Real-time Principal Components’ Pursuit

Chenlu Qiu

Department of Electrical and Computer Engineering
Iowa State University
Web: http://www.ece.iastate.edu/~chenlu
Robust Principal Component Analysis

- Principal Component Analysis (PCA)
 - Find the “principal components’ space” with the smallest dimension that spans a given dataset.
 - Optimal in MSE sense.
 - Sensitive to outliers and corruptions.

- Solutions:
 - A lot of existing work on robustifying PCA, most of which
 - first detect the corrupted points and then
 - either fill them with some heuristics, or just remove them.
 - Recent work: Robust Principal Component Analysis [E. Candes, et.al], [P. A. Parrilo et.al, 09]
Robust Principal Component Analysis [E. Candes, et.al] [P. A. Parrilo et.al, 09]

Given a data matrix M composed of low rank component L and sparse component S, recover L and S from M.

- Nonzero entries of S can have arbitrary large magnitude.

This can be solved by Principal Component Pursuit (PCP)\(^1\) as

$$
\min_{L,S} \|L\|_* + \lambda \|S\|_1 \quad \text{s.t. } L + S = M
$$

(1)

with high probability provided that:

(i) the singular vectors of L are spread out (not sparse)\(\implies L\) is not sparse

(ii) the support of S are uniformly random \(\implies S\) is not low rank

(iii) rank(L) and $|\text{supp}(S)|$ (size of the support of S) are both sufficiently small

\(^1\)Let $\|L\|_*$ denote the nuclear norm of L, i.e. sum of singular values of L; and let $\|S\|_1$ denotes the ℓ_1 norm of S seen as a long vector
Robust Principal Component Analysis (RPCA)

- Applications: video surveillance, face recognition, etc.

For e.g., given a sequence of surveillance video frames,
- stack each image frame as a column vector of the data matrix M
- the background variations lying on a low dimensional subspace is modeled as low rank component L;
- the “moving objects” are modeled as the sparse part S.
RPCA in video surveillance

- L lies on a low dimensional subspace.
- The support of S_t is uniformly random with $|\text{supp}(S)| = 32$.
- RPCA distinguishes L and S correctly with $\frac{\|S - \hat{S}\|_F^2}{\|S\|_F^2} = 9.8 \times 10^{-7}$. 2

2 Let $\|X\|_F$ denote the Frobenius norm of matrix X, $\|X\|_F^2 = \sum_i \sum_j (X_{i,j})^2$.

Chenlu Qiu
RR-PCP
5/22
RPCA in video surveillance: limitations

- A offline method
 - Surveillance application usually requires online approach.
- Require the support of S to be uniformly random.
 - Objects occupy a block of pixels and move as a block \Rightarrow elements of S_t are spatially correlated.
 - Objects move slowly and/or with approximately constant velocity \Rightarrow S_t and S_{t+1} are time correlated.
- Require rank(L) and $|\text{supp}(S)|$ to be sufficiently small.
RPCA when objects move in a correlated fashion

- Eight moving objects in S_t.
- Each object occupies a 2×2 nonzero pixel block.
- $|\text{supp}(S)| = 32$
- Each object moves one pixel step towards top/bottom/left/right w.p. 0.05 and stays static w.p. 0.8.
- RPCA still works with $\frac{\|S - \hat{S}\|_F^2}{\|S\|_F^2} = 2.4 \times 10^{-4}$.

Chenlu Qiu
RPCA fails when objects move in a heavily correlated fashion

- Two moving objects in S_t.
- Each object occupies a 4×4 nonzero pixel block.
- $|\text{supp}(S)| = 32$
- Each object moves one pixel step towards top/bottom/left/right w.p. 0.05 and stays static w.p. 0.8.
- RPCA fails with $\frac{\|S - \hat{S}\|^2}{\|S\|^2}$ above 38%.

Chenlu Qiu
Problem Formulation and Signal Model

- Our problem: given M_t, recover L_t and S_t sequentially.
 - Do this even if the support of S_t are not randomly distributed.
Matrix L has low rank $\iff L_t = Ux_t$ for some unknown orthonormal matrix U and a sparse vector x_t.

x_t, and hence L_t, follows a piecewise stationary model with nonstationary transients when switching pieces.

- The sparse vector x_t has piecewise constant support $N_t := \text{supp}(x_t)$.
- The changes of N_t (additions and/or deletions) happens for every d frames.
- For each piece, x_t follows a stationary AR-1 model with parameter $0 < f < 1$, i.e.,
 \[
 x_t = f \, x_{t-1} + \nu_t \\
 x_t \sim \mathcal{N}(0, \Sigma), \; \nu_t \sim \mathcal{N}(0, (1 - f^2)\Sigma)
 \]
- When switching pieces, x_t is nonstationary transient.
In S_t,

- There are several nonzero pixel blocks. All other pixels are zero.
- Each nonzero block can either be static w.p. p, or move one pixel step to left/right/top/bottom w.p. $(1 - p)/4$.

Therefore, the support of S_t is spatial and time correlated.
Recall that

\[M_t = L_t + S_t = [U \ I] \begin{bmatrix} x_t \\ S_t \end{bmatrix} \]

where \(L_t = Ux_t \) with \(U \) an unknown orthonormal matrix and \(x_t \) a sparse vector with support \(N_t \).

At first glance, a straight way is let \(A = [U \ I] \) and \(u = [x_t \ S_t]^T \) and solve

\[
\min \|u\|_1 \quad \text{s.t.} \quad M_t = Au
\]

This method is termed as Pursuit of Justices (PJ) [John Wright, et.al. 09], [J. N. Laska, et. al. 09].

However, the above method can not be used because \(U \) is unknown.
Other related works include

- **Decoding by Linear Programming** [E. Candes, T. Tao’ 2005].
- **Robust Linear Regression** [Y. Jin, B.Rao’ 2010].
- **Bayesian Sparse Robust Regression** [K. Mitra, et. al 2010].
- All above methods require $(U)_{N_t}$ known.
Main Idea

- Let $P_t := (U)_{N_t}$ be a submatrix of U, composed by the columns of U indexed by N_t.
- Columns of P_t spans the principal components' subspace of L_t.
- Using \hat{P}_t, an estimate of P_t, we have

$$L_t = \hat{P}_t \alpha_t + \hat{P}_{t,\perp} \beta_t,$$

therefore,

$$M_t = \hat{P}_t \alpha_t + \hat{P}_{t,\perp} \beta_t + S_t$$

with

- $\hat{P}_{t,\perp}$ an orthogonal complement of \hat{P}_t
- $\alpha_t = (\hat{P}_t)^T L_t$
- $\beta_t = (\hat{P}_{t,\perp})^T L_t$
Main Idea

Let $y_t := (\hat{P}_{t,\perp})^T M_t = (\hat{P}_{t,\perp})^T S_t + \beta_t$.

- Note that $\beta_t = (\hat{P}_{t,\perp})^T L_t = (\hat{P}_{t,\perp})^T U x_t$.
 Therefore, when $\text{span}(P_t) \subseteq \text{span}(\hat{P}_t)$, $\beta_t = 0$;
 when $\text{span}(P_t) \nsubseteq \text{span}(\hat{P}_t)$, $\beta_t \neq 0$.

- $\beta_t = (\hat{P}_{t,\perp})^T U x_t$ is the “noise” from resulting from the inaccuracies of \hat{P}_t, $x_t \sim N(0, \Sigma)$.

- Recall that L_t follows a AR-1 model with parameter f, we can reduce the “noise” by using

$$\tilde{y}_t := (\hat{P}_{t,\perp})^T (M_t - f L_{t-1})$$

for which the “noise” is $\hat{P}_{t,\perp}^T U (x_t - fx_{t-1})$, $x_t - fx_{t-1} \sim N(0, (1 - f^2)\Sigma)$.
Stepwise Algorithm

- We estimate \(\hat{S}_t \) by

\[
\min \|s\|_1 \text{ s.t. } \|\hat{P}_{t, \perp}^T (M_t - s - f\hat{L}_{t-1})\|_2^2 \leq \epsilon
\]

(2)

- We do support thresholding followed by LS estimate to reduce the error [The Dantzig selector, 2005]:

\[
\hat{T}_t = \{i : (\hat{S}_t)_i \geq \gamma\}
\]

\[
(\hat{S}_t)_{\hat{T}_t} = ((\hat{P}_{t, \perp}^T)_{\hat{T}_t})^\dagger (y_t - f\hat{P}_{t, \perp}^T \hat{L}_{t-1}), (\hat{S}_t)_{\hat{T}_c} = 0
\]

- Let \(\hat{L}_t = M_t - \hat{S}_t \).

- Update \(\hat{P}_{t, \perp} \) using the past sequence's estimate \(\hat{L}_t \) when \(\| (\hat{P}_{t, \perp})^T \hat{L}_t \|_2^2 \) is large (with complexity \(O(m^2 r), \hat{P}_t \in \mathbb{R}^{m \times r} \)).
An overview of our method is given as

\[\tilde{y}_t = (\hat{P}_{t,\perp})^T (M_t - f \hat{L}_{t-1}) \]

\[\min \|s\|_1 \]
\[\text{s.t.} \quad \|\tilde{y}_t - (\hat{P}_{t,\perp})^T s\|_2^2 \leq \epsilon \]
Recursive PCP: at each time t, do PCP using all available frames, i.e. solve (1) with $M = [M_1, \cdots, M_t]$.

Since the support of S_t is spatial and time correlated, Recursive PCP does not work.

Our method, RR-PCP, can distinguish L and S very well.
Result Comparison

Normalized Squared Error against time is plotted below.

\[
\frac{\|S_t - \hat{S}_t\|^2}{\|S_t\|^2}
\]

\[
\frac{\|S_t - \hat{S}_t\|^2}{\|S_t\|^2}
\]
When there are five moving “objects”, RR-PCP can distinguish L and S very well.
Discussion

- **Summary of RR-PCP**
 - When a new image frame M_t is available, reconstruct S_t from its perpendicular projection $(\hat{P}_{t,\perp})^T(M_t - f\hat{L}_{t-1})$.
 - Update \hat{P}_t and $\hat{P}_{t,\perp}$ every-so-often.
 - Support of S_t need not to be random.

- **Limitation of RR-PCP**
 - Need a training sequence without sparse component to get an initial estimate \hat{P}_0
Future Work

- **Large Scale Data**
 - Memory and computational expensive to compute \hat{P}_t, \perp
 - Solution:
 \[
 \min \|s\|_1 \text{ s.t. } \|(I - \hat{P}_t \hat{P}_t^T)(M_t - s - f\hat{L}_{t-1})\|_2^2 \leq \epsilon
 \]

- **Incorporate motion prediction to improve further**
 - Using the motion model and the estimate of last frame, \hat{S}_{t-1}, predict the object(s)' location and get T_{pred}, an estimate of $\text{supp}(S_t)$, and solve modified-CS [N. Vaswani et.al. 2010] as
 \[
 \min_{s} \|s_{T_{\text{pred}}}^c\|_1 \text{ s.t. } \|\hat{P}_T^T (M_t - s - f\hat{L}_{t-1})\|_2^2 \leq \epsilon
 \]

- **Undersampled M_t?**