
Two-Link Failure Protection in WDM Mesh Networks with
p-Cycles

Taiming Fenga, Long Longb, Ahmed E. Kamalb, Lu Ruana

aDepartment of Computer Science, Iowa State University, Ames, IA 50011
bDepartment of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011

Abstract

In WDM networks, it is important to protect connections against link failures due to
the high bandwidth provided by a fiber link. Although many p-cycle based schemes
have been proposed for single-link failure protection, protection against two-link
failures have not received much attention. In this paper, we propose p-cycle based
protection schemes for two-link failures. We formulate an ILP model for the p-
cycle design problem for static traffic. We also propose two protection schemes for
dynamic traffic, namely SPPP (Shortest Path Pair Protection) and SFPP (Short Full
Path Protection). Simulation results show that SFPP is more capacity efficient than
SPPP under incremental traffic. Under dynamic traffic, SPPP has lower blocking
than SFPP when the traffic load is low and has higher blocking than SFPP when
the traffic load is high.

Key words:
WDM , Survivability , p-Cycle , Two-link Failure

1. Introduction

Network survivability is an important requirement for WDM optical networks
due to their ultra-high capacity. Various protection schemes have been developed
for WDM networks. Ring-based protection schemes enable traffic recovery to be
completed in 50-60 ms, but require at least 100% capacity redundancy. On the
other hand, mesh-based protection schemes are much more capacity efficient, at-
tributed to diverse traffic routing and protection capacity sharing among differ-
ent connections. However, more complicated protection switching process leads
to much longer recovery time. p-Cycle is a promising protection technique as it

Email addresses: taiming@iastate.edu (Taiming Feng), longlong@iastate.edu
(Long Long), kamal@iastate.edu (Ahmed E. Kamal), ruanlu@iastate.edu (Lu Ruan)

Preprint submitted to Computer Networks April 29, 2010

2

achieves the speed of ring with the efficiency of mesh [1], [2]. p-Cycles are es-
tablished by configuring the spare capacity into pre-cross-connected cycles. Upon
a link failure, protection switching is performed at the two endnodes of the failed
link and other switching nodes will not be reconfigured. Therefore, traffic recov-
ery is extremely fast. p-Cycle is also efficienct in protection since it protects both
on-cycle links and straddling links. As shown in Fig. 1, a-b-c-d-f-a is a p-Cycle.
For the on-cycle link a-b, the p-Cycle provides one protection path a-f-d-c-b. For
the straddling link a-c, the p-Cycle provides two protection paths: a-b-c and a-f-d-
c. Thus, p-Cycle can protect one unit of working capacity on every on-cycle link
and protect two units of working capacity on every straddling link. Moreover, the
p-Cycle has the property to provide protection for multiple failures. For example,
if f-b and f-c both fail, f-a-b can provide protection for f-b and f-d-c can provide
the protection for f-c.

a

e b

d c

f

p-Cycle:a-b-c-d-f-a

on-cycle links:

a-b, b-c, c-d, d-f, f-a

straddling links:

a-c, b-f, c-f

Figure 1: A p-Cycle Example

The concept of p-cycle was first proposed in [3] and subsequently many works
in literature study the p-cycle design problem for protecting against single-link
failures. Most of these works assume the demands have been routed and seek to
find the optimal set of p-cycles to protect the given working capacity [3], [4], [5].
The joint optimization of the working path routes and the p-cycles is studied in
[6]. An extension of the basic p-cycle concept called Failure Independent Path-
Protecting (FIPP) p-cycle is proposed in [7], which leads to more capacity efficient
network designs than link protecting p-cycle. Recently, the author of [8] introduced
a new 1 + N protection scheme against single-link failures by combining network
coding and p-cycles.

Although single-link failures are the most common failure scenarios, double-
link failure can occur in some cases. First, after a link fails, a second link may fail
while the first link is being repaired. Second, two fiber links may be physically

3

routed together for some distance and a backhoe accident may lead to the failures
of both links [9]. Third, if an optical switch with two links connected to it fails, then
both links fail. Double-link failure protection has been addressed in some works. In
[10], a p-cycle based scheme for double-link failure protection is proposed where
p-cycles are reconfigured based on the remaining spare capacity after a link failure
occurs and the corresponding working paths are rerouted. This scheme cannot
deal with simultaneous two-link failures. In the scheme proposed in [9], two link-
disjoint backup paths are computed for each link so that the network is two-link
failure survivable. The similar scheme was also proposed in [11] and the problem
was formulated as an Integer Linear Program. The scheme is slow in recovery
because the backup paths are configured after link failure occurs. In [12], a p-
cycle based multi-QoP (quality of protection) framework with five QoP service
classes is proposed, where the platinum class is assured protection from all two-link
failures. The protection for a platinum demand is achieved by routing it entirely
over straddling links. There are also some work addressing multiple-link failure
protection. The authors of [13] proposed algorithms to find k disjoint p-cycles to
protect each link such that the network is k link-failure survivable. The author of
[14] extended his work in [8] to protect multiple-link failures by using network
coding and p-cycles.

In this paper, we consider the problem of protecting connections against two
simultaneous link failures. Our basic idea is to use two p-cycles with link-disjoint
protection segments to protect each working link. Since p-cycles are preconfigured
using the spare capacity in the network, extremely fast recovery can be achieved.
We formulate an ILP model for the p-cycle design problem for static traffic model
in which the set of connections to be established is given a priori. We propose two
protection schemes for dynamic traffic. In the dynamic traffic model, connection
requests arrive at the network one by one and the network knows nothing about the
bandwidth requirement, source and destination node of incoming requests. Thus,
primary and backup lightpaths need to be computed online according to the uti-
lization of the current network resources. We also study the performance in in-
cremental traffic which is a special case of dynamic traffic and the demand never
terminates once it is satisfied.

The rest of this paper is organized as follows. In Section 2, we present two
theorems about double-link failure protection. An ILP model for the p-cycle design
problem for static traffic is given in Section 3. In Section 4, we propose two double-
link failure protection schemes for dynamic traffic. Numerical results are presented
in Section 5 and conclusions are given in Section 6.

4

2. Preliminaries

We use a directed graph G = (V, E) to represent a WDM optical network. A
bidirectional communication link between nodes u and v are represented by two
directed edges u�v ∈ E and v�u ∈ E. Connections are unidirectional and each
connection requires one unit of capacity (i.e., the capacity of a wavelength). We use
unidirectional p-cycles to protect connections. A unidirectional p-cycle consumes
one unit of capacity on each unidirectional on-cycle link; it can protect one unit of
working capacity on any straddling link and any link in the opposite direction of
an on-cycle link.

A DB C
GF E pc1pc2 Working Link: A->Dp-Cycle pc1: (A->F->G->D->C->B->A)p-Cycle pc2: (A->E->D->C->B->A)

Figure 2: Two-Link Failure Protection p-Cycles for Link A�D

In [13], two link-disjoint p-cycles are computed to protect a working link
against two link failures. However, we do not have to enforce the link-disjoint
requirement on the two p-cycles in order to protect a link against two link failures.
In fact, when a link e is protected by a p-cycle pc, only part of the p-cycle is used
for protection. We name the part of pc that carries the traffic when e fails as the pro-
tection segment for e on pc, which is denoted by pc(e). Fig. 2 shows two p-cycles
pc1 and pc2, both of which can protect link A�D. pc1(A�D)=(A�F�G�D)
is the protection segment for link A�D on pc1 and pc2(A�D)=(A�E�D) is
the protection segment for link A�D on pc2. Although pc1 and pc2 are not link-
disjoint (they share links D�C, C�B, and B�A), they can still protect link A�D
against two link failures since pc1(A�D) and pc2(A�D) are link-disjoint.

The following theorem gives the sufficient condition for the traffic on a working
link to be protected against any two-link failure.

Theorem 1. A working link A�B can be protected against any two-link failure if
there exist two p-cycles pc1 and pc2 such that the following conditions are met.

5

1. pc1 can protect link A�B;
2. pc2 can protect link A�B;
3. pc1(A�B) is link-disjoint with pc2(A�B).

Proof The three conditions ensure that there are three link-disjoint paths from A to
B: one is the direct link from A to B, the other two are pc1(A�B) and pc2(A�B).
When any two links in the network fail, there must exist at least one path from A
to B that is intact. Therefore, link A�B is protected against any two-link failure.

According to Theorem 1, we can use two protection-segment-disjoint p-cycles
to protect a working link against two link failures. However, using two p-cycles to
protect each working link requires a large amount of protection capacity. To reduce
the capacity requirement, we allow two working links to share the protection of a
common p-cycle. Let e1 and e2 be two working links. Let S1 and S2 be a pair of
protection-segment-disjoint p-cycles for e1 and e2, respectively. If |S1 ∩ S2| = 1,
then e1 and e2 share one p-cycle. If |S1 ∩ S2| = 2, then e1 and e2 are protected by
the same pair of p-cycles. When two links share one or two p-cycles, it is possible
that the failure of these two links will leave one or both of them unprotected. In
this case, we say the sharing is invalid. On the other hand, we say the sharing is
valid if the two links are still protected when both of them fail simultaneously. In
the following, we present a theorem that gives the sufficient condition for a valid
sharing.

Theorem 2. Let e1 and e2 be two working links that share one or two p-cycles
(i.e., S1 ∩ S2 6= ∅). The sharing is valid if the following conditions are met.

1. For link e1, there exists a p-cycle pc1 ∈ S1 such that e2 /∈ pc1(e1).
2. For link e2, there exists a p-cycle pc2 ∈ S2 such that e1 /∈ pc2(e2);
3. pc1(e1) is link-disjoint with pc2(e2) if pc1 = pc2.

Proof Upon a two-link failure, we consider the case that only one of e1 and e2

fails, say e1, so e2 is still working and only e1 needs to be protected. Based on
Theorem 1, there must still exist one protection segment for e1 that is not affected
by another link failure, since e1 is protected by two link-disjoint segments. Thus,
both e1 and e2 can survive regardless of protection sharing.

Thus, we only need to focus on the case where both e1 and e2 fail. Conditions
1 and 2 ensure that both pc1(e1) and pc2(e2) are not affected by the failures. If
pc1 6= pc2, then e1 and e2 are protected by pc1 and pc2, respectively. In this case,
the sharing is valid. If pc1 = pc2, then pc1(e1) has to be link-disjoint with pc1(e2)
described in condition 3. Otherwise, one unit protection capacity provided by a p-
cycle is not enough to protect two failed link at a time. Thus, pc1(e1) and pc1(e2)
have to be link-disjoint to validate the sharing.

6A Bpc1
D C pc2E

F A Bpc1
D C pc2E

F
Two Working Links: (A->B, C->D)p-Cycle pc2: (A->D->C->B->A)

p-Cycle pc1(dashed line): (A->D->F->C->B->E->A) p-Cycle pc1(dashed line): (A->E->B->C->F->D->A)(a) (b)
Figure 3: (a). pc1, pc2 fail to protect e1, e2 simultaneously; (b). pc1, pc2 protect e1, e2 simultane-
ously.

Fig. 3 shows two examples of p-cycle sharing. In the example shown in Fig.
3(a), two working links e1=A�B and e2=C�D are protected by the same pair
of p-cycles, pc1 and pc2, where both e1 and e2 are straddling links of pc1 and
on-cycle links of pc2. That is, S1 = S2 = {pc1, pc2}. When both e1 and e2

fail, pc2 can protect neither of them since e2∈pc2(e1) and e1∈pc2(e2). pc1 can be
used to protect either e1 or e2 but not both because pc1(e1)=(A�D�F�C�B)
and pc1(e2)=(C�B�E�A�D) are not link-disjoint. Therefore, e1 and e2 can-
not validly share the p-cycles pc1 and pc2. We now consider the example shown
in Fig. 3(b), where everything is the same except that the direction of p-cycle pc1

is reversed. In this case, pc1(e1) = (A�E�B) does not contain e2, pc1(e2) =
(C�F�D) does not contain e1, and pc1(e1) and pc1(e2) are link-disjoint. Ac-
cording to Theorem 2, e1 and e2 can validly share pc1 and pc2.

3. An ILP Model for Static Traffic Protection

In this section, we present an ILP model for the following p-cycle design
problem: given a network G = (V, E), the working capacity dab on each link
(a�b)∈E, and the maximum number of p-cycles needed, compute a set of p-cycles
to protect the working capacity against two-link failures such that the total capacity
required by the p-cycles is minimized.

In the input parameters, P is the upper bound of the number of p-cycles needed
and can be computed according to the static demands. Suppose the static demands
need M links with one unit of capacity reserved on each link, a total of 2M p-
cycles will be required in the worst case to protect any double-link failures since

7

each link requires two p-cycles. In the results obtained by solving an ILP, variables
ep
mn (∀(m�n)∈E) identify the configuration of those computed p-cycles. Given a

p-cycle pcp, if all the corresponding variables ep
mn equal 0, this p-cycle is not used

to protect any link in the solution.

Input Parameters:
P the maximum no. of p-cycles in the solution.
p p-cycle index where p ∈ {1, 2, . . . , P}.

dab integer, total amount of working capacity on link a�b.
Variable Notations:

ep
mn binary variable, 1 if p-cycle p uses link m�n as an on-

cycle link.
zp
n binary variable, 1 if node n is on p-cycle p.

xp
ab k binary variable, 1 if p-cycle p protects the kth working

capacity on link a�b.
f

p,(ab k)
mn binary variable, 1 if p-cycle p protects the kth working

capacity on link a�b and the protection segment traverses
link m�n.

v
p,(ab k)
cd binary variable, 1 if p-cycle p protects the kth working

capacity on link a�b and the protection segment does not
use link c�d or d�c.

AB
p,(ab k)
cd l binary variable, it equals |vp,(ab k)

cd − v
p,(cd l)
ab |.

C
p,(ab k)
cd l binary variable, used in the absolute value constraints for

AB
p,(ab k)
cd l .

Objective:
Minimize

∑
p

∑

(m,n)∈E

ep
mn

The objective function sums the total capacity used by all the active p-cycles.
1) Capacity Constraints:

∑
p

xp
ab k ≥ 2, ∀(a�b) ∈ E, ∀k ≤ dab; (1)

∑

k

xp
ab k ≤ 1, ∀p, ∀(a�b) ∈ E; (2)

Equation (1) ensures that each working unit on a link should be protected by
at least two p-cycles. Equation (2) ensures that a unidirectional p-cycle can protect
only one unit capacity on a given link.

8

2) Cycle Constraints:
∑

(m�n)∈E

ep
mn =

∑

(n�l)∈E

ep
nl = zp

n, ∀p, ∀n ∈ V ; (3)

ep
mn + ep

nm ≤ 1, ∀p, ∀(m�n) ∈ E; (4)

Equations (3) is the flow conservation constraint for any simple cycle by en-
suring that the in-degree and out-degree of every on-cycle node is 1. Equation (4)
ensures that each unidirectional p-cycle p cannot traverse the same link twice in
both directions.

3) Link Protection Constraints:

∑
m

fp,(ab k)
mn −

∑

l

f
p,(ab k)
nl =





xp
ab k if n = b

−xp
ab k if n = a

0 otherwise

(5)

∀p, ∀(a�b) ∈ E, ∀n ∈ V, ∀k ≤ dab;∑
m

fp,(ab k)
ma =

∑
n

f
p,(ab k)
bn = 0, ∀p, ∀(a�b) ∈ E, ∀k ≤ dab; (6)

fp,(ab k)
mn ≤ ep

mn, ∀(a�b), (m�n)∈E, (a�b)6=(m�n), ∀p, ∀k ≤ dab; (7)

Equation (5) and (6) are the flow conservation constraints for each protection
segment provided by a p-cycle p to protect the kth working capacity on link a�b.
In this case, a unit of protection flow should be reserved from node a to b using the
on-cycle links of p. But there is no incoming flow of source node a and outgoing
flow of b along the protection segment. Equation (7) ensures that any link (m�n)
used by a protection segment should be an on-cycle link of the protection p-cycle.

4) Protection Segment Disjointness Constraints:

fp,(ab k)
mn + f q,(ab k)

mn ≤ 1, (8)

fp,(ab k)
mn + f q,(ab k)

nm ≤ 1, (9)

∀(a�b), (m�n)∈E, (a�b) 6= (m�n) or (n�m), ∀p, q, p6=q, ∀k ≤ dab;

Any link should be link-disjoint with its protection segment in any direction,
which is guaranteed by Equation (8) and (9).

9

5) Absolute Value Constraints:

v
p,(ab k)
cd = (xp

ab k − f
p,(ab k)
cd − f

p,(ab k)
dc), (10)

∀(a�b), (c�d) ∈ E, (a�b) 6= (c�d), ∀p,∀k ≤ dab;

AB
p,(ab k)
cd l ≥ v

p,(ab k)
cd − v

p,(cd l)
ab , (11)

AB
p,(ab k)
cd l ≥ −(vp,(ab k)

cd − v
p,(cd l)
ab), (12)

AB
p,(ab k)
cd l ≤ v

p,(ab k)
cd − v

p,(cd l)
ab + 2C

p,(ab k)
cd l , (13)

AB
p,(ab k)
cd l ≤ −(vp,(ab k)

cd − v
p,(cd l)
ab) + 2(1− C

p,(ab k)
cd l), (14)

∀(a�b), (c�d) ∈ E, (a�b) 6= (c�d), ∀p, ∀k ≤ dab, l ≤ dcd.

Equation (10) defines v
p,(ab k)
cd , which will be used for protection sharing be-

tween link ab k and cd l. The absolute value AB
p,(ab k)
cd l is defined by equations

(11) - (14). Eq. (11) and (12) make sure that the absolute value is always greater
and equal to 0. However, they are not enough. When both v variables equal each
other, the absolute value should be 0. But it can still be either 0 or 1. In order to
make it equal 0, we have to introduce a new binary variable, Cp,(ab k)

cd l . Eq. (13) and
(14) ensure that when both v variables equal 0 or 1 at the same time, the absolute
value AB can only be 0 by randomly choosing C as either 0 or 1. Meanwhile,
equation (11) and (12) are not violated.

6) p-Cycle Sharing Constraints:

fp,(ab k)
mn + fp,(cd l)

mn + v
p,(ab k)
cd + v

p,(cd l)
ab

≤
∑

p

v
p,(ab k)
cd +

∑
p

v
p,(cd l)
ab +

∑
p

AB
p,(ab k)
cd l + 1, (15)

∀(a�b),(c�d)∈E, (a�b)6=(c�d), ∀p, ∀(m�n)∈E, ∀{k, l}≤dab.

Constraint (15) ensures that all p-cycle sharing are valid based on Theorem 2.
It takes the following three cases into the consideration when both link (a�b) and
(c�d) fail simultaneously.

If
∑

p AB
p,(ab k)
cd l ≥ 1, link (a�b) and (c�d) can be protected by two different

p-cycles, because there exist at least one p such that |vp,(ab k)
cd − v

p,(cd l)
ab | = 1.

Assume that v
p,(ab k)
cd = 1, v

p,(cd l)
ab = 0, then p can be used to protect link (a�b)

without traversing link (c�d). Meanwhile, there must exist another p′ that can
protect link (c�d) without traversing link (a, b), since there are two link-disjoint
protection segments for (c�d).

If
∑

p AB
p,(ab k)
cd l = 0, both link (a�b) and (c�d) share the same two p-cycles.

There are two cases to be discussed as follows:

10

1) If
∑

p v
p,(ab k)
cd +

∑
p v

p,(cd l)
ab = 4, both link (a�b) and (c, d) are straddling

links of the two protection p-cycles. In this case, one of the two p-cycles can protect
(a�b) and the other one can protect (c�d) when both links fail.

2) If
∑

p v
p,(ab k)
cd +

∑
p v

p,(cd l)
ab = 2, one of the protection p-cycles actually

traverses both links and cannot be used for protection anymore. Thus, only one p-
cycle p can be used to protect them. In this case, we must have f

p,(ab k)
mn +f

p,(cd l)
mn +

v
p,(ab k)
cd + v

p,(cd l)
ab ≤ 3 to ensure that the protection segment p(a�b) and p(c�d)

are link-disjoint.
Constraint (15) combines all three cases together to ensure that all p-cycle shar-

ing are valid. Note that the condition
∑

p v
p,(ab k)
cd +

∑
p v

p,(cd l)
ab ≥ 2 always holds.

Thus, if
∑

p AB
p,(ab k)
cd l ≥ 1, the sharing is valid. There is no need to address the

remaining two cases and Eq. (15) should not be violated. If
∑

p AB
p,(ab k)
cd l = 0,

Eq. (15) ensures that one of the last two cases will occur.
Current objective is to minimize the spare capacity required by the p-cycles.

However, this objective could be easily modified to achieve different goals. For
instance: 1. If the goal is to minimize the maximum total capacity (working and
spare capacity) used on any link, we can introduce a new variable ζ and a new
constraint: ζ ≥ dmn +

∑
ep
mn, ∀(m�n) ∈ E. In this newly added constraint, ζ

is the maximal aggregated amount of capacity reserved by working capacity and
protection p-cycles on every link. Accordingly, the new objective will be: Minimize
ζ. 2. In the second case, if the total amount of capacity provided by each link
(m�n) is upper bounded by a number, denoted by λmn, we can introduce a new
constraint: λmn ≥ dmn +

∑
ep
mn, ∀(m�n) ∈ E to ensure that the total capacity

reserved on each link will not exceed the limit. Therefore, our ILP model can be
modified in a flexible fashion to adapt to various network scenarios with different
design goals.

4. Protection Schemes for Dynamic Traffic

In this section, we study the problem of two-link failure protection for dynamic
traffic. We assume that the working path for a connection is given. The problem is
to compute a set of p-cycles to protect the working path against any two-link failure
so that the total capacity required by the p-cycles is minimized. We present two
heuristic algorithms for this problem. Both algorithms are designed to achieve ef-
ficient protection by employing p-cycle sharing. The notations and some functions
used in the algorithms are explained in Table 1.

11

Table 1: Notations used in the algorithms

Notations Meaning

P The set of links used by the working path of a
given connection

pcp A p-cycle indexed by p
pcp(e) the protection segment on pcp that actually protect

link e
C The set of all the existing p-cycles in the network
C(e) The set of existing p-cycles that can protect link e
Ctemp The set of protection segments that protect a set

of links
cycle build(e, n) Construct n new cycles that can protect e
check share(pci, pcj , e) Check whether p-cycle pci and pcj can protect

link e simultaneously in Algorithm 1
check disjoint(pci, e) Check whether an existing p-cycle pci can protect

a working link e in Algorithm 2
check share2(e, e′, pci) Check whether link e and e′ can share the protec-

tion of pci validly in Algorithm 2

4.1. Shortest Path Pair Protection Scheme
We propose the Shortest Path Pair Protection (SPPP) scheme in this section.

Given the working path P of a connection, SPPP computes a set of p-cycles to
protect P as follows. For each link on P, we compute two p-cycles to protect the
link so that the two p-cycles are protection-segment-disjoint. Whenever possible,
we reuse the p-cycles that have been previously provisioned to minimize the total
protection capacity.

s d1 2 3 4

pc1 pc2 pc3 pc4

pc’1 pc’2 pc’4pc’3

Figure 4: p-Cycles pci, pc′i protect link i (i=1,2,3,4)

Fig. 4 illustrates how SPPP protects a working path from s to d that traverses
link 1 through link 4. For each link on the working path, SPPP computes two p-

12

cycles with link-disjoint protection segments to protect the link. As shown in the
figure, pci and pc′i are used to protect link i, for 1 ≤ i ≤ 4. To save capacity,
we allow a p-cycle to be shared by different working links if sharing is allowed
according to Theorem 2. For example, suppose link 3 can share pc2 with link 2,
then pc3 = pc2 and only one new p-cycle (i.e., pc′3) needs to be created for link
3; suppose link 4 can share pc1 with link 1 and can share pc′2 with link 2, and
pc1(link4) is link-disjoint with pc′2(link4), then pc4 = pc1, pc′4 = pc′2, and no
new p-cycle needs to be created for link 4.

SPPP uses a boolean function check share(pc1, pc2, e) to check whether two
p-cycles can be used to protect a working link e. The checking procedure consists
of three steps. First, it checks whether e can be protected by pc1 and has valid
sharing with other links also protected by pc1; Second, check whether e can be
protected by pc2 with valid sharing; Third, whether pc1(e) and pc2(e) are link-
disjoint. check share(pc1, pc2, e) returns true if all three steps are passed. The
rules are actually based on Theorem 1 and 2. Given a working link e, the set of
existing p-cycles that can protect e is denoted by C(e). That is, C(e) contains all
existing p-cycles that have e as an on-cycle link or a straddling link. For each link
e ∈ P, SPPP computes two p-cycles for e as follows:

We try to use as many existing p-cycles as possible to maximize the sharing.
We first check whether there exist two p-cycles inC(e) such that they can be reused
to protect e. If so, no new p-cycle needs to be created for e. This check can
be done by using the check share function. If two p-cycles cannot be found in
C(e), we try to reuse at least one p-cycle. By checking the protection condition
of a p-cycle, say pci, we need to construct the second p-cycle pcj for e such that
pci(e) and pcj(e) are link-disjoint. If check share(pci, pcj , e) returns true, then
e is protected against double-link failure. Finally, if none of the p-cycles in C
can be reused to protect e, then we construct two new p-cycles for e such that the
protection segments for e on these two p-cycles are link-disjoint.

The function cycle build(e, n) is used to construct new cycles where n is the
number of newly constructed cycles. If n = 1, the function finds the shortest path
that is link-disjoint with e using Dijkstra’s algorithm and then combines the same
link e in the opposite direction to form a cycle, which can be used to protect e. If
n = 2, we first use Bhandari’s algorithm [15] to obtain a pair of link-disjoint paths
between the two end nodes of e with minimum total length by temporarily marking
it invalid. We can obtain two p-cycles for e by combining each path with e in the
reverse direction. Clearly, these two p-cycles can provide link-disjoint protection
segments for e.

The pseudo-code of the SPPP scheme is shown in Algorithm 1. The input is
a working path P and the set of the existing p-cycles, the output is a new set C of
p-cycles that protect P. The algorithm computes two p-cycles for each link e ∈ P

13

Algorithm 1: SPPP Scheme
Input: Working Path P, the set of existing p-cycles, C
Output: A updated set C
for ∀e ∈ P do1

flag=2;2

if ∃{pci, pcj}∈C(e) s.t. check share(pci, pcj , e)==true then3

flag=0;4

C(e) = C(e)− {pci, pcj};5

end6

else if7

(∃pci ∈ C(e))∧ (pcj = cycle build(e, 1))∧ (check share(pci, pcj , e))
then

flag = 1;8

C(e) = C(e)− {pci};9

∀e′ 6= e that can be protected by pcj , C(e′) = C(e′)
⋃{pcj};10

C = C
⋃{pcj};11

end12

if flag==2 then13

construct pc1 and pc2 for e by running cycle build(e, 2);14

∀e′ 6= e that can be protected by pc1, C(e′) = C(e′)
⋃{pc1};15

∀e′ 6= e that can be protected by pc2, C(e′) = C(e′)
⋃{pc2};16

C = C
⋃{pc1, pc2};17

end18

end19

in the for loop from line 1 to line 19. The first step of the procedure is executed by
Lines 3-6, in which we try to find a pair of existing p-cycles to protect a given link
e. The second step is conducted by Lines 7-12, in which we reuse a p-cycle pci and
construct a new one, pcj to provide protection. The final step is to construct two
new p-cycles such that their protection segments are link-disjoint, which is realized
by Lines 13-18. It is worth noting that each p-cycle can only protect a link once.
Once a link e has been protected by a given p-cycle, say pci, this p-cycle is valid to
protect e any more in the future. This is the reason that in Lines 5 and 9, we need
to remove the p-cycles that have been used to protect e from C(e).

We now analyze the time complexity of SPPP. First, we check the running time
of function check share(pci, pcj , e) is O(|E||V |2) because it needs to check each
working link protected by pci to see if it can share pci with e, and the time of the
checking process is O(|V |2). For each e ∈ P, the algorithm computes two p-cycles

14

for e. The time of this computation is dominated by the computation in line 3. We
assume |C(e)| is upper bounded by a constant. Since line 3 is executed for each
edge in the working path P and the number of edges in P is upper bounded by |V |,
the complexity of SPPP is O(|E||V |3).

The advantage of the SPPP scheme is that it can save plenty of protection ca-
pacity by exploiting p-cycle sharing. However, SPPP always creates short p-cycles,
which are less efficient than long p-cycles as shown in [16] since short p-cycles tend
to have less straddling links. In the next, we present another protection scheme that
makes use of long p-cycles for connection protection.

4.2. Shortest Full Path Protection Scheme
In this section, we present the Shortest Full Path Protection (SFPP) Scheme.

Given the working path P of a connection, SFPP computes a set of p-cycles to
protect P as follows. First, we compute one short p-cycle for each link on P. Next,
we compute a long p-cycle that contains all links on P and is link-disjoint with the
protection segments of all the working links computed in the first step. Clearly,
the long p-cycle can protect every link in P. Therefore, each working link is still
protected by two p-cycles (one short and one long) with link-disjoint protection
segments. Like SPPP, SFPP reuses existing p-cycles whenever possible to save
protection capacity.

s d1 2 3 4

pc1 pc2 pc3 pc4

pc5

Figure 5: p-Cycle pci protects link i (i=1,2,3,4) and pc5 protects links 1,2,3, and 4.

Fig. 5 illustrates how SFPP protects a working path from s to d that traverses
link 1 through link 4. Four short p-cycles, pc1 to pc4, are first found to protect link
1 to link 4. These short p-cycles can be shared by the working links. For example,
if link 3 can share pc1 with link 1, then pc3 = pc1 and no new short p-cycle needs
to be created for link 3. In the second step, we find a long p-cycle, labeled as
pc5, to cover the entire working path. pc5 must be link-disjoint with the protection
segments pc1(link1) to pc4(link4) to ensure that each working link is protected
by two protection-segment-disjoint p-cycles.

We now explain the details of SFPP. We first find one short p-cycle for every
link e on the working path P. During this process, existing p-cycles will be reused

15

if sharing is possible. Specifically, when we process link e, we first check whether
there is a p-cycle in C(e) that can be reused to protect e. A p-cycle pci can be
reused to protect e if 1) pci does not contain any edge e′ 6= e ∈ P, and 2) for every
link e′ 6= e ∈ P that is protected by pci, pci(e) and pci(e′) are link-disjoint. The
first condition is needed because if pci contains e′, then pc and the long p-cycle
will not be protection-segment-disjoint since they both contain e′. The second
condition is needed for the following reason. When both e′ and e fail, the long p-
cycle can protect neither of them since the protection segment of one link contains
the other link. So, both links have to be protected by pci. We define a function
check disjoint(pci, e) to check whether those two conditions given a link e and
an existing p-cycle pci. It returns true if both conditions are satisfied.

If the function returns false, a new p-cycle should be constructed for e with the
requirement that it does not contain any edge e′ 6= e in P. After each link e ∈ P has
been protected by a p-cycle, we construct a long p-cycle as follows. We first mark
all the links in P as invalid as well as all links on the protection segments (provided
by the short p-cycles) of all the working links in P. We can simply substitute e in
the function cycle build(e, n) by P and then run cycle build(P, 1) to form a long
p-cycle pcf by combining two link-disjoint paths. One, denoted by P′, starts from
the source s to the destination d and the other one is P in the opposite direction.
Hence, each link on the path P is protected against double-link failure.

However, constructing this new long p-cycle may destruct the validity of shar-
ing between any link e ∈ P with any link e′ /∈ P if e and e′ share a short
p-cycle. We have to make sure that after the construction of pcf , every link
e ∈ P is still protected and every p-cycle sharing is valid. We define a function
check share2(e, e′, pci) to perform the checking process. The function returns
true if the sharing of a p-cycle pci by e and e′ is valid based on Theorem 2. If the
function returns false, we have to reconstruct the long p-cycle pcf because it must
contain link e′ (We will explain why in the next.) We could make the sharing valid
if the new p-cycle pcf does not contain e′. Hence, we need to temporarily remove
e′ from G before construct the new pcf . After all troublesome links are removed,
we recompute a long p-cycle pcf . We then repeat the process of checking p-cycle
sharing validity and computing the long p-cycle until no invalid p-cycle sharing
can be found.

We now explain why an invalid sharing of pci by e and e′ is caused by the
inclusion of e′ in pcf . Let pc′f be the second p-cycle that protects e′. (The first
p-cycle that protects e′ is pci, which is shared by e.) In order for e and e′ to validly
share pci, we have to make sure that when both links fail, at least one of pci and
pc′f can protect e′ and at least one of pci and pcf can protect e. We know that at
least one of the protection segments pci(e′) and pc′f (e′) does not contain e since
they must be link-disjoint. Therefore, there are three cases to consider as follows:

16

1. Neither pci(e′) nor pc′f (e′) contain e: Clearly, e′ can be protected by pc′f
since pc′f (e′) is not affected by the failure. In addition, one of pci and pcf

can protect e because pci(e) and pcf (e) are link-disjoint and therefore at
least one of them does not contain e′. So, e and e′ can validly share pci.

2. pci(e′) contains e and pc′f (e′) does not contain e: e and e′ can validly share
pci for the same reason given in the previous case.

3. pc′f (e′) contains e and pci(e′) does not contain e: e′ has to be protected by
pci when both e and e′ fail. e can be protected by pcf if pcf (e) does not
contain e′. Therefore, the sharing is valid only if pcf (e) does not contain e′.

Algorithm 2: SFPP Scheme
Input: Working path P, p-cycle set C, Ctemp = φ and flag=1
Output: A updated set C
for ∀e ∈ P do1

if ∃pci ∈ C(e) and check disjoint(pci, e)==true then2

link e is protected once;3

end4

else5

mark P\e invalid and obtain pci by running cycle build(e, 1);6

C = C
⋃{pci};7

update C(e′) for all e′ that can be protected by pci;8

end9

Ctemp = Ctemp ∪ pci(e);10

end11

mark e ∈ P and e′ ∈ Ctemp invalid in G;12

construct pcf by running cycle build(P, 1);13

for ∀e ∈ P and e′ /∈ P that share pci ∈ C(e) do14

if check share2(e, e′, pci) == false then15

mark e′ invalid and flag=0;16

end17

end18

if flag == 0 then19

repeat Line 13;20

flag = 1 and goto Line 14;21

end22

Add pcf to C and C(e′) for all e′ ∈ E that can be protected by pcf ;23

As can be seen from the above three cases, if we know e and e′ cannot validly

17

share pc, then it must be the case that pcf contains e′. And we can turn the sharing
into a valid one by making sure that pcf does not contain e′.

The pseudo-code of the SFPP scheme is shown in Algorithm 2. The input is a
working path P and the set of existing p-cycles C, the output is the updated set C
of p-cycles. Set Ctemp stores the protection segments that are used to protect the
links on P. The first loop from line 1-11 tries to find an existing p-cycle to protect
each link e ∈ P. If no existing p-cycle in C can protect a given e, then construct a
new p-cycle. We need to make sure that certain capacity sharing conditions have
to be satisfied. The second part from line 12-13 is to construct the long p-cycle
pcf for the whole path P. However, pcf may cause invalid sharing between any
link on P and the links not in P based on our previous analysis if it traverses any
link in Ctemp. Hence, we need to use function check share2 to check the validity
of pcf . If the function returns false, we need to temporarily remove the link and
reconstruct a new pcf repeatedly until a valid long p-cycle is found. This process
is described by line 14-22. After we find a pcf that ensures all p-cycle sharing is
valid, we add it into set C and also update C(e′) for each edge e′ 6= e that can be
protected by pcf in line 23.

The time complexity of SFPP is dominated by the repeated construction pro-
cess in lines 15-22. The complexity of function check share2(e, e′, pc) is O(|V |2),
so the complexity of lines 15-18 is O(|V ||E||V |2) = O(|E||V |3). This block of
code would be executed at most |E| times because at most |E| edges can be re-
moved from G. Therefore, the complexity of SFPP is O(|E|2|V |3).

Since SFPP makes use of long p-cycles, when failures occur in the network,
some rerouted working paths may pass through redundant nodes and links since
protection switching is done at the two endnodes of the failed link. This problem
can be solved using the algorithm given in [17], which removes the loop backs and
release the redundant capacity by reconfiguring the restored paths.

5. Numerical Results

5.1. Metrics and Methodology

We use ILOG CPLEX 10.1.0 to implement the ILP on a computer with four
Intel Xeon 2.40GHz CPUs and 4G of memory. The ILP scheme provides the op-
timal solution for static traffic demands. The simulations of SPPP and SFPP are
implemented on a computer with a Intel 3.0GHz CPU and 1.5G of memory. We
measure the performance of our schemes from following metrics:

• the protection redundancy: defined as the ratio of protection capacity to
working capacity.

18

• the reject ratio: defined as the ratio of the number of requests rejected to the
number of requests received.

• the number of wavelength channels: one wavelength channel is defined as
a wavelength on some link. For example, A 3-hop path uses 3 wavelength
channels.

• the number of XC: this metric denotes the number of optical cross connects
that need to be reconfigured upon a double-link failure.

When studying the performance of SPPP and SFPP, we first consider the in-
cremental traffic, that is, a demand never terminates once it is satisfied. In this
traffic model, the capacity of the network link is set to infinity. Then we study the
performance of these two schemes in dynamic traffic model.

In both traffic models, a set of randomly generated connection requests are
loaded to the network. For each connection request, the working path is routed
along the shortest path between the source and the destination. For dynamic traffic,
the arrival of traffic follows Poisson distribution with λ connection requests per
second and the duration of the request is exponentially distributed with a mean of
1/µ. The traffic load measured in erlangs is λ/µ.

5.2. ILP Results for Static Traffic
A small test network with 6 nodes and 11 edges (shown in Fig. 6) is used to test

our ILP scheme. Table 2 shows the protection redundancy and the running time of
ILP for different number of connections. Each data point is the average of ten test
cases.

0

1

4

2

5

3

Figure 6: The 6-node 11-edge network.

The table shows that as the number of connections increases from 1 to 5, the
protection redundancy decreases from 592% to 302%. This is expected because p-
cycle sharing can be better exploited when more connections exist in the network.
On the other hand, the running time increases exponentially as the number of con-
nections increases. We also use the SFPP and SPPP under the same scenarios and

19

Table 2: Redundancy and Computation time of ILP and heuristic algorithms
Number of connections: 1 2 3 4 5
ILP Run Times (s) 0.034 0.91 59.8 1304 11684.2
Protection Redundancy(ILP): 592% 448% 373% 306% 302%
Protection Redundancy(SPPP): 618% 546% 544% 534% 515%
Protection Redundancy(SFPP): 600% 561% 535% 498% 502%

calculate their redundancy performance. As expected, and as shown in Table 2,
SFPP and SPPP are not as efficient as the ILP under static traffic because they deal
with connection requests one by one and without considering the future incoming
connection requests.

When ILP is used to find the optimal protection strategy for static demands,
there will be sufficient time between the planning and provisioning processes even
the ILP has long run-time. Moreover, ILP can provide the baseline to evaluate the
performance of heuristic algorithms.

5.3. Comparison of SPPP and SFPP

We conduct simulations to compare the performance of SPPP and SFPP under
incremental traffic and dynamic traffic. Three networks, the SMALLNET network
, the COST239 network(Fig. 7) and the DISTRIBUTED network(Fig. 8)[18],
which consists of 47 nodes and 98 links, are used in the simulations.

6

2

4

3

0

9

110

7

8
5

6

2

43

0

9

1

7

8

5

a) SMALLNET b) COST239

Figure 7: SMALLNET and COST239 Networks.

In the first set of simulations, we consider incremental traffic. The total number
of wavelength channels used by all the working paths and by all the p-cycles are
recorded for each simulation run.

20

6

2

4

30

9

1

10

7
8

5

1112

1314

15
16

1718

19
20

22

23

2425

2627

28

29 30

31
32

33

34

35
36

37

38

39
40

4142
43

44

4546

21

Figure 8: Distributed Network.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 1000 2000 3000 4000 5000 6000 7000

N
um

be
r

of
 W

av
el

en
gt

h
C

ha
nn

el
s

U
se

d

Number of Connection Requests

Working Path
SFPP Scheme
SPPP Scheme

Figure 9: Wavelength usage of SPPP and SFPP in SMALLNET.

21

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 1000 2000 3000 4000 5000 6000 7000

N
um

be
r

of
 W

av
el

en
gt

h
C

ha
nn

el
s

U
se

d

Number of Connection Requests

Working Path
SFPP Scheme
SPPP Scheme

Figure 10: Wavelength usage of SPPP and SFPP in COST239.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 1000 2000 3000 4000 5000 6000 7000

N
um

be
r

of
 W

av
el

en
gt

h
C

ha
nn

el
s

U
se

d

Number of Connection Requests

Working Path
SFPP Scheme
SPPP Scheme

Figure 11: Wavelength usage of SPPP and SFPP in DISTRIBUTED.

22

In Fig. 9, we show the performance of SPPP and SFPP under different traf-
fic load in SMALLNET network. The results shows that SFPP uses less wave-
length channels for protection than SPPP under all traffic loads. Specifically, SFPP
achieves a 16.4%-18.3% reduction in wavelength usage over SPPP. The reason for
SFPP to ourperform SPPP is that SFPP uses long p-cycles that have more strad-
dling links so that higher protection efficiency can be achieved.

In Fig. 10, we show the performance of SPPP and SFPP in COST239 net-
work. Again, SFPP uses less wavelength channels for protection than SPPP under
all traffic loads. Specifically, SFPP achieves a 21.5%-24.5% reduction in wave-
length usage over SPPP. The improvement of SFPP over SPPP is bigger than that
in SMALLNET network.

In Fig. 11, we show the performance of SPPP and SFPP in DISTRIBUTED
network. Again, SFPP uses less wavelength channels for protection than SPPP
under all traffic loads. Specifically, SFPP achieves a 20.6%-24.2% reduction in
wavelength usage over SPPP. We can also observe that the number of wavelength
channels used is much higher than that used in SMALLNET and COST239 be-
cause DISTRIBUTED is larger. With the increase of wavelength channels used
by the working path, the wavlength channels reserved by these p-Cycles will also
increase.

 200

 250

 300

 350

 1000 2000 3000 4000 5000 6000 7000

P
ro

te
ct

io
n

R
ed

un
da

nc
y(

%
)

Number of Connection Requests

SFPP Scheme

SPPP Scheme

Figure 12: Protection redundancy of SPPP and SFPP in SMALLNET.

Fig. 12, Fig. 13, and Fig. 14 compare the protection redundancy of SPPP
and SFPP for SMALLNET, COST239 and DISTRIBUTED, respectively. These
figures show that the protection redundancy of SPPP and SFPP drop slightly as

23

 200

 250

 300

 350

 1000 2000 3000 4000 5000 6000 7000

P
ro

te
ct

io
n

R
ed

un
da

nc
e(

%
)

Number of Connection Requests

SFPP Scheme

SPPP Scheme

Figure 13: Protection redundancy of SPPP and SFPP in COST239.

 200

 250

 300

 350

 1000 2000 3000 4000 5000 6000 7000

P
ro

te
ct

io
n

R
ed

un
da

nc
e(

%
)

Number of Connection Requests

SFPP Scheme

SPPP Scheme

Figure 14: Protection redundancy of SPPP and SFPP in DISTRIBUTED.

24

the number of connections increases, which is consistent with the ILP results. The
redundancy of SFPP is much lower than that of SPPP. For SMALLNET, SFPP
achieves 16.4%-18.3% reduction in redundancy over SPPP; For COST239, SFPP
achieves 23.0% -24.5% reduction in redundancy over SPPP; For DISTRIBUTED,
SFPP achieves 23% -24% reduction in redundancy over SPPP.

As shown in Table 3, we also study the efficiency of p-Cycles constructed by
SFPP and SPPP under incremental traffic in three different networks. The p-Cycle
efficiency of p-Cycle pci is defined as the ratio of working wavelength channels
protected by pci over the wavelength channels reserved on p-Cycle pci. SFPP has
better efficiency performance than SPPP because SFPP tends to use longer p-cycles
that can protect more straddling links. Thus, each p-cycle has higher capacity
efficiency in average and this also explains why SFPP has lower redundancy.

Table 3: Comparison of p-Cycle Efficiency
Networks SMALLNET COST239 DISTRIBUTED
SFPP Efficiency 0.75 0.78 0.71
SPPP Efficiency 0.65 0.63 0.6

In the second set of simulations, we consider dynamic traffic. Each simulation
has 10 rounds and 5000 randomly generated connection requests are loaded to the
network in each round and the average reject ratio is recorded. The capacity of the
network link is set to 10 wavelengths.

In Fig 15, we compare the reject ratio of SFPP and SPPP under different traffic
loads (in erlangs) in SMALLNET network. The results show that SFPP performs
worse than SPPP when traffic load is low. This can be explained as follows. When
the traffic load is low, there is not enough connections to fully utilize the protection
capacity provided by the long p-cycles. We also observe that the long p-cycles can
be fully utilized and they can provide more efficient protection than those p-cycles
created by SPPP when the traffic load becomes high. According to our simulation,
SFPP performs better than SPPP when traffic load is above 32 erlangs. However,
the reject ratio is high and it is not practical.

In Fig 16, we compare the reject ratio of SFPP and SPPP under different traffic
loads in COST239 network. Again, the results show that SFPP performs worse
than SPPP under low traffic loads. Similarly, SFPP will perform better than SPPP
when the traffic load is above 30 erlangs.

In Fig 17, we compare the reject ratio of SFPP and SPPP under different traffic
loads in DISTRIBUTED network. Again, the results show that SPPP performs
much better than SFPP under low traffic loads. Which also shows that our SPPP
has good scalability performance.

25

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 1 2 3 4 5 6 7 8

R
ej

ec
t R

at
io

Traffic Load (Erlang)

SFPP Scheme

SPPP Scheme

Figure 15: Reject ratio of SPPP and SFPP in SMALLNET.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 1 2 3 4 5 6 7 8 9

R
ej

ec
t R

at
io

Traffic Load (Erlang)

SFPP Scheme

SPPP Scheme

Figure 16: Reject ratio of SPPP and SFPP in COST239.

26

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 1 2 3 4 5 6 7

R
ej

ec
t R

at
io

Traffic Load (Erlang)

SFPP Scheme

SPPP Scheme

Figure 17: Reject ratio of SPPP and SFPP in DISTRIBUTED.

We also observe that the reject ratio is 0 in all of these three networks when
there is no protection provided.

In Table 4, we compare the average computation time for a single demand us-
ing SPPP and SFPP in two test networks. As the table shows, it only takes SPPP
1.55 milliseconds on average to compute the p-Cycles for a demand in SMALL-
NET. Meanwhile, SPPP runs faster than SFPP in both networks which corresponds
well with previous time complexity analysis. SFPP just needs 2.45 milliseconds to
compute the p-Cycle in COST239. Thus, the proposed schemes are suitable for
dynamic demands. Both algorithms need more run time in DISTRIBUTED, which
is expected because the DISTRIBUTED network has much more edges and nodes.

Table 4: Average Computation Time(milliseconds): 10 rounds, 5000 demands in each round
Networks SMALLNET COST239 DISTRIBUTED
SPPP 1.55 1.9 39.86
SFPP 2.1 2.45 69.56

5.4. Comparison of SPPP and the Algorithms in [9]

We compare SPPP with the three approaches–Method I, Method II, and MADPA–
proposed in [9] as shown in Table 5. The network topology used is the 20-node
32-link ARPANET network. Protection ratio is the percentage of double-link fail-
ures that can be protected. Protection redundancy is the ratio of the total protection

27

Table 5: Comparison of Algorithms in ARPANET
Algorithm I II MADPA SPPP
Protection ratio 100% 100% 98.8% 100%
Protection redundancy 200% 200% 200% 259%
XCmax with signaling 26 18 N/A 6
XCavg with signaling 9.34 8.64 N/A 4.4
XCmax w/o signaling N/A N/A 24 4
XCavg w/o signaling N/A N/A 7.3 4

capacity to the total working capacity. XCmax and XCavg denote the worst-case
and average number of optical cross connects that need to be configured upon a
double-link failure. In [9], the authors assume the working capacity reserved on
each link is one unit such that the schemes proposed in the paper require fixed
protection capacity on each link, which equals 200%.

When a link fails, Methods I and II require that all nodes in the network are in-
formed of the failure through signaling. However, this is not required for MADPA.
SPPP can operate with or without signaling of the failure event. If, upon a link fail-
ure, the traffic on the link is sent on both p-cycles simultaneously, then signaling is
not required. In this case, a total of 4 cross connections are needed to recover from
any double-link failure because the two endnodes of each failed link need config-
ure their cross connects to direct the traffic onto the p-cycles. On the other hand, if
only one p-cycle is used to restore the traffic upon a link failure, then signaling of
failure is required and a total of 6 cross connections are needed to recover from a
double-link failure in the worst case.

The worst case occurs when the second failure affects the p-cycle used to pro-
tect the first failure. In this case, when the first link fails, both endnodes configure
their cross connects to direct the traffic onto the first p-cycle for this link. When the
second link fails, the endnodes of the link configure their cross connects to direct
the traffic onto one of the two p-cycles that is not affected by the first link failure.
After the endnodes of the first failed link learn that the second failure affects the
p-cycle being used, they reconfigure their cross connects to direct the traffic onto
the second p-cycle for this link. Thus, a total of 6 cross connections are needed.

The results in Table 5 show that while SPPP has higher protection redundancy
than the other three methods, the number of cross connections required is much
less. Since p-cycles are pre-configured, SPPP requires only the endnodes of the
failed links to configure their cross connects. On the other hand, cross connects
have to be configured by every node along the protection path in the other three
methods. Thus, SPPP is much faster in restoration than the other methods. Basi-

28

cally, SPPP trades off protection redundancy for restoration speed. Compared with
the other methods, SPPP’s gain in restoration speed is much larger than its loss in
protection redundancy.

6. Conclusions

In this paper, we consider the problem of protecting connections against two-
link failures. The basic idea is to protect each working link with two p-cycles with
link-disjoint protection segments. We present an ILP model to compute the opti-
mal set of p-cycles for protecting a set of static demands. The ILP can provide
the optimal solution for static demands and provide a baseline for evaluating the
performance of heuristic algorithms. Realizing that ILP is not suitable for online
provisioning process, we also propose two protection schemes – SPPP and SFPP
– for dynamic demands. The numerical results show that SFPP is more capacity
efficient than SPPP under incremental traffic. Under dynamic traffic, SPPP has
lower blocking than SFPP in most practical cases. In addition to the time com-
plexity analysis, we run simulations to show that the average computation time
for a single demand is at the milisecond-level. The time complexity analysis also
shows the good scalability of our proposed SFPP and SPPP schemes. Compared
with the algorithms proposed in [9], SPPP trades off protection redundancy for fast
restoration speed. In the future, we plan to develop heuristic algorithms to solve
the static traffic provisioning problem and design more efficient algorithms for dy-
namic traffic in terms of running time and protection redundancy. We will also
consider multiple-link failure protection.

Acknowledgments

This work is supported by NSF ANI-0237592 and CNS-0626741.

References

[1] R. Yadav, R. S. Yadav, H. M. Singh, A review of survivable transport net-
works based on p-cycles, in: International Journal of Computer Sciences and
Engineering Systems, Vol. 1, 2007.

[2] W. Grover, D. Stamatelakis, Bridging the ring-mesh dichotomy with p-cycles,
in: Proc. of DRCN Workshop, 2000.

[3] W. Grover, D. Stamatelakis, Cycle-oriented distributed preconfiguration:
Ring-like speed with mesh-like capacity for self-planning network restora-
tion, in: Proc. IEEE ICC’98, 1998, pp. pages 537–543.

29

[4] D. Schupke, C. Gruber, A. Autenrieth, Optimal configuration of p-cycles in
wdm networks, in: Proc. of IEEE ICC, 2002.

[5] B. Wu, K. L. Yeung, S. Xu, Ilp formulation for p-cycle construction based on
flow conservation, in: proceedings of the IEEE GLOBECOM, 2007.

[6] W. Grover, J. Doucette, Advances in optical network design with p-cycles:
Joint optimization and preselection of candidate p-cycles, in: Proc. of IEE
LEOS Summer Topical Meeting, 2002.

[7] W. D. Grover, A. Kodian, Failure-independent path protection with p-cycles:
Efficient, fast and simple protection for transparent optical networks, in: pro-
ceedings of the ICTON, 2005, pp. 363–369.

[8] A. E. Kamal, 1+n network protection for mesh networks: Network coding-
based protection using p-cycles, in: IEEE/ACM Transactions on Networking,
Vol. 18, 2010, pp. 67–80.

[9] H. Choi, S. Subramaniam, H.-A. Choi, Loopback recovery from double-link
failures in optical mesh networks, in: IEEE/ACM TRANSACTIONS ON
NETWORKING, Vol. 12, 2004, pp. 1119–1130.

[10] D. Schupke, Multiple failure survivability in wdm networks with p-cycles, in:
Proceedings of the International Symposium on Circuits and Systems, 2003.

[11] W. He, M. Sridharan, A. K. Somani, Capacity optimization for surviving
double-link failures in mesh-restorable optical networks, Photonic Network
Communications 9 (1) (2005) 99–111.

[12] A. Kodian, W. D. Grover, Multiple-quality of protection classes including
dual-failure survivable services in p-cycle networks, in: proceedings of the
Broadnets, 2005, pp. 231–240.

[13] H. Wang, H. T. Mouftah, P-cycles in multi-failure network survivability, in:
Proceedings of International Conference on Transparent Optical Networks,
2005.

[14] A. E. Kamal, 1+n protection against multiple faults in mesh networks, in:
proceedings of the IEEE International Conference on Communications (ICC),
2007.

[15] R. Bhandari, Survivable networks, algorithms for diverse routing, Kluwer
Academic Publishers, Norwell, MA, USA, 1999.

30

[16] T. Feng, L. Ruan, W. Zhang, Intelligent p-cycle protection for multicast ses-
sions in wdm networks, in: proceedings of the IEEE International Conference
on Communications (ICC), 2008.

[17] R. Asthana, Y. Singh, Second phase reconfiguration of restored path for re-
moval of loop back in p-cycle protection, in: Communications Letters, IEEE,
Vol. 11, 2007, pp. 201–203.

[18] P. Baran, On distributed communications networks, in: IEEE Trans. Com-
mun.,, Vol. COM-12, 1964, pp. 1–9.

