Principal Component Analysis (PCA) with Data-Dependent Noise: Understanding usefulness of matrix Bernstein and Vershynin’s sub-Gaussian matrices result

Praneeth Narayanamurthy and Namrata Vaswani
Iowa State University

1 Introduction

This note contains a simplified version of one result from our recent ISIT 2018 paper ”PCA in Sparse Data-Dependent Noise” and its meaning as well as its proof. The point of this note is to compare the use of two key random matrix theory results – matrix Bernstein and Vershynin’s independent sub-Gaussian rows result.

If you use this set of notes, please cite above paper.

2 Preliminaries

The key elements that will be used in this document are as follows. Here we prove Theorem 4.4. The overall proof relies on a systematic application of the standard Davis Kahan sin θ theorem [1] summarized here.

Theorem 2.1 (Davis-Kahan sin θ theorem). Let D_0 be a Hermitian matrix whose span of top r eigenvectors equals $\text{span}(P_1)$. Let D be the Hermitian matrix with top r eigenvectors P_2. Then,

$$\text{SE}(P_2, P_1) \leq \frac{\| (D - D_0) P_1 \|_2}{\lambda_r(D_0) - \lambda_{r+1}(D)} \leq \frac{\| (D - D_0) P_1 \|_2}{\lambda_r(D_0) - \lambda_{r+1}(D_0) - \lambda_{\text{max}}(D - D_0)} \leq \frac{\| D - D_0 \|_2}{\lambda_r(D_0) - \lambda_{r+1}(D_0) - \| D - D_0 \|}$$

as long as the denominator is positive. The second inequality follows from the first using Weyl’s inequality.

The following theorem is adapted from [2, Theorem 1.6].

Theorem 2.2 (Matrix Bernstein Concentration). Given an d-length sequence of $n_1 \times n_2$ dimensional random matrices. Assume the following holds. (i) the matrices Z_i are mutually independent, (ii) $P(\|Z_i\| \leq R) = 1$, and (iii) max $\{\| \frac{1}{d} \sum \hat{t} E[Z_i'Z_i] \|, \| \frac{1}{d} \sum \hat{t} E[Z_iZ_i'] \| \} \leq \sigma^2$. Then, for an $\epsilon > 0$

$$P\left(\left\| \frac{1}{d} \sum Z_i - \frac{1}{d} \sum \hat{t} E[Z_i] \right\| \leq \epsilon \right) \geq 1 - (n_1 + n_2) \exp \left(\frac{-d \epsilon^2}{2(\sigma^2 + R\epsilon)} \right).$$

The following theorem is adapted from [3, Theorem 5.39].

Theorem 2.3 (Sub-Gaussian Rows). Given an d-length sequence of sub-Gaussian random vectors w_i in \mathbb{R}^{n_1}. Assume the following holds. (i) w_i are independent; (ii) the sub-Gaussian norm of w_i is bounded by K for all i. Then for an ϵ satisfy $0 < \epsilon/K^2 < 1$,

$$P\left(\left\| \frac{1}{d} \sum w_i w_i' - \frac{1}{d} \sum \hat{t} E[Z_iZ_i'] \right\| \leq \epsilon \right) \geq 1 - 2 \exp \left(n_1 \log 9 - \frac{c\epsilon^2 d}{4K^2} \right).$$

This theorem can be re-stated by replacing ϵ by $\tilde{\epsilon} \| \frac{1}{d} \sum \hat{t} E[Z_iZ_i'] \|$ or by $\tilde{\epsilon} \max_i \|E[w_i w_i']\|$. If the w_i’s are “nice” sub-Gaussians, then K^2 will be a constant times $\max_i \|E[w_i w_i']\|$ and thus, in the latter re-statement, the exponent in the probability expression will simplify to $(n_1 \log 9 - c\tilde{\epsilon}^2)$.
3 Problem Setup

The goal of this document is to dissect the usage of matrix Bernstein and the matrix Sub-Gaussian Result as applied to a practical problem of Principal Components Analysis (PCA) with missing data/PCA with data-dependent noise. Mathematically, the problem is defined as follows. At each time $t = 1, 2, \cdots, d$, we observe an n-dimensional real-valued vector, y_t that satisfies

$$y_t = \ell_t + w_t, \quad \text{with} \quad \ell_t = Pa_t, \quad w_t = M_t \ell_t$$

where P is a “basis matrix” that defines the true, underlying subspace that we want to learn, a_t’s denote the principal subspace coefficients, and w_t’s denote the data-dependent noise. Furthermore, the matrices $M_t \in \mathbb{R}^{n \times n}$ are deterministic but unknown. We assume that a_t’s are either (i) bounded random vectors, or (ii) element-wise bounded random vectors.

Model on M_t. We assume that $M_t = M_{2,t}M_{1,t}$ and define $q = \max_1 \|M_{1,t}P\|$ and $b = \frac{1}{\delta}\|\sum_1 M_{2,1}M_{2,1}'\|$ with $q, b < 1$. We will provide bounds for these quantities in the main result.

As an application, observe that if $M_t = -I_{T_t}I_{T_t}'$, this translates to PCA with missing data problem and T_t denotes the support of the missing entries at time t. Thus, we access the following observations,

$$y_t = Pa_t - I_{T_t}I_{T_t}'Pa_t := P_{\Omega_t}(\ell_t) \quad (5)$$

In the Machine Learning literature, this is also referred to as the Matrix Completion problem, and various approaches to this problem have been analyzed in the past 10+ years [4, 5].

Statistical Assumptions. Let $E[a_t] = 0, E[a_t a_t'] = \Lambda$ (Λ is diagonal) with $\lambda_{\max}(\Lambda) = \lambda^+, \lambda_{\min}(\Lambda) = \lambda^-$, and $f = \lambda^+ / \lambda^-$. Additionally, assume that $E[e_t e_t'] \neq 0$.

We provide results for two cases. (1) **Bounded:** a_t’s are bounded s.t. $\|a_t\|^2_2 \leq \eta_1\lambda^+$ for some numerical constant η_1; (2) **Element-Wise Bounded:** a_t’s are element-wise bounded s.t. $\|a_t\|^2_2 \leq \eta_2\lambda_1(\Lambda)$ for some numerical constant, η_2. This assumption makes a_t’s nice sub-Gaussians as the sub-Gaussian norm is proportional to $\sqrt{\eta_1\lambda^2}$ and thus do not depend on r or n.

4 Main Result and Proof

Theorem 4.4. Assume that the data satisfies the model described above. Define $H(d) = C_1\sqrt{\eta f}\sqrt{\frac{\log n}{d}}, G_{\text{elem}}(d) = C_2\sqrt{\eta f}\sqrt{\frac{\log n}{d}} + G_{\text{bound}}(d) = C_3\sqrt{\eta f}\sqrt{\frac{\log n}{d}}$. Furthermore, for the element-wise bounded case assume that the data-dependency matrices $M_{1,t}$’s satisfy the assumption with constants b, q which satisfy

$$6\sqrt{bf} + H(d) + G_{\text{elem}}(d) < 1$$

and for the bounded case assume that the b, q satisfy

$$6\sqrt{bf} + H(d) + G_{\text{bound}}(d) < 1$$

Then, with probability at least $1 - 10n^{-10}$, the matrix P of top-r eigenvectors of the sample covariance matrix, $\frac{1}{n} \sum y_t y_t'$ satisfy the following.

1. **Element-Wise bounded:**

$$\text{SE}(P, P) \leq \frac{2\sqrt{bf} + H(d)}{1 - 6\sqrt{bf} - H(d) - G_{\text{elem}}(d)}$$

2. **Bounded:**

$$\text{SE}(P, P) \leq \frac{2\sqrt{bf} + H(d)}{1 - 6\sqrt{bf} - H(d) - G_{\text{bound}}(d)}$$

Proof of Theorem 4.4. We will first define matrices in accordance with Theorem 2.1. For this example, we define $D_0 = \frac{1}{n} \sum_t \ell_t \ell_t'$. Notice that this is a Hermitian matrix P as the top r eigenvectors. Next, let $D = \frac{1}{n} \sum y_t y_t'$ and let P denote the matrix of D’s top r eigenvectors.
Observe

\[
D - D_0 = \frac{1}{d} \sum_i (y_i y_i' - \ell_i \ell_i') = \frac{1}{d} \sum_i \ell_i w_i' + \frac{1}{d} \sum_i w_i \ell_i' + \frac{1}{d} \sum_i w_i w_i'
\]

:= cross + cross' + noise

Also notice that \(\lambda_{r+1}(D_0) = 0, \lambda_r(D) = \lambda_{\min} \left(\frac{1}{d} \sum_i a_i a_i' \right) \). Now, applying Theorem 2.1,

\[
\text{SE}(\hat{P}, P) \leq \frac{2 ||\text{cross}|| + ||\text{noise}||}{\lambda_{\min} \left(\frac{1}{d} \sum_i a_i a_i' \right) - \text{numerator}}
\]

Now, we can bound \(||\text{cross}|| \leq ||E[\text{cross}]|| + ||\text{cross} - E[\text{cross}]|| \) and similarly for the noise term. We use the Cauchy-Schwarz inequality for bounding the expected values of cross, noise as follows.

Recall that \(M_t = M_{2,t} M_{1,t} \) with \(b := \| \frac{1}{d} \sum_t M_{2,t} M_{2,t}' \| \) and \(q := \max_t \| M_{1,t} P \| \leq q < 1 \). Thus,

\[
||E[\text{noise}]||^2 = \left\| \frac{1}{d} \sum_t M_t P A P' M_{1,t}' M_{2,t}' \right\|_2^2 \leq \left\| \frac{1}{d} \sum_t M_t P A P' M_{1,t}' M_{1,t} P A P' M_{1,t}' M_{2,t}' \right\|_2 \left\| \frac{1}{d} \sum_t M_{2,t} M_{2,t}' \right\|_2 \\
\leq \max_t ||M_t P A P' M_{1,t}'||_2 b \leq (q^2 \lambda^+)^2 b.
\]

Similarly,

\[
||E[\text{cross}]||^2 = \left\| \frac{1}{d} \sum_t M_{2,t} M_{1,t} P A P' \right\|_2^2 \leq \left\| \frac{1}{d} \sum_t P A P' M_{1,t}' M_{1,t} P A P' \right\|_2 \left\| \frac{1}{d} \sum_t M_{2,t} M_{2,t}' \right\|_2 \\
\leq \max_t ||M_{1,t} P A_t P'||_2^2 b \leq (q \lambda^+)^2 b.
\]

We use the similar idea to lower bound \(\lambda_{\min} \left(\frac{1}{d} \sum_i a_i a_i' \right) \) as

\[
\lambda_{\min} \left(\frac{1}{d} \sum_i a_i a_i' \right) = \lambda_{\min} \left(\Lambda - \left(\frac{1}{d} \sum_i a_i a_i' - \Lambda \right) \right) \\
\geq \lambda_{\min} (\Lambda) - \lambda_{\max} \left(\frac{1}{d} \sum_i a_i a_i' - \Lambda \right) \\
\geq \lambda - \left\| \frac{1}{d} \sum_i a_i a_i' - \Lambda \right\|
\]

and thus we have

\[
\text{SE}(\hat{P}, P) \leq \frac{3 \sqrt{q} f + 2 ||\text{cross} - E[\text{cross}]|| + ||\text{noise} - E[\text{noise}]||}{\lambda^* - ||\frac{1}{d} \sum_i a_i a_i' - \Lambda|| - \text{numerator}}
\]

Bounding the “Statistical Errors”. We use concentration bounds from the Lemma 4.5. Notice that

\[
||\text{noise} - E[\text{noise}]|| + 2 ||\text{cross} - E[\text{cross}]|| = \left\| \frac{1}{d} \sum_i (w_i w_i' - E[w_i w_i']) \right\| + 2 \left\| \frac{1}{d} \sum_i (\ell_i w_i' - E[\ell_i w_i']) \right\| \\
\leq c \sqrt{q} f \sqrt{\frac{r \log n}{d}} \lambda^* + c \sqrt{q} f \sqrt{\frac{r \log n}{d}} \lambda^* \leq C \sqrt{q} f \sqrt{\frac{r \log n}{d}} \lambda^* := H(d) \lambda^*
\]

where the last line follows from using \(q \leq 1 \). The bound on \(||\frac{1}{d} \sum_i a_i a_i' - \Lambda||_2 \) follows directly from the first item of Lemma 4.5. This completes the proof. \(\square \)
Lemma 4.5. With probability at least $1 - 10n^{-10}$, if $d > r \log n$, then,

$$\left\| \frac{1}{d} \sum_t a_t a_t' - \Lambda \right\| \leq cnf \sqrt{\frac{r + \log n}{d}} \lambda^- := G_{elem}(d) \lambda^-, \quad \text{(element-wise bounded r.v.'s)}$$

$$\left\| \frac{1}{d} \sum_t a_t a_t' - \Lambda \right\| \leq cnf \sqrt{\frac{r \log n}{d}} \lambda^- := G_{bound}(d) \lambda^-, \quad \text{(bounded r.v.'s)}$$

$$\left\| \frac{1}{d} \sum_t \ell_t w_t' - \frac{1}{d} E \left[\sum_t \ell_t w_t' \right] \right\|_2 \leq c \sqrt{\eta q} \sqrt{\frac{r \log n}{d}} \lambda^- := H(d) \lambda^-, \quad \text{and w.p. at most}$$

$$\left\| \frac{1}{d} \sum_t w_t w_t' - \frac{1}{d} E \left[\sum_t w_t w_t' \right] \right\|_2 \leq c \sqrt{\eta q^2} \sqrt{\frac{r \log n}{d}} \lambda^- := H(d) q \lambda^-$$

Proof of Lemma 4.5.

1. $a_t a_t'$ term with element-wise bounded-ness

Using sub-Gaussian rows result result applied to $\frac{1}{d} \sum_t a_t a_t'$, and using the fact that the a_t's are r-length independent sub-Gaussian vectors with sub-Gaussian norm bounded by $K = \sqrt{\eta \lambda^+}$, we get the following:

$$\text{with probability at least} \ 1 - 2 \exp \left(r \log 9 - d \frac{c^2 \lambda^2}{(4 \eta \lambda^+)^2} \right) = 1 - 2 \exp \left(r \log 9 - d \frac{c^2}{16 \eta q^2} \right),$$

$$\left\| \frac{1}{d} \sum_t a_t a_t' - \Lambda \right\|_2 \leq \epsilon_1 \lambda^-$$

Set $\epsilon_1 = cnf \sqrt{\frac{r + 11 \log n}{d}}$. Then, the above event holds w.p. at least $1 - 2n^{-10}$

2. $a_t a_t'$ term for bounded r.v.'s. This and all other items use Matrix Bernstein for rectangular matrices. Let $\bar{Z}_t := a_t a_t'$ and apply the above result to $\bar{Z}_t = Z_t - E[Z_t]$. with $s = ed$. Now it is easy to see that

$$\|Z_t\| \leq 2 \|a_t a_t'\| \leq 2 \|a_t\|_2^2 \leq 2 \eta r \lambda^+ := R$$

and similarly,

$$\left\| \frac{1}{d} \sum_t E[Z_t^2] \right\| = \frac{1}{d} \sum_t \|E[a_t^2 a_t a_t']\| \leq \max_{a_t} \|a_t\|_2^4 \cdot \max_{a_t} E[a_t a_t'] \leq \eta r (\lambda^+)^2 := \sigma^2$$

and thus, w.p. at most $2r \exp \left(- c \min \left(\frac{c^2 d}{(4 \eta \lambda^+)^2}, \frac{c^2 d}{(4 \eta \lambda^+)^2} \right) \right)$. Now we set $\epsilon = \epsilon_5 \lambda^-$ with $\epsilon_5 = cnf \sqrt{\frac{r \log n}{d}}$ so that

$$\left\| \frac{1}{d} \sum_t (a_t a_t' - E[a_t a_t']) \right\| \geq cnf \sqrt{\frac{r \log n}{d}} \lambda^-$$

3. $\ell_t w_t'$ term.

Let $Z_t := \ell_t w_t'$. We apply this result to $Z_t := Z_t - E[Z_t]$. To get the values of R and σ^2 in a simple fashion, we use the facts that (i) if $\|Z_t\|_2 \leq R_1$, then $\|Z_t\| \leq 2 R_1$; and (ii) $\sum_t E[Z_t Z_t'] \leq \sum_t E[Z_t Z_t']$. Thus, we can set R to two times the bound on $\|Z_t\|_2$ and similarly for σ^2

It is easy to see that $R = 2 \sqrt{\eta \lambda^+ \sqrt{\eta r q^2 \lambda^+}} = 2 \eta r q \lambda^+$. To get σ^2, observe that

$$\left\| \frac{1}{d} \sum_t E[w_t \ell_t \ell_t' w_t'] \right\|_2 \leq \left(\max_{\ell_t} \|\ell_t\|^2 \right) \cdot \max_{\ell_t} \|E[w_t w_t']\| \leq \eta r \lambda^+ \cdot q^2 \lambda^+ = \eta r q^2 (\lambda^+)^2.$$

Repeating the above steps, we get the same bound on $\| \sum_t E[Z_t Z_t'] \|_2$. Thus, $\sigma^2 = r q^2 (\lambda^+)^2$.

Thus, we conclude that,

$$\left\| \frac{1}{d} \sum_t \ell_t w_t' - E[\sum_t \ell_t w_t'] \right\|_2 \geq \epsilon$$

w.p. at most $2n \exp \left(- c \min \left(\frac{c^2 d}{(4 \eta r q^2 \lambda^+)^2}, \frac{c^2 d}{(4 \eta q^2 \lambda^+)^2} \right) \right)$. Set $\epsilon = \epsilon_0 \lambda^-$ with $\epsilon_0 = cnf \sqrt{\frac{r \log n}{d}}$ so that (8) hold w.p. at most $2n^{-10}$.
4. \(\mathbf{w}_t \mathbf{w}_t^t \) term. We again apply matrix Bernstein and proceed as above. In this case, \(R = 2\eta q^2 \lambda^+ + \sigma^2 = \eta q^2 (\lambda^+)^2 \). Set \(\epsilon = c_2 \lambda_{\text{avg}} \) with \(c_2 = c \sqrt{\eta} q^2 f \sqrt{\frac{1}{3} \log n} \). Then again, the probability of the bad event is bounded by \(2n^{-10} \).

\[\] 4.1 Vershynin versus Matrix Bern

In Lemma 4.5, if we wanted to use the Vershynin result for the \(\ell_t \mathbf{w}_t^t \) term or the \(\mathbf{w}_t \mathbf{w}_t^t \) term, we would need to first re-write them in terms of \(\sum_t \mathbf{a}_t \mathbf{a}_t^t \). This is possible to do in one of two ways: (i) use Cauchy-Schwarz with \(\mathbf{P} \mathbf{a}_t \mathbf{a}_t^t \) as the first matrix; or (ii) use a bound on \(\max_t \| \mathbf{P}^t \mathbf{M}_1^t \mathbf{M}_2^t \| \). In (i), we will end up squaring \(\mathbf{a}_t \mathbf{a}_t^t \) which means we will need to bound \(\max_t \| \mathbf{a}_t \| \) which is bounded by \(r \log n \). In case of (ii), we will not be able to exploit the assumption on \(\sum_t \mathbf{M}_2^t \mathbf{M}_2^t \). The latter is what helps us get a nice bound on \(\mathbb{E} [\ell_t \mathbf{w}_t^t] \).

For the \(\mathbf{a}_t \mathbf{a}_t^t \) term, we can use either result. Vershynin will give a better bound. But since the overall sample complexity is dictated by the other terms, it does not matter.

5 Discussion

5.1 Discussion of assumptions

Notice that \(\lambda^+ \) is the (maximum) signal power. The model on \(\mathbf{M}_1^t \) implies that the noise power \(\| \mathbb{E} [\mathbf{w}_t \mathbf{w}_t^t] \|_2 \leq q^2 \lambda^+ \) (thus \(q^2 \) is the noise-to-signal ratio) and the signal-noise correlation \(\| \mathbb{E} [\ell_t \mathbf{w}_t^t] \|_2 \leq q \lambda^+ \). Without the assumption on \(\mathbf{M}_2^t \), (i.e. if \(b = 1 \)), this implies that it is not possible to achieve subspace error that is anything smaller than a constant times \(qf \). The reason is that PCA error depends on the ratio between noise power plus signal-noise correlation and \(\lambda^- \) (minimum signal space eigenvalue). However, with the assumption on \(\mathbf{M}_2^t \), one can show that the time-averaged values of both the above quantities satisfy

\[\frac{1}{d} \sum_{t=1}^d \mathbb{E} [\mathbf{w}_t \mathbf{w}_t^t] \|_2 \leq \sqrt{b} q^2 \lambda^+ \text{ and } \frac{1}{d} \sum_{t=1}^d \mathbb{E} [\ell_t \mathbf{w}_t^t] \|_2 \leq \sqrt{b} q \lambda^+ \].

Without the assumption on \(\mathbf{M}_2^t \), our result tells us that the noise support changes enough over time so that \(b \) is small; (iii) \(d \geq C f^2 \log n \). This sample complexity is near-optimal since \(r \) is the minimum number of samples needed to even define a subspace.

5.2 Discussion of Result

Observe that to obtain an error of \(\varepsilon \) it suffices to ensure that \(H(d) \leq 0.1 \varepsilon \) and this is satified as long as

\[d \geq C \frac{q^2 f^2}{\varepsilon^2} r \log n \]

Furthermore, notice that in both models, we only require that \(G_{\text{elem}}(d) (G_{\text{bound}}(d)) \) is less than a constant, \(c = 0.01 \). Finally, to understand the difference in the result of Matrix Bernstein vs the sub-Gaussian row result, consider the following setting. If we only want to estimate the principal components of a large fraction of the noise level, i.e., if we only wanted \(\varepsilon = 2qf \), and not to make it arbitrarily small, the sample complexity is dominated by the \(G_{\text{elem}}(d) (G_{\text{bound}}(d)) \) term, and thus, in the element-wise bounded setting, it suffices to have \(d \geq C f^2 (r + \log n) \) samples, whereas, in the bounded setting, we would still need \(d \geq C f^2 r \log n \).

References

\[1\] follows with a careful application of Cauchy-Schwartz inequality.