Note: Handouts DO NOT replace the book. In most cases, they only provide a guideline on topics and an intuitive feel.

1 Multiple Discrete Random Variables: Topics

- Joint PMF, Marginal PMF of 2 and or more than 2 r.v.’s
- PMF of a function of 2 r.v.’s
- Expected value of functions of 2 r.v’s
- Expectation is a linear operator. Expectation of sums of n r.v.’s
- Conditioning on an event and on another r.v.
- Bayes rule
- Independence

2 Joint & Marginal PMF, PMF of function of r.v.s, Expectation

- For everything in this handout, you can think in terms of events \(\{X = x\} \) and \(\{Y = y\} \) and apply what you have learnt in Chapter 1.

- The joint PMF of two random variables \(X \) and \(Y \) is defined as

\[
p_{X,Y}(x, y) \triangleq P(X = x, Y = y)
\]

where \(P(X = x, Y = y) \) is the same as \(P(\{X = x\} \cap \{Y = y\}) \).

- Let \(A \) be the set of all values of \(x, y \) that satisfy a certain property, then

\[
P((X, Y) \in A) = \sum_{(x,y) \in A} p_{X,Y}(x,y)
\]

- e.g. \(X \) = outcome of first die toss, \(Y \) is outcome of second die toss, \(A \) = sum of outcomes of the two tosses is even.

- Marginal PMF is another term for the PMF of a single r.v. obtained by "marginalizing" the joint PMF over the other r.v., i.e. the marginal PMF of \(X \), \(p_X(x) \) can be computed as follows:

Apply Total Probability Theorem to \(p_{X,Y}(x,y) \), i.e. sum over \(\{Y = y\} \) for different values \(y \) (these are a set of disjoint events whose union is the sample space):

\[
p_X(x) = \sum_y p_{X,Y}(x,y)
\]

Similarly the marginal PMF of \(Y \), \(p_Y(y) \) can be computed by "marginalizing" over \(X \)

\[
p_Y(y) = \sum_x p_{X,Y}(x,y)
\]
• **PMF of a function of r.v.’s:** If $Z = g(X, Y)$,

$$p_Z(z) = \sum_{(x,y): g(x,y) = z} p_{X,Y}(x,y)$$

- Read the above as $p_Z(z) = P(Z = z) = P(\text{all values of } (X, Y) \text{ for which } g(X, Y) = z)$

• **Expected value of functions of multiple r.v.’s**

If $Z = g(X, Y)$,

$$E[Z] = \sum_{(x,y)} g(x,y)p_{X,Y}(x,y)$$

• See Example 2.9

• **More than 2 r.v.s.**

 - Joint PMF of n r.v.’s: $p_{X_1, X_2, \ldots, X_n}(x_1, x_2, \ldots x_n)$
 - We can **marginalize** over one or more than one r.v.,

 e.g. $p_{X_1, X_2, \ldots, X_{n-1}}(x_1, x_2, \ldots x_{n-1}) = \sum_{x_n} p_{X_1, X_2, \ldots, X_n}(x_1, x_2, \ldots x_n)$

 e.g. $p_{X_1, X_2}(x_1, x_2) = \sum_{x_3, x_4, \ldots, x_n} p_{X_1, X_2, \ldots, X_n}(x_1, x_2, \ldots x_n)$

 e.g. $p_{X_1}(x_1) = \sum_{x_2, x_3, \ldots, x_n} p_{X_1, X_2, \ldots, X_n}(x_1, x_2, \ldots x_n)$

 See book, Page 96, for special case of 3 r.v.’s

• **Expectation is a linear operator.** *Exercise: show this*

$$E[a_1 X_1 + a_2 X_2 + \ldots a_n X_n] = a_1 E[X_1] + a_2 E[X_2] + \ldots a_n E[X_n]$$

- Application: Binomial(n, p) is the sum of n Bernoulli r.v.’s. with success probability p, so its expected value is np (See Example 2.10)

- See Example 2.11

3 Conditioning and Bayes rule

• **PMF of r.v. X conditioned on an event A with $P(A) > 0$**

$$p_{X|A}(x) \triangleq P(\{X = x\}|A) = \frac{P(\{X = x\} \cap A)}{P(A)}$$

- $p_{X|A}(x)$ is a legitimate PMF, i.e. $\sum_x p_{X|A}(x) = 1$. *Exercise: Show this*

- Example 2.12, 2.13

• **PMF of r.v. X conditioned on r.v. Y.** Replace A by $\{Y = y\}$

$$p_{X|Y}(x|y) \triangleq P(\{X = x\}|\{Y = y\}) = \frac{P(\{X = x\} \cap \{Y = y\})}{P(\{Y = y\})} = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

The above holds for all y for which $p_y(y) > 0$. The above is equivalent to

$$p_{X,Y}(x,y) = p_{X|Y}(x|y)p_Y(y)$$

$$p_{X,Y}(x,y) = p_Y(y|x)p_X(x)$$
- $p_{X|Y}(x|y)$ (with $p_Y(y) > 0$) is a legitimate PMF, i.e. $\sum_x p_{X|Y}(x|y) = 1$.
- Similarly, $p_{Y|X}(y|x)$ is also a legitimate PMF, i.e. $\sum_y p_{Y|X}(y|x) = 1$. Show this.
- Example 2.14 (I did a modification in class), 2.15

Bayes rule. How to compute $p_{X|Y}(x|y)$ using $p_X(x)$ and $p_{Y|X}(y|x)$,

$$p_{X|Y}(x|y) = \frac{p_{X,Y}(x,y)}{p_Y(y)} = \frac{p_{Y|X}(y|x)p_X(x)}{\sum_{x'} p_{Y|X}(y|x')p_X(x')}$$

Conditional Expectation given event A

$$E[X|A] = \sum_x xp_{X|A}(x)$$

$$E[g(X)|A] = \sum_x g(x)p_{X|A}(x)$$

Conditional Expectation given r.v. $Y = y$. Replace A by $\{Y = y\}$

$$E[X|Y = y] = \sum_x xp_{X|Y}(x|y)$$

Note this is a function of $Y = y$.

Total Expectation Theorem

$$E[X] = \sum_y p_Y(y)E[X|Y = y]$$

Proof on page 105.

Total Expectation Theorem for disjoint events $A_1, A_2, \ldots A_n$ which form a partition of sample space.

$$E[X] = \sum_{i=1}^n P(A_i)E[X|A_i]$$

Note A_i’s are disjoint and $\cup_{i=1}^n A_i = \Omega$

- Application: Expectation of a geometric r.v., Example 2.16, 2.17

4 **Independence**

- **Independence of a r.v. & an event A.** r.v. X is independent of A with $P(A) > 0$, iff

$$p_{X|A}(x) = p_X(x), \text{ for all } x$$

- This also implies: $P(\{X = x\} \cap A) = p_X(x)P(A)$.

3
Independence of 2 r.v.’s. R.v.’s X and Y are independent iff
\[p_{X|Y}(x|y) = p_X(x), \text{ for all } x \text{ and for all } y \text{ for which } p_Y(y) > 0 \]

This is equivalent to the following two things (show this)
\[p_{X,Y}(x,y) = p_X(x)p_Y(y) \]
\[p_{Y|X}(y|x) = p_Y(y), \text{ for all } y \text{ and for all } x \text{ for which } p_X(x) > 0 \]

Conditional Independence of r.v.s X and Y given event A with \(P(A) > 0 \)
\[p_{X|Y,A}(x|y) = p_{X|A}(x) \text{ for all } x \text{ and for all } y \text{ for which } p_{Y|A}(y) > 0 \text{ or that} \]
\[p_{X,Y|A}(x,y) = p_{X|A}(x)p_{Y|A}(y) \]

Expectation of product of independent r.v.s.
- If \(X \) and \(Y \) are independent, \(E[XY] = E[X]E[Y] \).
 \[
 E[XY] = \sum_y \sum_x xy p_{X,Y}(x,y) = \sum_y \sum_x xy p_X(x)p_Y(y) = \sum_y yp_Y(y)\sum_x xp_X(x) = E[X]E[Y]
 \]
- If \(X \) and \(Y \) are independent, \(E[g(X)h(Y)] = E[g(X)]E[h(Y)] \). (Show).

If \(X_1, X_2, \ldots, X_n \) are independent,
\[p_{X_1,X_2,\ldots,X_n}(x_1, x_2, \ldots, x_n) = p_{X_1}(x_1)p_{X_2}(x_2) \cdots p_{X_n}(x_n) \]

Variance of sum of 2 independent r.v.’s.
Let \(X, Y \) are independent, then \(Var[X+Y] = Var[X] + Var[Y] \). See book page 112 for the proof

Variance of sum of \(n \) independent r.v.’s.
If \(X_1, X_2, \ldots, X_n \) are independent,
\[Var[X_1 + X_2 + \ldots + X_n] = Var[X_1] + Var[X_2] + \ldots Var[X_n] \]

- Application: Variance of a Binomial, See Example 2.20
 Binomial r.v. is a sum of \(n \) independent Bernoulli r.v.’s. So its variance is \(np(1-p) \)

- Application: Mean and Variance of Sample Mean, Example 2.21
 Let \(X_1, X_2, \ldots, X_n \) be independent and identically distributed, i.e. \(p_{X_i}(x) = p_{X_1}(x) \) for all \(i \). Thus all have the same mean (denote by \(a \)) and same variance (denote by \(v \)). Sample mean is defined as \(S_n = \frac{X_1 + X_2 + \ldots + X_n}{n} \).
 Since \(E[\cdot] \) is a linear operator, \(E[S_n] = \sum_{i=1}^n \frac{1}{n} E[X_i] = \frac{na}{n} = a \).
 Since the \(X_i \)'s are independent, \(Var[S_n] = \sum_{i=1}^n \frac{1}{n^2} Var[X_i] = \frac{nv}{n^2} = \frac{v}{n} \)

- Application: Estimating Probabilities by Simulation, See Example 2.22