Page Tables

Virtual page number: Page offset

- Physical page number: Page offset

Typical values: 16-512 entries, miss-rate: 0.1% - 1%, miss-penalty: 10 - 100 cycles

- **Making Address Translation Fast**
 - A cache for address translations: translation lookaside buffer

 Typical values: 16-512 entries, miss-rate: 0.1% - 1%, miss-penalty: 10 - 100 cycles

- **TLBs and caches**
Modern Systems

- Things are getting complicated!

<table>
<thead>
<tr>
<th>Year</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>10,000</td>
<td>10,000</td>
</tr>
<tr>
<td>100,000</td>
<td>100,000</td>
</tr>
</tbody>
</table>

- Processor speeds continue to increase very fast — much faster than either DRAM or disk access times

Some Issues

- Design challenge: dealing with this growing disparity
 - Prefetching? 3rd level caches and more? Memory design?
Pages 9 to 12

Chapters 8 & 9

(partial coverage)

Interfacing Processors and Peripherals

- I/O Design affected by many factors (expandability, resilience)
- Performance:
 - access latency
 - throughput
 - connection between devices and the system
 - the memory hierarchy
 - the operating system
- A variety of different users (e.g., banks, supercomputers, engineers)

I/O

- Important but neglected
 - “The difficulties in assessing and designing I/O systems have often relegated I/O to second class status”
 - “courses in every aspect of computing, from programming to computer architecture often ignore I/O or give it scanty coverage”
 - “textbooks leave the subject to near the end, making it easier for students and instructors to skip it!”
- GUILTY!
 - we won’t be looking at I/O in much detail
 - be sure and read Chapter 8 in its entirety.
 - you should probably take a networking class!

I/O Devices

- Very diverse devices
 - behavior (i.e., input vs. output)
 - partner (who is at the other end?)
 - data rate
I/O Example: Disk Drives

- To access data:
 - seek: position head over the proper track (3 to 14 ms. avg.)
 - rotational latency: wait for desired sector (.5 / RPM)
 - transfer: grab the data (one or more sectors) 30 to 80 MB/sec

I/O Example: Buses

- Shared communication link (one or more wires)
- Difficult design:
 - may be bottleneck
 - length of the bus
 - number of devices
 - tradeoffs (buffers for higher bandwidth increases latency)
 - support for many different devices
 - cost
- Types of buses:
 - processor-memory (short high speed, custom design)
 - backplane (high speed, often standardized, e.g., PCI)
 - I/O (lengthy, different devices, e.g., USB, Firewire)
- Synchronous vs. Asynchronous
 - use a clock and a synchronous protocol, fast and small
 - don't use a clock and instead use handshaking

I/O Bus Standards

- Today we have two dominant bus standards:

Other important issues

- Bus Arbitration:
 - daisy chain arbitration (not very fair)
 - centralized arbitration (requires an arbiter), e.g., PCI
 - collision detection, e.g., Ethernet
- Operating system:
 - polling
 - interrupts
 - direct memory access (DMA)
- Performance Analysis techniques:
 - queuing theory
 - simulation
 - analysis, i.e., find the weakest link (see "I/O System Design")
- Many new developments
Pentium 4

- I/O Options