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Abstract

Performance of modern computers is tied closely to the

effective use of cache because of the continually increasing

speed discrepancy between processors and main memory.

We demonstrate that generational garbage collection em-

ployed by a system with cache and scratchpad memory can

take advantage of the locality of small short-lived objects in

Java and reduce memory traffic by as much as 20% when

compared to a cache-only configuration. Converting half of

the cache to scratchpad can be more effective at reducing

memory traffic than doubling or even quadrupling the size

of the cache for several of the applications in SPECjvm98.

1. Introduction

The speed gap between processors and main memory

will continue to widen. We are already seeing significant

impacts of this trend. It was recently reported that Java ap-

plications can spend as much as 45% of their execution time

waiting for main memory [1]. Although modern cache de-

signs are becoming increasingly large, the costly overhead

of miss penalties can still lead to significant performance

degradation. Alleviating the memory system bottleneck by

reducing memory traffic is the motivation for this research.

Before describing the method of reducing memory traffic

we present some important background information. The

first key detail we present is that most objects in Java pro-

grams are small. Five of the programs in SPECjvm98 have

an average object size below 32 bytes. Three of these pro-

grams have an average object size below 24 bytes [5]. How-

ever cache lines are typically 32 bytes or larger. Therefore

most cache lines containing objects will contain more than

one object. It is also quite likely that many small objects

could be located in two cache lines. Given two contiguous

24 byte objects that start at the beginning of a 32 byte cache

line, the second object will reside in two cache lines.

The second key detail we present is that most objects in

Java are short-lived. Of the objects allocated in SPECjvm98

applications, 60% or more have a lifetime less than 100KB

of allocation [5]. Cache however has no concept of lifetime

and considers all modified cache lines to have pertinent data

that must be written back to main memory. This means that

even dead objects that will never be accessed in the future

will consume bandwidth when written back to memory.

The combination of these behaviors creates a system en-

vironment with excessive memory traffic. Given a large

heap area and aggressive allocation, a churning effect can

occur in which continually dying objects are written back

to memory with some of the longer-lived objects. Subse-

quent accesses to the live objects will cause the dead ob-

jects to be reread from memory. Depending on the delay

between garbage collections, these lines could be read from

and written to memory several times. A cache with a write-

allocate policy (a write cache miss to a line that will not be

completely overwritten will cause the line to first be read

from memory) will reread dead objects from memory be-

fore allocating new live objects in their place. Even two

live objects colocated in a single cache line will not neces-

sarily be accessed together (highly dependent on allocation

policy) and thus accesses to one may unnecessarily retrieve

the other from memory.

The real problem is that there is no natural mapping be-

tween objects and cache lines. Thus there is no obvious

correlation between cache locality and object locality. By

having multiple objects within the same cache line an arti-

ficial interdependence is created among these objects. The

same is true of multiple cache lines that are occupied by the

same object.

To break the size discrepancy and remove the require-

ment that all modified contents be written back to memory

we add another memory component to the hierarchy that

doesn’t follow the traditional cache model. Instead we in-

vestigate an alternate memory scheme that has no arbitrary

subdivisions and generates no traffic to memory on its own.

This memory region will be on-chip along with the original
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Figure 1. System with Scratchpad

cache. This type of memory region is often referred to as

a scratchpad. It is a software managed memory that is it-

self a subset of the address space distinct and disjoint from

that of the rest of the memory system as shown in Figure

1. Anything located in the scratchpad will not be located in

main memory, and vice versa, unless the software explicitly

makes a copy.

Some commercially available embedded processors con-

tain scratchpad. We will be evaluating the use of scratchpad

in a more general case and we are not restricting ourselves

to sizes found in commercially available devices. Scratch-

pad has been shown to be more efficient in terms of area and

power and also has a lower access time than a cache organi-

zation of equivalent size [2]. These benefits come from the

fact that scratchpad does not need extra resources for cache

line tags and does not need to first evaluate a tag to ensure

the data is valid. In our work we disregard power and la-

tency benefits of scratchpad and focus solely on the ability

of scratchpad to reduce memory traffic. We will make our

evaluation of efficient scratchpad use by comparing against

a cache that has an equivalent data capacity.

Why should scratchpad provide any benefits with re-

gard to memory traffic? First there are no internal bound-

aries that could interact with object boundaries. Any ob-

ject located within the scratchpad will be entirely within

the scratchpad, and objects next to one another will have

no artificial interdependence due to the scratchpad. Second,

a dead object within the scratchpad will not be written to

main memory without an explicit software command to do

so. Thus the goal of employing scratchpad is to ensure that

objects allocated within it are created, accessed, allowed to

die, and then reclaimed without moving back and forth to

main memory. Once objects are reclaimed, the space can

be reused for new allocations.

Given this possible solution there is one important re-

search question that must be answered: Can we verify that

a system using cache and scratchpad can outperform a stan-

dard cache-only system if both systems have equivalent on-

chip storage capacity?

In our preliminary work we found that small short-lived

objects have the highest locality and are most suited to map-

ping in scratchpad. The nursery of a generational garbage

collector is a natural heap subregion that segregates small

short-lived objects. By mapping this heap region to scratch-

pad we take advantage of the locality of the small short-

lived objects. In this work we show that a system with

cache and scratchpad can reduce memory traffic by as much

as 20% over that of a cache-only system. In fact, for many

programs it is more efficient to divide on-chip resources into

scratchpad and cache than it is to double or even quadruple

the size of the cache.

The rest of this paper will focus on answering the above

research question in detail. Section 2 contains a descrip-

tion of the various tools used throughout the experimenta-

tion. Section 3 describes the experiments in detail along

with their results and an interpretation in relation to our re-

search question. Section 4 provides a discussion of related

research in the context of our work. Section 5 concludes

this work.

2 EXPERIMENTAL SETUP

A diverse set of tools was needed to perform the exper-

iments in this research. We chose to use the applications

from the SPECjvm98 [17] benchmark suite. SPECjvm98

has three different input sizes (s1, s10, and s100) which

correlate to three different runtimes for each application.

Smaller sized inputs are useful when the applications are

run on a full system simulator due to the massive time over-

head incurred in the simulation environment.

The virtual machine we use in our experiments is

SableVM [11]. For these experiments we wanted to inves-

tigate generational garbage collection, which was not avail-

able in SableVM. We were able to build a fixed size nursery

generational collector based on the original collector. Our

collector uses remembered sets and promotes all live objects

from the nursery on a local collection. Our implementa-

tion works for all of the SPECjvm98 benchmarks as well as

all the other applications written to verify garbage collec-

tor functionality. The collector implementation was made

publicly available in the source distribution of SableVM.

To trace all memory accesses initiated by an application

we employ bochs [14], a functional emulator of the x86 ar-

chitecture. Bochs is an open source project that allows a

full operating system to be installed within the simulated

environment. By emulating the x86 architecture, bochs is

capable of running the same binary executables compiled

for our Intel Pentium IV systems. Bochs also provides a

basic set of stubs for instrumentation of various simulator

behaviors including the stream of instructions executed and

the stream of reads and writes initiated.

We chose DineroIV [10] as the cache simulator for our
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work. It has a very straightforward interface and allows easy

customization of cache configuration.

Bochs was configured to supply memory access traces of

SableVM running SPECjvm98 applications. Traces were

subsequently run through the DineroIV cache simulator.

For all caches in our simulations, regardless of size, we se-

lected 8-way associativity and a 64 byte cache line size.

3 Results

We previously identified that small short-lived objects

have the highest locality and employ the nursery of a gen-

erational garbage collector to capture these objects. These

experiments evaluate the mapping of the nursery of a gen-

erational garbage collector to scratchpad.

First, we must ensure that the nursery of a generational

collector is not made too small. If objects are not given

enough time to die then they will not be reclaimed within

the nursery but copied into the mature space. Not only

would this prohibit reclamation within the scratchpad, hurt-

ing potential memory traffic reduction, but it also requires

additional copying which is expensive and leads to exces-

sive collections of the mature space. We also need to make

sure that the nursery does not need to be so large that the

resulting scratchpad would be unreasonably large.

The following experimental results demonstrate that

there are two opposing trends that are important when con-

sidering the costs of a copying collector. The tradeoff be-

tween these trends is that increased copying can lead to bet-

ter locality. The opposite is also true. In our experiments we

have chosen to stay focused on a fixed-sized nursery gener-

ational collector implemented in SableVM.

The first important observation is that the high mortality

rate of objects can be taken advantage of with a relatively

small nursery. Figure 2 shows the amount of copying from

the nursery for several SPECjvm98 benchmarks over nurs-

ery sizes ranging in size from 32KB to 2MB in successive

powers of two. The copying has been normalized to the

minimum, which appears in the nursery size of 2MB. The

results of compress and mpegaudio have been excluded as

they allocate so little in the nursery.

As the nursery size is continually increased, we get a

diminishing return on the reduction of copying. In fact if

we were to ignore the absurdly small nursery sizes (32KB-

128KB), the largest variation in copying is only about 25%

for a four-fold increase in nursery size. While providing a

larger nursery will indeed allow more objects to die, it does

so at the expense of using more address space for alloca-

tion. Since most objects are short-lived, providing more

time than a majority of the objects need will not reduce

copying significantly.

A minor observation to be made from Figure 2 is that the

behavior for each of the benchmarks is relatively consistent

Figure 2. Copying vs. Nursery Size

between problem sizes, s10 and s100. This consistency is

important as subsequent results are based on the s10 prob-

lem size because of simulation overhead when generating

access traces.

The next experiment shows that a larger nursery also puts

greater strain on the cache. Figure 3 shows the results in

terms of normalized memory traffic caused by cache misses

when executing the benchmarks over the nursery sizes from

128KB to 2MB for a cache size of 512KB. As the nursery

increases, there is an increase in the traffic to main memory

because of increased cache misses.

The results of these experiments show that as long as the

nursery is not made too small (less than 256KB) we should

not expect to see poor performance from the generational

collector, and as the nursery is continually increased, we

should not see a drastic change in that performance. As we

are working in the range of a reasonable cache size, map-

ping the nursery of a generational collector to scratchpad

could be an efficient method of capturing the locality of the

small short-lived objects in Java programs.

Next we map the nursery of GGC directly to the scratch-

pad. Having the nursery smaller than scratchpad makes lit-

tle sense. This arrangement would place some other arbi-

trary memory region in part of the scratchpad which would

be an inefficient use of scratchpad. Making the nursery

larger than the scratchpad places some of the short-lived ob-

jects, identified to have high locality, outside of scratchpad

thus reducing potential benefit. For all configurations using

scratchpad, we use a nursery of equal size.

The final step in evaluating our proposed memory con-

figuration (Figure 1) is to determine if employing scratch-

pad can be more effective than simply using a larger cache.

Although we mentioned above that scratchpad has other
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Figure 3. Memory Traffic vs. Nursery Size

benefits over cache, our main goal is to reduce memory

traffic. In order to do so, we have opted for a software man-

aged exploitation of locality based on the findings that small

short-lived objects exhibit a high locality. By employing

generational garbage collection to confine these objects to

the scratchpad through the one-to-one mapping of the nurs-

ery, we expect to gain an advantage over a traditional cache.

To make a comparison we tested a series of on-chip

memory sizes in which we compare two configurations, a

configuration in which the cache and scratchpad are the

same size versus a configuration with cache equal in size to

the combination of both scratchpad and cache. The plots in

Figure 4 show the memory traffic for the scratchpad config-

uration normalized to that of the cache-only configuration.

Therefore the scratchpad configuration is more effective for

any point that falls above the unity line, and cache is more

effective for any point that falls below the line.

As Figure 4 shows, the scratchpad configuration is more

effective than the cache-only configuration for most of the

benchmarks for scratchpad sizes greater than 256KB. The

three benchmarks that do not perform as well with scratch-

pad are compress, db and mpegaudio, the three applications

we expected to benefit the least. Both compress and mpe-

gaudio perform almost identically with cache and scratch-

pad for sizes greater than 512KB.

Both compress and mpegaudio exercise garbage collec-

tion very little by allocating only a few thousand objects

as opposed to the millions allocated in the other applica-

tions, and therefore we can do little to positively affect their

behavior by building a memory management strategy on

this algorithm. Specifically, compress allocates most of its

memory as large objects which never appear in the nursery,

and therefore must always appear in the cache.

On the other hand, mpegaudio allocates so little overall

Figure 4. Scratchpad effectiveness

that it’s residency is very small. It does allocate enough

for garbage collection to promote some of it’s objects to

the mature space, leaving very few objects in the nursery

to consume accesses. We did test an additional configura-

tion for mpegaudio with a 4MB cache and 4MB scratchpad

against an 8MB cache. In this configuration nearly all of

the objects remain in the nursery allowing mpegaudio can

perform better on the system with scratchpad. However this

size of on-chip resources is unreasonably large for this pro-

gram as it has so little allocation overall. Both mpegaudio

and compress are often left out of garbage collection re-

search entirely.

The last benchmark, db, actually does the worst for any

single configuration. This application is extremely sensitive

to the size of scratchpad selected as it has a very large per-

centage of long-lived objects. Our experiments show that

even db can show an improvement of nearly 17% with a

2MB scratchpad. As the size of on-chip resources is in-

creased the sensitivity of the applications which do not see

the benefits of scratchpad are minimized while those that

benefit continue to do so.

In addition to showing that a cache and scratchpad sys-

tem can outperform a cache-only system there is an ad-

ditional important observation. Not only does the cache

scratchpad system outperform a cache-only system of

equivalent data capacity, but it can be more effective than

doubling or quadrupling the capacity of the cache-only sys-

tem. Note the total traffic in Table 1 for the 512KB cache

and 512KB scratchpad versus the 4MB cache for the bench-

marks jess, jack and mtrt. Both jess and mtrt perform better

with 1MB of on-chip cache/scratchpad than 4MB of cache

while jack performs very similarly for both. Even javac

performs better with 1MB of cache/scratchpad than it does

with 2MB of cache. As cache is becoming one of the largest
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Table 1. Bytes transferred between cache and
memory in cache-only and cache/scratchpad

systems for three on-chip storage capacities.

1MB Cache Cache/Scratchpad

Total Traffic Total Traffic % Improve

compress 116,233,216 123,885,632 -6.58

jess 44,492,608 38,845,824 12.69

db 96,537,472 129,597,056 -34.25

javac 78,061,888 67,900,096 13.02

mpegaudio 37,942,784 49,590,208 -30.70

mtrt 77,810,688 61,785,280 20.60

jack 43,268,224 38,318,656 11.44

2MB Cache Cache/Scratchpad

Total Traffic Total Traffic % Improve

compress 107,152,320 113,858,432 -6.26

jess 41,975,936 35,814,144 14.68

db 47,247,872 85,878,976 -81.76

javac 64,042,240 51,753,472 19.19

mpegaudio 33,772,608 34,899,072 -3.34

mtrt 67,428,288 53,028,352 21.36

jack 37,552,832 33,352,768 11.18

4MB Cache Cache/Scratchpad

Total Traffic Total Traffic % Improve

compress 101,638,720 104,939,904 -3.25

jess 41,791,872 34,657,600 17.07

db 46,984,000 38,938,048 17.12

javac 60,309,888 48,575,616 19.46

mpegaudio 29,898,240 29,979,200 -0.27

mtrt 68,842,304 55,233,408 19.77

jack 38,191,872 31,671,680 17.07

consumers of die area in modern processors, this finding

that scratchpad can be a more effective addition at reduc-

ing memory traffic than a significantly larger cache is very

important.

4 RELATED WORK

To the best of our knowledge our work is the first to fo-

cus on reducing memory bandwidth consumption for Java

applications in a general computing environment. Since this

work covers a broad range of topics including Java appli-

cation behavior, garbage collection, caching strategies and

hardware software interaction there is a very large base of

related work to consider.

The work most closely related is that of Kim and Tomar

et. al. in which they evaluated the use of local memory

(scratchpad) to increase the performance of embedded Java

applications [13, 18]. They work with memory configura-

tion sizes found in common embedded processors, which is

on the order of a few kilobytes. They identify large long-

lived objects with a large number of accesses through static

profiling and alter the bytecode stream of the application to

allocate these objects in the scratchpad for the duration of

the program. They also evaluated the use of garbage collec-

tion to colocate long-lived objects in the scratchpad. Their

goal was to increase the performance of embedded applica-

tions running on a system that had scratchpad over the same

system if scratchpad were left unused.

Many researchers have noted the relationship between

garbage collection and cache performance. Some have stud-

ied ways to improve program performance by employing

garbage collection to increase locality [16, 4, 9, 15, 20, 19].

Blackburn et. al. performed a comprehensive study of

garbage collection techniques in relation to cache perfor-

mance and found that a generational collector employing a

nursery provided the highest locality [3].

Another body of work that is related to ours is that inves-

tigating the importance of memory bandwidth. Although

we believe we are the first to focus on reducing memory

traffic and thus the burden on the available bandwidth in a

system for Java applications, there are other works that also

address this problem in the more general case [6, 7, 8, 12].

Hiding the latency of the memory system has also been

of interest to many researchers and has been most often at-

tempted through prefetching techniques. Prefetching has

been investigated specifically for Java [1]. It is important to

note that although prefetching is not directly related to our

work, it does place a greater burden on the memory band-

width and thus research in this area could often be comple-

mentary to ours.

5 CONCLUSIONS

In this work we demonstrate a comprehensive system de-

sign that significantly reduces memory traffic for many Java

applications without significantly impacting those applica-

tions which do not benefit from our design. We show the

process of our work by answering our key research ques-

tion: Can we verify that a system using cache and scratch-

pad can outperform a standard cache-only system if both

systems have equivalent on-chip storage capacity?

Our memory traffic results confirm that a system with

cache and scratchpad can significantly reduce memory traf-

fic (both inbound and outbound) over a cache-only system.

For some configurations many programs see a near 20% re-

duction in total memory traffic. While this alone is signifi-

cant it is also important to note that for applications that get

the greatest benefit, it can be more efficient to divide on-

chip resources into scratchpad and cache than to increase

the size of the cache 2 to 4 times. The results of this work

provide incentive to further investigate hardware modifica-

tions to the memory hierarchy to more efficiently support

object oriented languages such as Java.
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