Real-time Dynamic MRI using Kalman Filtered Compressed Sensing

Chenlu Qiu, Wei Lu and Namrata Vaswani
Dept. of Electrical & Computer Engineering
Iowa State University

http://www.ece.iastate.edu/~namrata/
MR Imaging

- MRI measures the 2D Fourier transform of the image, which is “incoherent” w.r.t. the wavelet basis.

- Medical images are approximately sparse (compressible) in the wavelet transform domain.

- MR data acquisition is sequential, the scan time is reduced if fewer measurements are needed for accurate reconstruction.

M. Lustig: Compressed Sensing for Rapid MRI
Real-time dynamic MRI

- Reduce scan time: use as few measurements as possible

- Reduce reconstruction time: Reconstruct
 - Causally: using current and all past observations and
 - Recursively: use previous reconstruction and current observation to obtain current reconstruction

- Use the fact that
 - sparsity pattern changes slowly over time, and
 - values of the current set of (significantly) nonzero wavelet coefficients also change slowly
Slowly Changing Sparsity

- **Approx. Sparsity.** Size of 99%-energy support set: less than 7% for the larynx sequence and less than 9% for the cardiac sequence.

- **Slow Change in Sparsity Pattern.** Maximum size of change in support: less than 2% of minimum sparsity size in both cases.
Problem Definition

Recursively reconstruct a sparse vector, \(x_t \), from the current observation, \(y_t := Ax_t + w_t \), \\& all past observations, \(y_{1:t-1} \)

- \(\dim(y_t) = n < \dim(x_t) = m \)
- \(x_t \) is approx. \(S_t \)-sparse with approx. support set, \(N_t \)
- the support, \(N_t \), changes slowly over time
- \(A \) is \(S_* \)-“approximately orthonormal” \((\delta_{S_*} < 1/2)\) and \(S_* > S_t \)
- For MRI: \(A = H F W' \) with
 - \(H_{n \times m} \): random row selection matrix
 - \(F_{m \times m} \): DFT matrix, \(W_{m \times m} \): DWT matrix
 - “random sample kx-ky plane” or “random sample ky, full sample kx”
 - “uniformly random sample” or “variable density undersampling”
RIP and ROP constants [Candes,Tao]

- Restricted Isometry constant, δ_S: smallest real number satisfying

$$(1 - \delta_S)\|c\|_2^2 \leq \|A_T c\|_2^2 \leq (1 + \delta_S)\|c\|_2^2$$

for all subsets T with $|T| \leq S$ and for all c

- **Easy to see:** $\| (A_T' A_T)^{-1} \|_2 \leq 1 / (1 - \delta_{|T|})$

- Restricted Orthogonality constant, $\theta_{S,S'}$: smallest real number satisfying

$$|c_1' A_{T_1}' A_{T_2} c_2| \leq \theta_{S,S'} \|c_1\|_2 \|c_2\|_2$$

for all disjoint sets T_1, T_2 with $|T_1| \leq S$, $|T_2| \leq S'$ and for all c_1, c_2

- **Easy to see:** $\|A_{T_1}' A_{T_2}\|_2 \leq \theta_{|T_1|,|T_2|}$
Compressed Sensing [Candes, Romberg, Tao] [Donoho]

- CS (noiseless) [Candes, Romberg, Tao ’05] [Donoho’05]: \(\min_{\beta} ||\beta||_1 \) s.t. \(y_t = A\beta \)

- CS (noisy - Dantzig Selector) [Candes, Tao ’06]

- CS (noisy - Basis Pursuit Denoising (BPDN)) [Chen,Donoho] [Tropp’06]

\[
\min_{\beta} \gamma ||\beta||_1 + \frac{1}{2} ||y_t - A\beta_t||_2^2
\]

We use \(\hat{x}_t = \text{CS}(y_t) \) to denote the solution of above

- CS for MR image reconstruction [Lustig, Donoho, Pauly ’07]
The Question

- Most existing work: Batch-CS on entire time sequence
 [Gamper et al ’08 (dynamic MRI)], [Wakin et al (video)]
 - Offline and very slow, but uses few measurements

- Alternative: CS at each time separately (simple CS)
 - Causal and fast, but needs many more measurements

- The Question: How can we
 - improve simple CS by using past observations, and
 - how can we do it recursively, i.e. by only using the previous signal estimate and the current observation?
Finding a Recursive Solution

- Given \(y_t := Ax_t + w_t \), \(x_t \) is sparse with support \(N_t \), \(N_t \) changes slowly over time, \(A \) satisfies \(\delta_{S_t} < 1/2 \), \(S_t := |N_t| \)

- **If \(N_t \) known:** easy to compute a restricted-LS estimate

\[
\hat{x}_t = \text{restrictedLS}(y_t, N_t) := (\hat{x}_t)_{N_t} = A_{N_t}^\dagger y_t, \quad (\hat{x}_t)_{N_c} = 0
\]

- **If \(N_t \) unknown:** an option is to estimate it by thresholding CS output

\[
\hat{N}_t = \text{threshold(CS}(y_t)) \quad \text{threshold}(x) := \{i : x_i^2 > \alpha\}
\]

and then do the same thing

- **But:** not using past observations: large error
CS-residual idea [Vaswani, ICIP’08]

- Let $T := \hat{N}_{t-1}$ (estimated support at $t - 1$) and $\Delta := N_t \setminus \hat{N}_{t-1}$
- Assume that the undetected set, Δ, is small, i.e.
 - the support changes slowly, and
 - the support at $t - 1$ is well estimated
- Use $T := \hat{N}_{t-1}$ to compute restricted LS estimate, & observation residual
 \[
 (\hat{x}_{t,\text{init}})^T = \text{restrictedLS}(y_t, T) \\
 y_{t,\text{res}} = y_t - A\hat{x}_{t,\text{init}}
 \]
- CS-residual: $\hat{x}_t = \hat{x}_{t,\text{init}} + \text{CS}(y_{t,\text{res}})$
 - $y_{t,\text{res}}$ is a noisy measurement of an approx. $|\Delta|$ sparse vector
Why CS-residual works?

- Notice that $y_{t,\text{res}} = A\beta_t + w_t$ and $\beta_t := x_t - \hat{x}_{t,\text{init}}$ satisfies

 $$(\beta_t)_\Delta = (x_t)_\Delta$$
 $$(\beta_t)_T = -A_T^\dagger(A_\Delta(x_t)_\Delta + w_t)$$
 $$(\beta_t)_{(T \cup \Delta)^c} = 0$$

- If $|\Delta|$ small enough s.t. $||A_T^\prime A_\Delta||_2 < \theta_{|T|,|\Delta|}$ small:
 - β_t small along T, i.e. it is only $|\Delta|$-approx-sparse

- CS error strongly depends on approx. sparsity size
 - CS-residual: much smaller error than CS on y_t (simple CS)
LS CS-residual (LS-CS)

- **Initial LS.** Compute $\hat{x}_{t,\text{init}}$ & observation residual $y_{t,\text{res}}$ using $T := \hat{N}_{t-1}$

- **CS-residual.** Compute $\hat{x}_{t,CSres} = \hat{x}_{t,\text{init}} + CS(y_{t,\text{res}})$

- **Estimate Support.** Compute $\hat{N}_t = \text{threshold}(\hat{x}_{t,CSres})$

- **Final LS.** $\hat{x}_t = \text{restrictedLS}(y_t, \hat{N}_t)$ often improves estimate [Candes, Tao ’06]
Kalman filtered CS-residual (KF-CS)

[Vaswani, ICIP’08]

- So far only used \(\hat{N}_{t-1} \) to improve accuracy of CS at \(t \): did not use \(\hat{x}_{t-1} \)

- If a prior dynamic model for nonzero coefficients of \(x_t \) is available: do this by replacing initial LS by a KF for \((x_t)_T \)

- A possible prior model: random-walk on \((x_t)_{N_t} \) starting with \(x_0 = 0 \)

\[
\begin{align*}
(x_t)_{N_{t-1}} &= (x_{t-1})_{N_{t-1}} + \mathcal{N}(0, \sigma_s^2 I) \\
(x_t)_{N_t \setminus N_{t-1}} &= \mathcal{N}(0, \sigma_s^2 I) \\
(x_t)_{N_t^c} &= 0
\end{align*}
\]

- **KF CS-residual:**
 - dimension-varying KF with current states’ set being \(T := \hat{N}_{t-1} \)
 - compute \(\hat{N}_t \) by thresholding output of CS on KF residual
KF-CS algorithm

Initialize: $\hat{N}_0 = \phi$, $\hat{x}_0 = 0$, $P_0 = 0$. For $t > 0$, do

- **Initial KF. KF on** $(x_t)_{\hat{N}_{t-1}}$ **and compute KF residual,** $y_{t,res}$

$$\hat{x}_{t,\text{init}} = \text{KF}(I, \sigma^2_{sys} I_{\hat{N}_{t-1}}, A_{\hat{N}_{t-1}}, \sigma^2 I)(y_t, \hat{x}_{t-1}, P_{t-1})$$

$$y_{t,res} = y_t - A\hat{x}_{t,\text{init}}$$

- **CS-residual.** Compute $\hat{x}_{t,CSres} = \text{CS}(\tilde{y}_t) + \hat{x}_{t,\text{init}}$

- **Estimate Support.** Compute $\hat{N}_t = \text{threshold}(\hat{x}_{t,CSres})$

 - zero out elements of deleted set, $\hat{N}_{t-1} \setminus \hat{N}_t$, from \hat{x}_{t-1}, P_{t-1}

- **Final KF. KF on** $(x_t)_{\hat{N}_t}$

$$[\hat{x}_t, P_t] = \text{KF}(I, \sigma^2_{sys} I_{\hat{N}_t}, A_{\hat{N}_t}, \sigma^2 I)(y_t, \hat{x}_{t-1}, P_{t-1})$$
Initial KF. Let $T = \hat{N}_{t-1}$

\[
\begin{align*}
P_{t|t-1} &= P_{t-1} + \hat{Q}_t, \text{ where } \hat{Q}_t := \sigma_s^2 I_T \\
K_t &= P_{t|t-1} A'(AP_{t|t-1} A' + \sigma^2 I)^{-1}, \quad P_t = (I - K_t A) P_{t|t-1} \\
\hat{x}_{t,\text{init}} &= (I - K_t A) \hat{x}_{t-1} + K_t y_t \\
y_{t,\text{res}} &= y_t - A \hat{x}_{t,\text{init}}
\end{align*}
\]

Final KF. Do the above but with $T = \hat{N}_t$
Brain fMRI sequence

• Variable density undersampling in kx-ky
• Use $\gamma = 2 \left(2 \log m\right)^{1/2} \sigma$ as suggested in [Candes-?]
• $m = 4096$, $n = m/2$, $\sigma^2 = 25$
Cardiac sequence

- variable density undersampling in ky, full resolution in kx
- select γ using a heuristic motivated by the error bound of [Tropp’06]
- $m = 128$ (one column at a time), $n = m/2$, $\sigma^2 = 25$
Cardiac sequence

- variable density undersampling in ky, full resolution in kx
- select γ using a heuristic motivated by the error bound of [Tropp’06]
- $m = 128$ (one column at a time), $n = m/4$, $\sigma^2 = 25$
Cardiac sequence

- Uniformly random sample in ky, full resolution in kx
- Use best possible γ for each method
 - ($\gamma = 0.05$ for CS, $\gamma = 20$ for KF-CS, LS-CS)
- $m = 128$ (one column at a time), $n = m/2$, $\sigma^2 = 25$
Cardiac

- Variable density undersampling in ky, full resolution in kx
- Use best possible γ for each method
 - ($\gamma = 0.05$ for all)
- $m = 128$ (one column at a time), $n = m/2$, $\sigma^2 = 25$
Related Work

- Our Kalman filtered CS work first appeared in ICIP’08

- Works not using current observation to compute residual
 - k-t FOCUSS [Jung, Ye, ISBI’08]
 - Locally Competitive Algorithms for sparse coding [Rozell et al, ICIP’07]

- Very recent work
 - Recursive Lasso [Angelosante, Giannakis, ICASSP’09]
 - Dynamic l1 minimization [Asif, Romberg, CISS’09]
 - Analyzing LS and KF CS [Vaswani, ICASSP’09]
 - Modified-CS [Vaswani, Lu, ISIT’09]
Ongoing/Future Work

- Comparisons, use real MR scanner data, volume sequence reconstruction
- Bounding reconstruction error, Studying stability of LS and KF CS-residual
- **Modified-CS** [Vaswani, Lu, ISIT’09]. \(\hat{x}_t \) is the solution of

\[
\min_{\beta} \| \beta_{Tc} \|_1 \quad \text{s.t.} \quad y_t = A\beta
\]

- an approach for provably exact reconstruction from noiseless measurements using partly known support, \(T := \hat{N}_{t-1} \)
- **exact reconstruction if** \(\delta_{|T|+2|\Delta|} < 1/5 \) (much weaker than CS)

- Combine Modified-CS with CS-residual for noisy/compressible cases

\[
\min_{\beta} \gamma \| \beta_{Tc} \|_1 + \frac{1}{2} \| y_t - A\beta \|_2^2
\]

\[
\min_{\beta} \gamma \| \beta_{Tc} \|_1 + \| \beta_T - (\hat{x}_{t-1})_T \|_{P_{t|t-1}}^2 + \frac{1}{2\sigma^2} \| y_t - A\beta \|_2^2
\]