Problem 1 (Signal Processing)

Consider the following system:

where the real-valued continuous-time signal $x(t)$ is first filtered by a non-ideal lowpass filter with a frequency response $H_{a}(f)$, shown below (f denotes the continuous-time frequency in Hz):

Then, the output of this filter is sampled and filtered by a discrete-time lowpass filter $H_{d}(F)$ (where $F=f T$ denotes the discrete-time frequency). For convenience, we assume that this discrete-time lowpass filter is ideal. Finally, the signal is decimated by a factor of 4. The analog input $x(t)$ contains a signal of interest in the frequency band $-1 / 2 \mathrm{~Hz}<f<1 / 2 \mathrm{~Hz}$ and an interfering signal in the bands $f<-1 / 2 \mathrm{~Hz}$ and $f>1 / 2 \mathrm{~Hz}$ that we wish to suppress. The spectrum of the input signal is:

The desired output-signal spectrum is

We wish to find the set of parameters that make the continuous-time filter $H_{a}(f)$ as easy to build as possible, meaning we wish to have the largest possible transition band $f_{s b}-f_{p b}$.
(a) (2 pts) Plot the spectrum (i.e. discrete-time Fourier transform) $W(F)$ of the signal $w[n]$ before the decimator.
(b) (2 pts) Determine the impulse response of the ideal discrete-time filter.
(c) (2 pts) Determine the sampling rate $f_{\mathrm{s}}=1 / T$ for the sampler.
(d) (4 pts) Determine the passband and stopband frequency edges $f_{p b}$ and $f_{s b}$ that correspond to the widest possible transition width for the continuous-time filter.

Problem 2(Signal Processing)

Let k be an unknown integer and h_{k-1}, h_{k} and h_{k+1} be unknown reals. The coefficients $h_{i}, i=$ $k-1, k, k+1$ represent the non-zero taps of a filter denoted by $h[n] . H\left(e^{j \omega}\right)$ represents the frequency response of $h[n]$. Let $y[n]$ denote the response of $h[n]$ to an input $x[n]$. You are given the following information about $h[n]$.

1. $e^{j \omega} H\left(e^{j \omega}\right)$ is real and even.
2. If $x[n]=(-1)^{n}$ for all n. Then the signal $y[n]=0$ for all n.
3. If $x[n]=\left(\frac{1}{4}\right)^{n} u[n]$ where $u[n]$ is the unit step function, then $y[2]=25 / 16$.
a) Find the values of k and h_{k-1}, h_{k}, h_{k+1}.
b) Determine $y[n]$ for the input $x[n]$ shown in the figure.
c) Provide magnitude and phase plots of the frequency response $H\left(e^{j \omega}\right)$.

