Real-time Principal Components' Pursuit

Chenlu Qiu

Department of Electrical and Computer Engineering lowa State University

Web: http://www.ece.iastate.edu/~chenlu

Robust Principal Component Analysis

- Principal Component Analysis (PCA)
 - ► Find the "principal components' space" with the smallest dimension that spans a given dataset.
 - Optimal in MSE sense.
 - Sensitive to outliers and corruptions.
- Solutions:
 - ▶ A lot of existing work on robustifying PCA, most of which
 - first detect the corrupted points and then
 - either fill them with some heuristics, or just remove them.
 - Recent work: Robust Principal Component Analysis [E. Candes, et.all, [P. A. Parrilo et.al, 09]

Robust Principal Component Analysis [E. Candes, et.al] [P. A. Parrilo et.al, 09]

- Given a data matrix M composed of low rank component L and sparse component S, recover L and S from M.
 - Nonzero entries of S can have arbitrary large magnitude.
- ▶ This can be solved by Principal Component Pursuit (PCP) ¹ as

$$\min_{L,S} \|L\|_* + \lambda \|S\|_1 \quad \text{s.t. } L + S = M$$
 (1)

3/22

with high probability provided that:

- (i) the singular vectors of L are spread out(not sparse) $\implies L$ is not sparse
- (ii) the support of S are uniformly random $\Longrightarrow S$ is not low rank
- (iii) rank(L) and |supp(S)| (size of the support of S) are both sufficiently small

Let $\|L\|_*$ denote the nuclear norm of L, i.e. sum of singular values of L; and let $\|S\|_1$ denotes the ℓ_1 norm

Robust Principal Component Analysis (RPCA)

Applications: video surveillance, face recognition, etc.

For e.g., given a sequence of surveillance video frames,

- stack each image frame as a column vector of the data matrix
 M
- ▶ the background variations lying on a low dimensional subspace is modeled as low rank component *L*;
- ▶ the "moving objects" are modeled as the sparse part *S*.

RPCA in video surveillance

(Loading RPCAexpt1random.mpeg)

- ► *L* lies on a low dimensional subspace.
- ▶ The support of S_t is uniformly random with |supp(S)| = 32.
- ▶ RPCA distinguishes L and S correctly with $\frac{\|S \hat{S}\|_F^2}{\|S\|_F^2} = 9.8 \times 10^{-7}$. ²

²Let $||X||_F$ denote the Frobenius norm of matrix X, $||X||_F^2 = \sum_i \sum_j (X_{i,j})^2 \rightarrow \langle G \rangle \rightarrow \langle E \rangle \rightarrow \langle E \rangle$

RPCA in video surveillance: limitations

- A offline method
 - Surveillance application usually requires online approach.
- ▶ Require the support of *S* to be uniformly random.
 - Objects occupy a block of pixels and move as a block \implies elements of S_t are spatially correlated.
 - Objects move slowly and/or with approximately constant velocity $\Longrightarrow S_t$ and S_{t+1} are time correlated.
- ▶ Require rank(L) and |supp(S)| to be sufficiently small.

RPCA when objects move in a correlated fashion

(Loading RPCAexpt1motion.mpeg)

- ▶ Eight moving objects in S_t .
- ► Each object occupies a 2 × 2 nonzero pixel block.
- ▶ |supp(S)| = 32
- Each object moves one pixel step towards top/bottom/left/right w.p. 0.05 and stays static w.p. 0.8.
- ► RPCA still works with $\frac{\|S \hat{S}\|_F^2}{\|S\|_F^2} = 2.4 \times 10^{-4}.$

RPCA fails when objects move in a heavily correlated fashion

(Loading RPCAexpt2motion.mpeg)

- ▶ Two moving objects in S_t .
- Each object occupies a 4 × 4 nonzero pixel block.
- ▶ |supp(S)| = 32
- Each object moves one pixel step towards top/bottom/left/right w.p. 0.05 and stays static w.p. 0.8.
- ► RPCA fails with $\frac{\|S \hat{S}\|^2}{\|S\|^2}$ above 38%.

Problem Formulation and Signal Model

- \triangleright Our problem: given M_t , recover L_t and S_t sequentially.
 - Do this even if the support of S_t are not randomly distributed.

Model on L_t

- ▶ Matrix *L* has low rank \iff $L_t = Ux_t$ for some unknown orthonormal matrix *U* and a sparse vector x_t .
- \triangleright x_t , and hence L_t , follows a piecewise stationary model with nonstationary transients when switching pieces.
 - ► The sparse vector x_t has piecewise constant support $N_t := \text{supp}(x_t)$.
 - ▶ The changes of N_t (additions and/or deletions) happens for every d frames.
 - For each piece, x_t follows a stationary AR-1 model with parameter 0 < f < 1, i.e.,

$$x_t = f \ x_{t-1} + \nu_t$$
$$x_t \sim N(0, \Sigma), \ \nu_t \sim N(0, (1 - f^2)\Sigma)$$

▶ When switching pieces, x_t is nonstationary transient.

10/22

Model on S_t

(Loading St.mpeg)

- In S_t,
 - There are several nonzero pixel blocks. All other pixels are zero.
 - Each nonzero block can either be static w.p. p, or move one pixel step to left/right/top/bottom w.p. (1-p)/4.
- ▶ Therefore, the support of S_t is spatial and time correlated.

Recall that

$$M_t = L_t + S_t = [U \ I] \begin{bmatrix} x_t \\ S_t \end{bmatrix}$$

where $L_t = Ux_t$ with U an unknown orthonormal matrix and x_t a sparse vector with support N_t .

At first glance, a straight way is let $A = [U \ I]$ and $u = [x_t \ S_t]^T$ and solve

$$\min \|u\|_1$$
 s.t. $M_t = Au$

This method is termed as Pursuit of Justices(PJ)[John Wright, et.al. 09], [J. N. Laska, et. al. 09].

► However, the above method can not be used because *U* is unknown.

- Other related works include
 - ▶ Decoding by Linear Programming [E. Candes, T. Tao' 2005].
 - ► Robust Linear Regression [Y. Jin, B.Rao' 2010].
 - ▶ Bayesian Sparse Robust Regression [K. Mitra, et. al 2010].
 - ▶ All above methods require $(U)_{N_t}$ known.

Main Idea

- Let $P_t := (U)_{N_t}$ be a submatrix of U, composed by the columns of U indexed by N_t .
- \triangleright Columns of P_t spans the principal components' subspace of L_t .
- Using \hat{P}_t , an estimate of P_t , we have

$$L_t = \hat{P}_t lpha_t + \hat{P}_{t,\perp} eta_t,$$
 therefore, $M_t = \hat{P}_t lpha_t + \hat{P}_{t,\perp} eta_t + S_t$

with

- $ightharpoonup \hat{P}_{t,\perp}$ an orthogonal complement of \hat{P}_t
- $\alpha_t = (\hat{P}_t)^T L_t$
- $\beta_t = (\hat{P}_{t\perp})^T L_t$

14/22

Main Idea

- ▶ Let $y_t := (\hat{P}_{t,\perp})^T M_t = (\hat{P}_{t,\perp})^T S_t + \beta_t$.
 - Note that $\beta_t = (\hat{P}_{t,\perp})^T L_t = (\hat{P}_{t,\perp})^T U x_t$. Therefore, when $\operatorname{span}(P_t) \subseteq \operatorname{span}(\hat{P}_t), \ \beta_t = 0$; when $\operatorname{span}(P_t) \nsubseteq \operatorname{span}(\hat{P}_t), \ \beta_t \neq 0$.
 - ▶ $\beta_t = (\hat{P}_{t,\perp})^T U x_t$ is the "noise" from resulting from the inaccurateness of \hat{P}_t , $x_t \sim N(0, \Sigma)$.
- Recall that L_t follows a AR-1 model with parameter f, we can reduce the "noise" by using

$$\tilde{y}_t := (\hat{P}_{t,\perp})^T (M_t - f L_{t-1})$$

for which the "noise" is $\hat{P}_{t,\perp}^T U(x_t - \mathit{fx}_{t-1})$, $x_t - \mathit{fx}_{t-1} \sim \mathit{N}(0, (1-\mathit{f}^2)\Sigma)$

Stepwise Algorithm

• We estimate \hat{S}_t by

$$\min \|s\|_1 \text{ s.t. } \|\hat{P}_{t,\perp}^T (M_t - s - f\hat{L}_{t-1})\|_2^2 \le \epsilon$$
 (2)

▶ We do support thresholding followed by LS estimate to reduce the error [The Dantzig selector, 2005]:

$$\begin{split} \hat{T}_t &= \{i: \ (\hat{S}_t)_i \geq \gamma\} \\ (\hat{S}_t)_{\hat{T}_t} &= ((\hat{P}_{t,\perp}^T)_{\hat{T}_t})^{\dagger} (y_t - f \hat{P}_{t,\perp}^T \hat{L}_{t-1}), \ (\hat{S}_t)_{\hat{T}_t^c} = 0 \end{split}$$

RR-PCP

- $\blacktriangleright \text{ Let } \hat{L}_t = M_t \hat{S}_t.$
- ▶ Update \hat{P}_{t-1} using the past sequence's estimate \hat{L}_t when $\|(\hat{P}_{t,\perp})^T \hat{L}_t\|_2^2$ is large (with complexity $O(m^2 r)$, $\hat{P}_t \in \mathbb{R}^{m \times r}$).

An overview of our method is given as

Result Comparison

(Loading RRPCPexpt2Recursive.mpg)

- ▶ Recursive PCP: at each time t, do PCP using all available frames, i.e. solve (1) with $M = [M_1, \dots, M_t]$.
- Since the support of S_t is spatial and time correlated, Recursive PCP does not work.
- ▶ Our method, RR-PCP, can distinguish L and S very well.

Result Comparison

Normalized Squared Error against time is plotted below

19/22

Result Comparison

(Loading RRPCPexpt3.mpeg)

▶ When there are five moving "objects", RR-PCP can distinguish *L* and *S* very well.

Discussion

- Summary of RR-PCP
 - When a new image frame M_t is available, reconstruct S_t from its perpendicular projection $(\hat{P}_{t,\perp})^T (M_t f\hat{L}_{t-1})$.
 - Update \hat{P}_t and $\hat{P}_{t,\perp}$ every-so-often.
 - Support of S_t need not to be random.
- Limitation of RR-PCP
 - Need a training sequence without sparse component to get an initial estimate \hat{P}_0

Future Work

- ► Large Scale Data
 - Memory and computational expensive to compute $\hat{P}_{t,\perp}$
 - Solution:

$$\min \|s\|_1 \text{ s.t. } \|(I - \hat{P}_t \hat{P}_t^T)(M_t - s - f \hat{L}_{t-1})\|_2^2 \le \epsilon$$

- Incorporate motion prediction to improve further
 - Using the motion model and the estimate of last frame, \hat{S}_{t-1} , predict the object(s)' location and get T_{pred} , an estimate of $\sup(S_t)$, and solve modified-CS [N. Vaswani et.al. 2010] as

$$\min_{s} \| s_{\mathcal{T}_{\mathsf{pred}}^c} \|_1 \ s.t. \ \| \hat{P}_{t,\perp}^{\mathcal{T}} (M_t - s - f \hat{\mathcal{L}}_{t-1}) \|_2^2 \le \epsilon$$

▶ Undersampled M_t ?

