the support of x_t's)

Details follow in the next few slides . . .

- 1. (random motion) all support sets mutually disjoint
 - ▶ this satisfies our model as long as $s \in O(\frac{n}{\log n})$

- 1. (random motion) all support sets mutually disjoint
 - ▶ this satisfies our model as long as $s \in O(\frac{n}{\log n})$
- 2. (infrequent motion) a 1D object of length s that moves at least once every β frames; and, when it moves, it moves down by at least s/ϱ pixels
 - ▶ and by no more than b_2s indices
 - ▶ this satisfies our model as long as $s \in O(\frac{n}{\log n})$ and $\rho^2 \beta \leq 0.01 \alpha$

- 1. (random motion) all support sets mutually disjoint
 - ▶ this satisfies our model as long as $s \in O(\frac{n}{\log n})$
- 2. (infrequent motion) a 1D object of length s that moves at least once every β frames; and, when it moves, it moves down by at least s/ϱ pixels
 - ▶ and by no more than b_2s indices
 - ▶ this satisfies our model as long as $s \in O(\frac{n}{\log n})$ and $\varrho^2 \beta \le 0.01 \alpha$
- 3. (slow motion) an object of length s moves down by at least one pixel in every frame
 - ▶ this satisfies our model as long as $s \in O(\log n)$

Figure: In any of these we could have randomly selected pixels (need not be a block) at a given time and also random ordering across time

ReProCS correctness result: Subspace change model

 ℓ_t 's are zero mean, bounded and mutually independent r.v.'s with covariance matrix Σ_t that is low-rank and "slowly changing"

- $\Sigma_t \stackrel{EVD}{=} P_t \Lambda_t P_t'$ where $P_t = P_j$ for $t \in [t_j, t_{j+1} 1], j = 1, 2, ... J$
- ▶ P_j is a tall $n \times r_j$ basis matrix that changes as

$$P_j = [P_{j-1} \setminus P_{j,\mathsf{old}}, P_{j,\mathsf{new}}]$$

• "slow change": $\lambda_{\mathsf{new}}^+(d) := \max_{t \in [t_j, t_j + d]} \lambda_{\mathsf{max}}(\Lambda_{t,\mathsf{new}})$ is small and $t_{j+1} - t_j$ is large

ReProCS correctness result: Subspace change model

 ℓ_t 's are zero mean, bounded and mutually independent r.v.'s with covariance matrix Σ_t that is low-rank and "slowly changing"

- $\Sigma_t \stackrel{EVD}{=} P_t \Lambda_t P_t'$ where $P_t = P_j$ for $t \in [t_j, t_{j+1} 1], j = 1, 2, ... J$
- ▶ P_j is a tall $n \times r_j$ basis matrix that changes as

$$P_j = [P_{j-1} \setminus P_{j,\mathsf{old}}, \ P_{j,\mathsf{new}}]$$

• "slow change": $\lambda_{\mathsf{new}}^+(d) := \max_{t \in [t_j, t_j + d]} \lambda_{\mathsf{max}}(\Lambda_{t,\mathsf{new}})$ is small and $t_{j+1} - t_j$ is large

Define

- $ightharpoonup c := \max_j \operatorname{rank}(P_{(j),\text{new}}), \ \gamma_{\text{new}}(d) := \max_{t \in [t_i,t_i+d]} \|a_{t,\text{new}}\|_{\infty}$
- $ightharpoonup r:=r_0+Jc,\ \lambda^+:=\max_t\lambda_{\max}(\Lambda_t),\ \gamma:=\max_t\|a_t\|_{\infty}$

Consider ReProCS. Pick a $\zeta \leq \min\left(\frac{10^{-4}\lambda_0^-}{(r_0+Jc)^2\lambda^+},\frac{1}{(r_0+Jc)^3\gamma^2}\right)$. If ReProCS algorithm parameters α, K, ξ, ω are set appropriately, and if

Consider ReProCS. Pick a $\zeta \leq \min\left(\frac{10^{-4}\lambda_0^-}{(r_0+Jc)^2\lambda^+}, \frac{1}{(r_0+Jc)^3\gamma^2}\right)$. If ReProCS algorithm parameters α, K, ξ, ω are set appropriately, and if

- 1. initial subspace accurately estimated: $\|(I \hat{P}_0 \hat{P}_0') P_0\|_2 \le r_0 \zeta$
- 2. "slow subspace change" holds:
 - ▶ projection of ℓ_t along new direc's small for first d frames after t_j : for a $d \ge (K+2)\alpha$, $\lambda_{new}^+(d) \le 3\lambda_0^-$ and $\gamma_{new}(d) \le 0.05x_{\min}$
 - ▶ and delay between change times is large: $(t_{i+1} t_i) > d$,

Consider ReProCS. Pick a $\zeta \leq \min\left(\frac{10^{-4}\lambda_0^-}{(r_0+Jc)^2\lambda^+}, \frac{1}{(r_0+Jc)^3\gamma^2}\right)$. If ReProCS algorithm parameters α, K, ξ, ω are set appropriately, and if

- 1. initial subspace accurately estimated: $\|(I \hat{P}_0 \hat{P}_0') P_0\|_2 \le r_0 \zeta$
- 2. "slow subspace change" holds:
 - ▶ projection of ℓ_t along new direc's small for first d frames after t_j : for a $d \ge (K+2)\alpha$, $\lambda_{\text{new}}^+(d) \le 3\lambda_0^-$ and $\gamma_{\text{new}}(d) \le 0.05x_{\text{min}}$
 - ▶ and delay between change times is large: $(t_{i+1} t_i) > d$,
- 3. subspace basis matrices are dense enough:

$$(2s) \max_{j} \|(P_{j,new})_{i,:}\|_2^2 \le 0.0004 \text{ and } (2s) \max_{j} \|(P_J)_{i,:}\|_2 \le 0.09$$

Consider ReProCS. Pick a $\zeta \leq \min\left(\frac{10^{-4}\lambda_0^-}{(r_0+Jc)^2\lambda^+}, \frac{1}{(r_0+Jc)^3\gamma^2}\right)$. If ReProCS algorithm parameters α, K, ξ, ω are set appropriately, and if

- 1. initial subspace accurately estimated: $\|(I \hat{P}_0 \hat{P}_0') P_0\|_2 \le r_0 \zeta$
- 2. "slow subspace change" holds:
 - ▶ projection of ℓ_t along new direc's small for first d frames after t_j : for a $d \ge (K+2)\alpha$, $\lambda_{\text{new}}^+(d) \le 3\lambda_0^-$ and $\gamma_{\text{new}}(d) \le 0.05x_{\text{min}}$
 - ▶ and delay between change times is large: $(t_{i+1} t_i) > d$,
- 3. subspace basis matrices are dense enough:

$$(2s) \max_{i} \|(P_{j,new})_{i,:}\|_2^2 \le 0.0004 \text{ and } (2s) \max_{i} \|(P_J)_{i,:}\|_2 \le 0.09$$

- 4. support of x_t has size smaller than s and changes enough,
 - e.g., moves down by at least s/10 pixels at least once every $\alpha/500$ frames,

then, with probability at least $1 - n^{-10}$,

- 1. $support(x_t)$ is exactly recovered at all times,
- 2. $SE_t := \|(I \hat{P}_t \hat{P}_t')P_t\|_2$ reduces to $(r + c)\zeta$ within $(K + 2)\alpha$ frames after t_i ,
- 3. $\|\ell_t \hat{\ell}_t\|_2 = \|x_t \hat{x}_t\|_2 \le b \ll \|x_t\|_2$

Notice: no bound needed on λ^+ or on γ : the result allows large but structured ℓ_t

Details:

- B. Lois and N. Vaswani, A Correctness Result for Online Robust PCA, ICASSP 2015, arXiV:1409.3959.
- C. Qiu, N. Vaswani, B. Lois and L. Hogben, Recursive Robust PCA or Recursive Sparse Recovery in Large but Structured Noise, IEEE Trans. 1T, 2014.

Discussion: Contributions

- ► To our knowledge, first correctness result for online robust PCA
 - or online sparse + low-rank recovery / online sparse recovery in large but structured noise
 - ▶ online algorithm: faster; less storage needed: only $O(n \log n)$ instead of $O(nt_{max})$

Discussion: Contributions

- ► To our knowledge, first correctness result for online robust PCA
 - or online sparse + low-rank recovery / online sparse recovery in large but structured noise
 - ▶ online algorithm: faster; less storage needed: only $O(n \log n)$ instead of $O(nt_{max})$
- ► Allows significantly more correlated support change than PCP
 - ReProCS allows the fraction of nonzeros per row of X to be O(1);
 - ▶ PCP only allows this to be $O(\frac{1}{\operatorname{rank}(L)})$ [Hsu et al'2011] or needs uniformly random support [Candes et al]

Discussion: Contributions

- ► To our knowledge, first correctness result for online robust PCA
 - or online sparse + low-rank recovery / online sparse recovery in large but structured noise
 - ▶ online algorithm: faster; less storage needed: only $O(n \log n)$ instead of $O(nt_{max})$
- ► Allows significantly more correlated support change than PCP
 - ReProCS allows the fraction of nonzeros per row of X to be O(1);
 - ▶ PCP only allows this to be $O(\frac{1}{\operatorname{rank}(L)})$ [Hsu et al'2011] or needs uniformly random support [Candes et al]
- New proof techniques needed: useful for various other problems
 - almost all existing robust PCA results are for batch approaches
 - previous PCA results require $e_t := \hat{\ell}_t \ell_t$ uncorrelated w/ ℓ_t

Needs knowledge of bounds on γ_{new} and c to set algorithm parameters

- Needs knowledge of bounds on γ_{new} and c to set algorithm parameters
- Needs a tighter bound on rank and sparsity compared to PCP
 - ▶ let $s_{mat} := |support(X)|$ and $r_{mat} := rank(L)$
 - we allow $s_{\mathsf{mat}} \in O(\frac{n t_{\mathsf{max}}}{\log n})$ and $r_{\mathsf{mat}} \in O(\log n)$
 - ▶ PCP allows $s_{mat} \in O(nt_{max})$ and $r_{mat} \in O(\frac{n}{\log^2 n})$

- Needs knowledge of bounds on γ_{new} and c to set algorithm parameters
- ▶ Needs a tighter bound on rank and sparsity compared to PCP
 - ▶ let $s_{mat} := |support(X)|$ and $r_{mat} := rank(L)$
 - we allow $s_{\mathsf{mat}} \in O(\frac{nt_{\mathsf{max}}}{\log n})$ and $r_{\mathsf{mat}} \in O(\log n)$
 - ▶ PCP allows $s_{mat} \in O(nt_{max})$ and $r_{mat} \in O(\frac{n}{\log^2 n})$
 - result for ReProCS-deletion relaxes above (ongoing)

- Needs knowledge of bounds on γ_{new} and c to set algorithm parameters
- Needs a tighter bound on rank and sparsity compared to PCP
 - ▶ let $s_{mat} := |support(X)|$ and $r_{mat} := rank(L)$
 - we allow $s_{\mathsf{mat}} \in O(\frac{nt_{\mathsf{max}}}{\log n})$ and $r_{\mathsf{mat}} \in O(\log n)$
 - ▶ PCP allows $s_{\text{mat}} \in O(nt_{\text{max}})$ and $r_{\text{mat}} \in O(\frac{n}{\log^2 n})$
 - result for ReProCS-deletion relaxes above (ongoing)
- Needs
 - ► initial subspace knowledge and slow subspace change
 - both are usually practically valid
 - \blacktriangleright zero-mean & mutually independent assump. on ℓ_t 's over t
 - models independent random variations around a fixed bg mean
 - can replace it by a more practical AR model (ongoing)

- Needs knowledge of bounds on γ_{new} and c to set algorithm parameters
- Needs a tighter bound on rank and sparsity compared to PCP
 - ▶ let $s_{mat} := |support(X)|$ and $r_{mat} := rank(L)$
 - we allow $s_{\mathsf{mat}} \in O(\frac{nt_{\mathsf{max}}}{\log n})$ and $r_{\mathsf{mat}} \in O(\log n)$
 - ▶ PCP allows $s_{mat} \in O(nt_{max})$ and $r_{mat} \in O(\frac{n}{\log^2 n})$
 - result for ReProCS-deletion relaxes above (ongoing)
- Needs
 - ► initial subspace knowledge and slow subspace change
 - both are usually practically valid
 - \blacktriangleright zero-mean & mutually independent assump. on ℓ_t 's over t
 - models independent random variations around a fixed bg mean
 - can replace it by a more practical AR model (ongoing)
- lacktriangle Only ensures accurate recovery of x_t , ℓ_t , not exact

Some Generalizations

- Direct application to online matrix completion
- ▶ Easy extension to $y_t = Ax_t + B\ell_t$

Some Generalizations

- Direct application to online matrix completion
- ▶ Easy extension to $y_t = Ax_t + B\ell_t$
- ▶ Relax independence assumption on ℓ_t 's, replace by AR model (ongoing) almost exactly same result

Some Generalizations

- Direct application to online matrix completion
- ▶ Easy extension to $y_t = Ax_t + B\ell_t$
- ▶ Relax independence assumption on ℓ_t 's, replace by AR model (ongoing) almost exactly same result
- Result for ReProCS-deletion ReProCS that also deletes direc's (ongoing):
 - needs an extra clustering assumption on the eigenvalues for a certain period of time after subspace change has stabilized;
 - ▶ but relaxes denseness requirement and so allows $r_{mat} \in O(n)$ instead of $r_{mat} \in O(\log n)$

Online Matrix Completion

- Can provide a provably accurate solution for online matrix completion; that also allows highly correlated set of unknown entries
 - but requires slow subspace change and initial subspace knowledge
- ► Low-rank matrix completion is a special case w/ known $T_t = \text{support}(x_t)$
 - ▶ in MC: T_t is the set of unknown entries of ℓ_t at time t
- ► ReProCS for online matrix completion:
 - Assume: accurate initial subspace knowledge, \hat{P}_0 .
 - $\qquad \qquad \mathsf{Compute} \ \Phi_t := (I \hat{P}_{t-1} \hat{P}'_{t-1})$
 - Given T_t , get an estimate of ℓ_t as

$$\hat{\ell}_t = (I - I_{T_t}(\Phi_t)_{T_t}^{\dagger} \Phi_t) y_t$$

▶ Use projection-PCA as before to update the subspace estimate

$ReProCS \ algorithm \ - \ recap \ {\tiny [Qiu,Vaswani,Allerton'10,Allerton'11]}^{7}$

Initialize: given \hat{P}_0 with range $(\hat{P}_0) \approx \text{range}([\ell_1, \ell_2, \dots \ell_{t_0}])$ For $t > t_0$,

- ▶ Projection: compute $\tilde{y}_t := \Phi_t y_t$, where $\Phi_t := I \hat{P}_{t-1} \hat{P}'_{t-1}$
 - then $\tilde{y}_t = \Phi_t x_t + \beta_t$, $\beta_t := \Phi_t \ell_t$ is small "noise"
- ▶ Noisy Sparse Recovery: $\ell_1 \min + \text{support estimate} + \text{LS}$: get \hat{x}_t
 - $\hat{x}_{t,cs} = \arg\min_{x} ||x||_1 \text{ s.t. } ||\tilde{y}_t \Phi_t x||_2 \le \xi$
 - $\hat{\mathcal{T}}_t = \{i : |(\hat{x}_{t,cs})_i| > \omega\}$
 - $\hat{x}_t = I_{\hat{\mathcal{T}}_t} (A_{\hat{\mathcal{T}}_t}' A_{\hat{\mathcal{T}}_t})^{-1} A_{\hat{\mathcal{T}}_t}' y_t$
- $\blacktriangleright \ \text{Get} \ \hat{\ell}_t = y_t \hat{x}_t$
- ▶ Subspace update: update \hat{P}_t every α frames by projection-PCA

⁷C. Qiu and N. Vaswani, Real-time Robust Principal Components' Pursuit, Allerton, 2010

ReProCS algorithm: projection PCA

Assume $t_{j+1} - t_j > (K+2)\alpha$; recall: t_j : subspace change times

$$\hat{\boldsymbol{P}}_{t} = \hat{\boldsymbol{P}}_{(j),*} \\ \hat{\boldsymbol{P}}_{t,\text{new}} = [.]$$

$$\hat{\boldsymbol{P}}_{t} = \begin{bmatrix} \hat{\boldsymbol{P}}_{(j),*} & \hat{\boldsymbol{P}}_{(j),\text{new},1} \end{bmatrix}$$

$$\hat{\boldsymbol{P}}_{t} = \begin{bmatrix} \hat{\boldsymbol{P}}_{(j),*} & \hat{\boldsymbol{P}}_{(j),\text{new},k} \end{bmatrix}$$

let $\hat{P}_{j,*} := \hat{P}_{j-1}$ be an (accurate) estimate of the previous subspace at $t = \hat{t}_i + k\alpha$, k = 1, 2, ..., K,

- $\qquad \qquad \hat{P}_{j,\mathsf{new},k} \leftarrow \mathit{SVD}\left((I \hat{P}_{j,*}\hat{P}_{j,*}')[\hat{\ell}_{\hat{t}_j + (k-1)\alpha + 1}, \dots \hat{\ell}_{\hat{t}_j + k\alpha}], \mathit{thresh}\right)$
- lacktriangle update $\hat{P}_t = [\hat{P}_{j,*}, \hat{P}_{j,\mathsf{new},k}]$

Proof idea: Why projection PCA works?

- ▶ Before the first proj-PCA, i.e. for $t \in [t_j, \hat{t}_j + \alpha]$,
 - ▶ $P_t = [P_*, P_{\text{new}}], \ \hat{P}_{t-1} = [\hat{P}_*] \Rightarrow \beta_t$ (noise seen by sparse rec step) and hence $e_t = \hat{x}_t x_t = \ell_t \hat{\ell}_t$ is largest
 - e_t still not too large due to slow subspace change; and e_t is sparse and supported on \mathcal{T}_t
 - ▶ at $t = \hat{t}_j + \alpha$, get $\hat{P}_{\text{new},1}$: estimate is good because of above: $SE(P_{\text{new}}, \hat{P}_{\text{new},1}) := \|(I \hat{P}_{\text{new},1} \hat{P}_{\text{new},1}') P_{\text{new}}\|_2 < 0.6$

Proof idea: Why projection PCA works?

- ▶ Before the first proj-PCA, i.e. for $t \in [t_j, \hat{t}_j + \alpha]$,
 - ▶ $P_t = [P_*, P_{\text{new}}], \ \hat{P}_{t-1} = [\hat{P}_*] \Rightarrow \beta_t$ (noise seen by sparse rec step) and hence $e_t = \hat{x}_t x_t = \ell_t \hat{\ell}_t$ is largest
 - e_t still not too large due to slow subspace change; and e_t is sparse and supported on \mathcal{T}_t
 - ▶ at $t = \hat{t}_j + \alpha$, get $\hat{P}_{\text{new},1}$: estimate is good because of above: $SE(P_{\text{new}}, \hat{P}_{\text{new},1}) := \|(I \hat{P}_{\text{new},1} \hat{P}_{\text{new},1}') P_{\text{new}}\|_2 < 0.6$
- ▶ For $t \in [\hat{t}_j + \alpha + 1, \hat{t}_j + 2\alpha]$,
 - ▶ $P_t = [P_*, P_{\text{new}}], \hat{P}_{t-1} = [\hat{P}_*, \hat{P}_{\text{new},1}] \Rightarrow \beta_t$ and hence e_t smaller; and e_t is sparse and supported on \mathcal{T}_t
 - ▶ at $t = \hat{t}_j + 2\alpha$, get $\hat{P}_{\text{new},2}$; estimate better because of above
- ► Continuing this way, show $SE(P_{\text{new}}, \hat{P}_{\text{new},k}) < 0.6^k + 0.4c\zeta$; pick K so $SE(P_{\text{new}}, \hat{P}_{\text{new},K}) < c\zeta$

Proof Outline: k-th projection-PCA interval

Conditioned on accurate recovery so far,

▶ slow subspace change, denseness assumption, appropriate support threshold and LS ensure that $e_t := x_t - \hat{x}_t = \hat{\ell}_t - \ell_t$ satisfies

$$e_t = I_{\mathcal{T}_t} [\Phi_{\mathcal{T}_t}{}'\Phi_{\mathcal{T}_t}]^{-1} I_{\mathcal{T}_t}{}'\Phi\ell_t$$
 where $\Phi := I - \hat{P}_{t-1}\hat{P}_{t-1}{}'$

and

$$\|[\Phi_{\mathcal{T}_t}'\Phi_{\mathcal{T}_t}]^{-1}\|_2 \le 1.2$$

by sin θ theorem [Davis, Kahan, 1970],

$$\mathsf{SE}(\hat{P}_{\mathsf{new},k}, P_{\mathsf{new}}) \lesssim \frac{\|\mathrm{perturbation}\|_2}{\lambda_{\mathsf{new}}^- - \|\mathrm{perturbation}\|_2}$$

$$\|\text{perturbation}\|_{2} \lesssim 2 \|\frac{1}{\alpha} \sum_{t} (I - \hat{P}_{*}\hat{P}_{*}')\ell_{t}e_{t}'\|_{2} + \|\frac{1}{\alpha} \sum_{t} e_{t}e_{t}'\|_{2}$$

▶ use matrix Hoeffding ineq [Tropp,2012] to bound these terms w.h.p.

Proof Outline: k-th projection-PCA interval – 2

Conditioned on accurate recovery so far,

▶ the dominant perturbation term

$$\mathrm{dom} := \mathbb{E}\left[\frac{1}{\alpha}\sum_{t=\hat{t}_j+(k-1)\alpha}^{\hat{t}_j+k\alpha}(I-\hat{P}_*\hat{P}_*')\ell_t e_t'\right] \approx \frac{1}{\alpha}\sum_t A_t B_t'$$

where
$$A_t := P_{\mathsf{new}} \Lambda_{t,\mathsf{new}} P'_{\mathsf{new}}$$
 and $B_t := I_{\mathcal{T}_t} [\Phi_{\mathcal{T}_t}{}' \Phi_{\mathcal{T}_t}]^{-1} I_{\mathcal{T}_t}{}'$

use slow subspace change to get

$$\left\| \frac{1}{\alpha} \sum_{t} A_{t} A'_{t} \right\|_{2} \le \max_{t} \|A_{t}\|_{2}^{2} \le \lambda_{\text{new}}^{+}(d)^{2} \le 9\lambda_{0}^{-2}$$

ightharpoonup use model on \mathcal{T}_t to show that

$$\left\|\frac{1}{\alpha}\sum_{t}B_{t}B_{t}'\right\|_{2}=\left\|\frac{1}{\alpha}\sum_{t}I_{\mathcal{T}_{t}}[\Phi_{\mathcal{T}_{t}}'\Phi_{\mathcal{T}_{t}}]^{-2}I_{\mathcal{T}_{t}}'\right\|_{2}\leq\frac{1}{\alpha}1.2^{2}\varrho^{2}\beta\leq0.02$$

Proof Outline: k-th projection-PCA interval – 2

Conditioned on accurate recovery so far,

▶ the dominant perturbation term

$$\mathrm{dom} := \mathbb{E}\left[\frac{1}{\alpha}\sum_{t=\hat{t}_j+(k-1)\alpha}^{\hat{t}_j+k\alpha}(I-\hat{P}_*\hat{P}_*')\ell_te_t'\right] \approx \frac{1}{\alpha}\sum_t A_tB_t'$$

where
$$A_t := P_{\text{new}} \Lambda_{t,\text{new}} P'_{\text{new}}$$
 and $B_t := I_{\mathcal{T}_t} [\Phi_{\mathcal{T}_t}{}' \Phi_{\mathcal{T}_t}]^{-1} I_{\mathcal{T}_t}{}'$

use slow subspace change to get

$$\left\| \frac{1}{\alpha} \sum_{t} A_{t} A'_{t} \right\|_{2} \le \max_{t} \|A_{t}\|_{2}^{2} \le \lambda_{\text{new}}^{+}(d)^{2} \le 9\lambda_{0}^{-2}$$

• use model on \mathcal{T}_t to show that

$$\left\|\frac{1}{\alpha} \sum_{t} B_{t} B_{t}'\right\|_{2} = \left\|\frac{1}{\alpha} \sum_{t} I_{\mathcal{T}_{t}} [\Phi_{\mathcal{T}_{t}}' \Phi_{\mathcal{T}_{t}}]^{-2} I_{\mathcal{T}_{t}}'\right\|_{2} \le \frac{1}{\alpha} 1.2^{2} \varrho^{2} \beta \le 0.02$$

• use Cauchy-Schwartz to get $\|\operatorname{dom}\|_2 \lesssim \sqrt{0.02} \cdot 3\lambda_0^-$

Proof Outline: Overall idea

- ▶ Define subspace error, $SE(P, \hat{P}) := \|(I \hat{P}\hat{P}')P\|_2$.
- ► Start with SE $(P_{j-1}, \hat{P}_{j-1}) \le r_{j-1}\zeta \ll 1$ at $t = t_j 1$.
 - 1. First show that $t_j \leq \hat{t}_j \leq t_j + 2\alpha$
 - 2. Analyze projected sparse recovery for $t \in [\hat{t}_j, \hat{t}_j + \alpha)$
 - 3. Analyze proj-PCA at $t = \hat{t}_j + \alpha$: $SE(P_{j,\text{new}}, \hat{P}_{j,\text{new},1}) \leq 0.6$
 - 4. Repeat for each of the ${\it K}$ projection-PCA intervals: show that

$$\mathsf{SE}(P_{j,\mathsf{new}},\hat{P}_{j,\mathsf{new},k}) \leq 0.6^k + 0.4c\zeta$$

- 5. Pick *K* s.t. $0.6^K + 0.4c\zeta \le c\zeta$. Set $\hat{P}_j = [\hat{P}_{(j-1)}, \hat{P}_{j,\text{new},K}]$
- ▶ Thus, at $t = \hat{t}_j + K\alpha 1$,

$$\mathsf{SE}(P_j, \hat{P}_j) \leq \mathsf{SE}(P_{j-1}, \hat{P}_{j-1}) + \mathsf{SE}(P_{j,\mathsf{new}}, \hat{P}_{j,\mathsf{new},\mathsf{K}}) \leq r_{j-1}\zeta + c\zeta = r_j\zeta$$

• $t_{j+1} - t_j > (K+2)\alpha$ implies $SE(P_j, \hat{P}_j) \le r_j \zeta$ at $t = t_{j+1} - 1$

Experiments [Guo,Qiu,Vaswani,TSP'14]8

- Real background simulated foreground: background of moving lake water video with a simulated moving rectangular object overlaid on it; object intensity similar to background intensity and object moving slowly (making it a difficult seq)
- 2. Real videos

⁸H. Guo, C. Qiu, N. Vaswani, An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences From Their Sum", IEEE Trans. SP, Aug 2014

Figure: Recovery error (Monte Carlo over 100 realiz's). Black: batch methods, Red: online methods, Red Circles: ReProCS

Figure: Online: ReProCS (proposed method) and GRASTA, Batch:

Figure : Background layer recovery at $t = t_{train} + 60, 120, 199, 475, 1148$.

Algorithm parameters

Recall that $\zeta \leq \min(\frac{10^{-4}}{(r_0+Jc)^2f}, \frac{1}{(r_0+Jc)^3\gamma_*^2})$.

- $\xi = \sqrt{c}\gamma_{\text{new}} + \sqrt{\zeta}(\sqrt{r_0 + Jc} + \sqrt{c});$
- ω satisfies $7\xi \le \omega \le x_{\min} 7\xi$;
- $\blacktriangleright K = \left\lceil \frac{\log(0.16c\zeta)}{\log(0.4)} \right\rceil;$
- $\alpha = C(\log(6KJ) + 11\log(n)), \ C \ge C_{add} := 20^2 \cdot 8 \cdot 96^2 \frac{(1.2\xi)^4}{(c\zeta\lambda^-)^2}$
- If we assume that min and max eigenvalues are seen in the training data, then can estimate λ^- , λ^+ , γ_* from training data

Summary

- ► To the best of our knowledge, this is the first correctness result for online sparse + low-rank recovery
 - equivalently also for online robust PCA / recursive sparse recovery in large but structured noise
- Advantages
 - online algorithm: faster; less storage needed; removes a key limitation of PCP: allows more correlated support change
- New proof techniques needed to obtain our results
 - almost all existing robust PCA results are for batch approaches
 - previous finite sample PCA results are not useful: assume $e_t := \hat{\ell}_t \ell_t$ is uncorrelated with ℓ_t

References

- B. Lois and N. Vaswani, "A Correctness Result for Online Robust PCA", ICASSP 2015, arXiv:1409.3959[cs.IT]
- C. Qiu, N. Vaswani, B. Lois and L. Hogben, "Recursive Robust PCA or Recursive Sparse Recovery in Large but Structured Noise", IEEE Trans. IT, August 2014
- 3. H. Guo, C. Qiu, N. Vaswani, "An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences From Their Sum", IEEE Trans. Sig. Proc, August 2014
- 4. C. Qiu and N. Vaswani, Real-time Robust Principal Components' Pursuit, Allerton, 2010