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Abstract—In case of unexpected or temporary events, cellular
networks can become quickly saturated. A promising solution
is using unmanned aerial vehicles (UAVs), known as drones,
as flying base stations. In this article, we address the issue of
anomalous behaviour within cellular networks that occurs during
crowded events. The proposed approach consists of two parts: the
detection of overloaded cells using machine learning algorithm
(LSTM – Long Short-Term Memory) and the deployment of
drone-Bss to assist the cellular network by providing wireless
coverage. Initially, we use the LSTM algorithm to analyze the
impact of extra-data on the network and then detect the peaks
of users demands. Then, we formulate an optimization problem
for maximizing the number of users to serve when deploying
drones taking into account the energy constraints. The proposed
approach is validated using real dataset extracted from the CDR
of Milan. Simulation results show that the use of drones can
satisfy the QoS requirements of the network.

Index Terms—Optimization, Drone-BS Deployment, Anomaly
Detection, Machine Learning, Crowd Monitoring.

I. INTRODUCTION

The tremendous number of smartphones, tablets, laptops
and the popularization of the use of social media passing
through 4G generates an enormous amount of data that may
be gathered and managed by cellular networks. During mass
events, extra data are uploaded. During a protest for example,
photos and videos are uploaded to social media and during
a marathon event, additional eHealth data are loaded to the
network. In these scenarios, the extra data may overload the
network and cause some anomalies that require autonomic and
pro-active tools. Indeed, smart mechanisms must be integrated
into the architecture and may be based on machine learning
techniques that have the power of exploiting the plethora of
data generated by cellular networks.

The cellular operators are confronting a major challenge due
to the high number of applications using cellular connectivity
and how to ensure ubiquitous connectivity for several devices
and users in a flexible, reliable, and secure manner while
improving the load on network resources. Another influential
issue for network operators is to identify sudden and local
anomalous behavior inside the network, whether it is an
explicit peak of users demands (happening during mass events
like a protest), which requires smart tools to ensure network
elasticity and service survivability.

One of the proposed solutions is the use of drones or Un-
manned Aerial Vehicles (UAVs), also known as drones, as
flying base stations [1]. Drones are characterized by mobility,
flexibility, and adaptive altitude. They are expected to provide
diverse civilian, commercial, and governmental services. Al-
though drone-cell technology is a promising solution to buck
up and support cellular network, it needs an optimized method
to deploy drones.

In literature, we find different works focusing on anomaly
detection and optimized drone-cell deployment. [2] proposes
an unsupervised clustering technique for fault detection and
diagnostics in a cellular network based on key performance
indicators (KPIs). The input data includes call blocking and
signal quality measurements, but it does not provide online
anomalies detection. [3] explores the problem of congestion
and proposes a framework for congestion management in a
drone-cells network. In [4], authors present an UAV-based
IoT platform and introduce the case of UAV-based crowd
surveillance applying facial recognition tools. They developed
a testbed using a built-in UAV along with a real-life LTE net-
work. A Support Vector Regression machine learning method
was utilized in [5] to define an online anomaly detection
tool. In [6]a comparison for anomaly detection using SVR
and two other algorithms named Multi-Layer Perceptron and
Multi-Layer Perceptron with Weight Decay was proposed.
Alsharo[7] proposed an energy management framework for
cellular heterogeneous networks assisted by solar powered
drone small cells. They formulated an integer linear pro-
gramming problem in order to minimize the total energy
consumption of the networks over a time-slotted period while
maintaining the network coverage and connectivity. Authors
also proposed a wireless relay selection scheme involving
multiple mobile Unmanned Aerial Vehicles (UAVs) to support
communicating ground users in [8]. The goal is to optimize
the transmit power levels and trajectories of the relaying UAVs
in order to maximize the data rate transmission of the ground
users which are suffering from the absence of direct link.

Most of the suggested anomaly detection solutions have
been assessed using simulated data to detect the anomalies,
which may influence the real performance and require time
especially when the networks become denser. Within this con-
text, we propose a self-organized anomaly detection scheme



using Long Short-Term Memory (LSTM) machine-learning
algorithm to forecast the normal behavior of the network.
This solution is applied to a pre-analyzed semi-synthetic data
set of cellular data in the context of a mass event in Milan
city. The LSTM algorithm is applied to calculate the normal
load of the network and then define the minimum and the
maximum acceptable threshold values. The proposed approach
compares then the collected real data to the predicted values
and generates alerts if the measured real time data exceeds the
thresholds. After that, the platform executes the 3-D drones-BS
deployment scheme aiming to collect data in overloaded cells.
We formulated an optimization problem aiming to support
the network’s capacity and taking into account the energy
constraint of drones.

The rest of the paper is structured as follows; in Section
II the anomaly detection method for abnormal events caused
by protest event data is detailed. In section III, we present
the drone-cell assisted deployment approach and we detail the
optimization model. Simulation parameters and a comprehen-
sive analysis for the impact of the extra data on the network
is presented in section V. Finally, section VI concludes the
paper.

II. DYNAMIC ANOMALY DETECTION

A. Data Set

The (CDRs) Call Detail Records used in this study is
published as a part of the Big Data Challenge launched by
Telecom Italia in 2014 [9]. The CDRs contains information
like Calls, SMS, and Internet activity of a customer that are
captured by the Telecom companies. The used dataset is a
description of data of the city of Milan which is divided
into 10,000 squares of size a 235m x 235m. The subscribers’
communications activities are detailed in the dataset. The cell
ID presents the geographical location. The activity occurrence
time, the country code, incoming and outgoing calls, received
and sent text messages and data usage (Internet) are available
in the dataset. The proposed data is in time slots of 10 minutes.
6 cells are controlled during a protest in the center of Milan
city. During the protest, we study the impact of photos and
videos data uploaded on social media.

B. Network Load Prediction and Anomaly Detection

LSTM-based Prediction Model: Different works inves-
tigated the Recurrent Neural Network (RNN) to deal with
forecasting time series in several areas. RNN is a class of Arti-
ficial Neural Network (ANN). Even they provide good results
treating time series, they suffer from the vanishing gradient.
For our study, we used the Long Short Term Memory(LSTM)
algorithm for network load prediction. The LSTM was firstly
proposed in 1997 by Hochreiter and Schmidhuber [10] for
language modeling to solve the vanishing problem.

Long Short-Term Memory is a recurrent neural network
formed of three layers: Input Layer, Hidden Layer, and Output
Layer [11]. It includes special blocks, each block contains
special multiplicative units called gates. A typical memory

block is composed of three gates. The incoming data are going
to be treated by the input gate so it could add information.

The Information that is no longer required for the LSTM
understanding are going to be removed by the forget gate.
The useful information are going to be selected by the output
gate from the current cell, state and showed out as an output.
Let’s consider the following formulation, X = (x1, ..., xt ), be
the input sequence, Y = (y1, ..., yt ) the output vector sequence
and hidden state of memory cell, K = (κ1, . . . , κt ) .

κt = K(Wκx xt +Wκκht−1 + bκ) (1)

pt = Wκy yt−1 + by (2)

Where:
Wκx corresponds to the weight between the input and hidden
layer parameters, Wκy corresponds to the weight between
hidden and output layer parameters, Wκκ corresponds to the
weight between hidden layers, bκ and by symbolizes the bias
vectors for the output and hidden layers. K is a nonlinear
activation functions.
To apply LSTM in the proposed scheme, we first predict the
normal daily load on each cell by training the LSTM model
with the history and measured network load dataset. In this
model, we stack 3 LSTM layers: the first layer considers one
input, the second layer is hidden and contains 4 LSTM blocks,
and finally the third layer is the output layer and generates a
single prediction value. his model is trained for 3000 epochs
and used a batch size of 1.

Dynamic Network Anomaly Detection: During the
protest, in the center of Milan, the amount of uploaded data
(photos, videos) to social media could cause sudden congestion
to the cellular network and then decrease its quality of service.
The prediction model is applied to calculate the normal load of
each terrestrial base station as a function of the time. Based on
this prediction model, we define the minimum (Min) and the
maximum (Max) acceptable threshold values. The real-time
collected data generated by users’ demand is then compared
to these predicted values (Min-Max). Anomalous time-interval
is detected if measured real time data is lower or higher than
the appropriate tolerance thresholds. Hence, the terrestrial base
stations may fail to handle all connected users because of the
congestion within the cell and conduct to a malfunction in the
infrastructure. For this reason, we are proposing an automatic
plateform that allows network operators to detect anomalous
network cells and launches the deployment of drones with a
mission of data collecting in overloaded cells. The objective
is to improve the quality of service (QoS) of the network.

III. OPTIMIZED 3-D DEPLOYMENT OF UAVS

In this section, we formulate an optimization problem of
3-D drone-cells deployment aiming to serve the maximum
number of users with the minimum consumption of energy.

A. System Model

This section presents the system model and states the
studied problem. We consider a cellular network assisted by a



set of dynamic drones, denoted D = {D1,D2, . . . ,Dk}. Drone-
Bs (DBSs) act as flying base-stations to back up the network
and cover the overloaded cells. The symbols and notations
used in the paper are summarized in Table II.

a) Network Model: In this study, the proposed network
model is centralized and composed of a coordinator base
station, charging stations and a set of drones (Figure 1). We
consider an urban area of interest to deploy DBSs. In Figure 1,
we distinguish three overloaded areas to be covered by DBSs
which can serve users in multiple cells. we consider an uplink
transmission that can be used for data collection (uploading
photos, videos).

Coordiantor

Charging station

Terrestrial BS

UAV

 Any crowd of 

people

Figure 1: Drone-assisted Network Model in crowded events.

The coordinator executes the prediction algorithm and then
locates the set of cells that should be assisted, denoted by
S = {S1, S2, . . . , Sn}. The set of charging stations is presented
by C = {C1,C2, . . . ,Cc}. The management of the drone-cells
deployment is based on the global objective function defined
hereafter.

Initially, all drones are located at the charging stations.
Based on the decision of the coordinator, they move to a
constant altitude h in the designated cells to serve ground
outdoor users. They return back to the charging station at the
end of the mission or when their batteries are depicted. In fact,
the state-of-charge (SoC) should be greater than W Joules,
which presents the residual energy for the drone to return to
the charging station. We define W as the maximum energy
level of the drone.

Let a given DBS k ∈ D be located in the 3-D Cartesian
space at (xk, yk, h) where the altitude h should not be lower
than Hmin. The Euclidean distance between DBS d and point
p = (Xp,Yp, Zp) is given by the following equation:

δk,p =
√
(xk − Xp)

2 + (yk − Yp)2 + (h − Zp)
2 (3)

We note that the size of the area to be covered is a function
of the altitude of the drone, which affects the number of users
served by the drone-BS.

Table I: Notations and Descriptions

Notation Description
D = {D1, D2, . . . , Dk } The set of drones
S = {S1, S2, . . . , Sn } The set of congested cells
C = {C1,C2, . . . ,Cc } The set of charging stations
W The maximum energy level of DBS
W The lowest energy level of DBS
T The drone service time
h The constant altitude of DBS
(xk, yk, zk ) The 3-D geographical coordinates
V The constant speed of the drone
ψ The total length of the trajectory of the

drone
qi The displacement of the drone
Phov The hovering power level of the drone
Phar The hardware power level of the drone
ηLoS and ηNLoS The average propagation loss LoS and

NLoS, respectively
ΓLoS and ΓNLoS The path loss of LoS and NLoS, respec-

tively
md The mass of the drone
Vmax The maximum speed of the drone
G The earth gravity
νp The number of the drone’s propellers
Rp The radius of the drone’s propellers
P0, Pi The drone hardware power at full speed and

in idle mode, respectively
ς the speed of light
Wd (T, ψ) The energy consumption of the drone
δd, i The distance between a drone d and user i
Nmax The maximum number of available drones

b) Air-to-Ground Channel Model: The Air-to-Ground
channel is characterized by its higher chance of line-of-
sight (LoS) connectivity. Indeed, we consider a path loss
model including both transmissions: Line-of-Sight (LoS) and
Non-Line-of-Sight (N LoS). The probability of having a LoS
connection between a drone and covered users depends on the
elevation angle of the transmission link. The LoS probability
can be expressed by [7]:

PLoS =
1

1 + α × exp(−β[θ − α])
(4)

where α and β are constant values that depend on the
environment (rural, urban, dense urban, etc). θ is the elevation
angle between the DBS and a given ground user. If h is the
DBS’s altitude and d the horizontal distance between the DBS
and the user, then θ is expressed in degrees as:

θ =
180
π

arctan(
h
d
) (5)

Consequently, the probability for the aerial base station to
ground user links to have a N LoS is given by the following
equation:

PNLoS = 1 − PLoS (6)

According to equation 4, the LoS probability increases as
the elevation angle θ increases.

B. Drone Power Model

Reducing the energy consumption is a major challenge
specially when using drones in public safety and UAV-
assisted Cellular Networks. Indeed, DBS consumes energy



in data collection (the communication energy) and in-flying
(the propulsion energy) [12]. The communication energy is
related to the signal processing and signal transmission while
the propulsion energy refers to the mechanical energy con-
sumption for movement and hovering. Typically, the energy
consumption caused by wireless transmission is neglected
compared to the propulsion energy and is ignored in the
proposed model. Furthermore, the energy consumption of the
DBS depends on the role and the mission of the DBS, the
flying path and weather conditions.

We denote by Phov and Phar the hovering and hardware
power levels, respectively. The flying power can be expressed
as [7]:

Pd
F = Phov + Phar =

√
(mdG)3

2πR2
pνpρ

+
P0 − Pi

Vmax
Vd + Pi (7)

Where Vd and md are the constant speed and the mass of
the drone respectively. Vmax is the maximum speed, ρ is the
air density and G is the earth gravity. νp and Rp represent the
number and the radius of the drone’s propellers, respectively.

We differentiate two statues for the drones: serving or idle.
In fact, P0 and Pi are the hardware power levels when the
drone is flying in full speed and when the drone is in the idle
mode.

IV. PROBLEM FORMULATION

In this section, we formulate the optimization problem with
two objectives: maximize the service time of the drones, and
maximize the number of covered users in overloaded cells.

A. Maximizing the DBs service time
Since drones only receive data in the uplink direction,

and since receiver’s power consumption is very small, the
communication energy consumption is ignored in the proposed
model. Hence, we only formulate the energy consumed in
flying. This metric helps to minimize the number of deployed
drones.

Given ψ the length of the trajectory of the drone, the
required energy consumption for traveling with the constant
speed, V , is expressed in Eq. 8:

Wd(T, ψ) = Pd
F

ψd∑
i=0

qd, i

V

= [

√
(mdG)3

2πR2
pνpρ

+
P0−Pi

Vmax
Vd + Pi]

ψ∑
i=0

qd, i

Vd, i
; ∀d ∈ D(8)

where the trajectory of the drone is expressed as the sum of
all displacement between charging stations and cells (qd,i . We
assume that if the drone is in a static position, then it consumes
only the power in idle mode when collecting data. However,
when it is flying, it will consume the hardware power.

The optimization problem minimizing the total energy con-
sumption for a drone d ∈ D is given as:

P(1) : Minimize
T,ψd

(max(Wd(T, ψd))) (9)

Subject to:
W ≤ W −Wd(T, ψ); (10)

ψd =

T∑
i=0

qd(i) (11)

Constraint (10) ensures that the designated drone has suffi-
cient energy to return to the charging station. W0 is the initial
energy level of the drone. Constraint (11) indicates that the
total length of the trajectory of the DBS is the sum of different
displacement during the service time, denoted qd .

B. Objective 2: The maximum cell coverage
The coverage of the drone-cell is identified by the maximum

number of covered users. In fact, the size of the area to be
covered change as a function of the altitude of the drone.
A user is covered by the drone if the link satisfies its QoS
requirement. The path loss for the LoS and N LoS links in dB
is given respectively by [13]:

ΓLoS[dB] = 20 log10(
4π fcδd,i

ς
) + ηLoS (12)

ΓNLoS[dB] = 20 log10(
4π fcδd,i

ς
) + ηNLoS (13)

Where ς is the speed of light, δd,i is the distance between
a drone and a given user i and fc is the carrier frequency.
The values of ηLoS and ηNLoS depend on the environment
and present the additional loss to the free space propagation
for LoS and N LoS connection, respectively.

The probabilistic mean path loss is given by:

PL = PLoSΓLoS + PNLoSΓNLoS (14)

Considering σ as the path-loss corresponding to the QoS
requirement. Hence, a given user i is served by the drone-BS,
if PL ≤ σQoS .

As shown in Figure 1, the coverage region for each drone
is assumed to be a circular disk with radius Rd and center
Od = (xd, yd). The user υ is covered by the drone if it is
located in the circular disk. Let υdi ∈ {0, 1} a binary variable
that indicates whether a user is served by the drone or not.
υdi = 1 iff user υi is served by the drone d located in (xi, yi).
This condition can be written as:

υi

√
(xd − xi)2 + (yd − yi)2 ≤ Rd (15)

Depending on the QoS for all users, the best region to
be served by the drone-BS is identified by offloading the
maximum set of users denoted U. The optimization problem
can be formulated as follows:

P(2) : maximize
h, {υ },xd,yd

∑
d∈D

∑
i∈U

υi (16)

Subject to:

υi ≤ 1 +
R2
d
− (xd − xi)2 − (yd − yi)

2

M
; ∀i ∈ U (17)



Xl ≤ xd ≤ Xm,
Yl ≤ yd ≤ Ym,
PL ≤ σQoS

(18)

υdi ∈ {0, 1}, ∀i ∈ U (19)∑
d∈D

υdi ≤ 1 (20)

Nc
d ≤ Nmax (21)

where Xl , Yl , HL , Xm, Ym, present respectively the minimum
and maximum allowed values for xd and yd of the drone-BS.
These values are defined by the coordinator and depend on the
overloaded cell. Nmax is the maximum number of available
drones. M is a very large constant defined in order to verify
the condition in Eq. (15). In fact, if the RHS(Right Hand Side)
is ≤ 1, then υdi may be either 0. If RHS ≥ 1 then υdi must be
0 or 1.

C. The Global Objective Function
The global optimization problem can be expressed as:

maximize
h, {υ },xd,yd,Wd

∑
d∈D

∑
i∈U

υi (22)

Subject to: (10), (11), (17), (18), (19) and (21).
To guarantee a certain time for serving users and due to the

limited energy of drones, the positions of drone-BSs should
be well calculated in order to reduce the power consumption
in flying which increases the activity time (T) of each drone.

The problem (22) is a mixed integer non-linear problem
(MINLP) which is difficult to solve. In fact, this difficulty
arises due to the coupling between the altitude (h) and the
horizontal placement (xd, yd). Hence, we suppose that the
drones move in a constant altitude and have a constant
position.

D. DBS Management scheme

The proposed algorithm for DBS deployment is centralized
and the decision is made by the coordinator that is detecting
the outliers and managing the set of drones. The coordinator
plays the role of network orchestrator: It is responsible in
gathering the information about the network traffic, executing
the LSTM prediction algorithm to detect overloaded cells
and then making the right decision to deploy drones. The
coordinator is selected by the network operator and can be
a central node such as a macro-cell.

The framework starts by executing the prediction algorithm
to identify the cells with peak users’ demand. Then, the
coordinator, calculates the required number of drones based on
the amount of extra data. After that, it assigns DBSs to cells
based on previous equations and constraints. The assignment
is obtained based on the shortest path between the charging
station and the congested cell. Hence, minimizing the flying
distance involves reducing the energy consumption and then
maximizing the service time. Figure 2 depicts a global view
of the proposed framework architecture.

Collecting on-line 

data

Identifing 

Congested cells

Assigning DBS to 

cells

Covering users 

(DBS)

Enegy  =  
(Eq: 17)

Return to the 

charging station

YesNo

Figure 2: The proposed framework flowchart.

DBSs fly from their initial position, collect data and then
return back to the charging station based on the optimized
assignment defined by the coordinator. This solution tries to
maximize the total QoS by avoiding the deployment of drones
in cells with the highest outliers.

V. PERFORMANCE EVALUATION

A. Performance Metrics

In this section, numerical results are provided to investigate
the utility of using drones when anomalies are detected in cel-
lular network. We consider real time-series dataset presented in
II-A combined with semi-synthetic data generated by demands
of users during the crowded event. We consider the data usage
of 6 cells in the city center. We consider two types of data:
Non-Real Rime (NRT) and Real-Time (RT). The NRT data
is used in store-and-forward transmission mode and depends
on the storage capacity of the smartphone. It is chosen to be
beyond the maximal storage capacity so that it does not affect
the performance of the smartphone. The RT data is uploaded
immediately on social networks.

Table II illustrates the values of the remaining parameters
used in the simulations for the DBS deployment. We assume
a network consisting of 7 charging stations, 14 drones and
six terrestrial base stations. We consider that the drones are
initially charged with W = 6k J of energy and placed at the
charging station.

B. Simulation Results

In figures 3 and 4, we start by investigating the effect of
protesting data on the cellular network. These figures present
the anomalous behavior of the network for one cell from the
six considered cells in the center of Milan. We study the
impact of the data capacity storage and we vary the percentage
of protesting data. Red curves present the range: Min and
Max threshold values of normal traffic which are calculated
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Figure 3: Network load for storage capacity = 35%.
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Figure 4: Network load for storage capacity = 10%.

Table II: Simulation parameters.

Parameter Value

Number of cells 6
Drone speed 15 m/s
Drone Height 10 m
Drone max battery 6KJ
Number of drones 14
Number of charging stations 7
ηLoS 1 dB
Rp 20 cm
ΓNLoS 12 dB

based on the LSTM algorithm. Blue curves present the normal
network traffic however the green curves illustrate the real time
network load when adding the semi-synthetic protesting data
(IoT data) which can be upload in real time on social media.

Considering the NRT data, we fix the storage capacity for
the protesting event data to 35% and to 10% out of the
total capacity storage of the smartphone. Results are presented
in Figures 3 and 4, respectively. Furthermore, we vary the
percentage of users’ demand by considering 30% (Figures
3a, 4a), 60% (Figures 3b, 4b) and 80% (Figures3c and 4c)
of network traffic. It is clear that the extra-data does not
have a significant impact on the network with 30% of users’
demand for both cases of storage capacity. In essence, we
depict an overrated peak of data (between 5PM and 6 PM in
Figures 3a and 4a). These load peaks impact the radio channel

occupancy causing the anomalies. They are detected if the real-
time network load is higher than the maximum value of the
predicted data. When the users’ demand increases to 60%, we
still have the same load peak as the first scenario but with a
higher amplitude. We notice an other smaller peak detected
between 1PM and 2PM. This peak is more important with
10% of capacity storage. This is because, data is sent on real
time to the network however in the case of Figure4b, 35% of
semi-synthetic data is stored on the smartphone.

Finally, when protesting data reaches 80% of data, the cel-
lular network is seriously impacted in both cases. Indeed, the
streaming data causes three peaks (around 9 AM, 2 PM, and 6
PM) with different degree, but the most important load peak is
between 5PM and 6PM where the global data traffic is nearly
double compared to the ordinary network measurements. We
conclude from these results that the uploaded data on social
media in the protest will add an important load to the normal
cellular network and it drastically impacts the network in some
configurations. Moreover, The variation of storage capacity
parameter can influence the amplitude of the peak. It is clear
than with 10% the peak is more important than 35%. This is
due to the fact that the forward time for the NRT application
does not coincide with the usual network peak hour. Finally,
results are also influenced by the behavior of the cell to which
the user is attached. The normal cellular load peak hour can
be different from a cell to another, and this is related to the



load profile of each cell. The presented results are for one cell.
The behaviour of other five cells is similar to the presented
results but with different time and degree of peaks.

Figure 5: The number of covered users vs the total number of
users

After detecting the anomalous time-intervals in each cell
by executing the LSTM prediction and anomaly detection
algorithm, the coordinator identifies the set of congested cells
and executes the deployment scheme in order to collect data
and maximize the coverage. We make a zoom on the peaks in
other cells tacking into account the behaviour of each cell. We
consider cells with the highest peaks of users’ demand when
people are protesting between 12PM and 7PM. The protests
arrive to the main square of the city and then block roads. They
walk on the streets of Milan city center. The maximum load is
reached between 3PM and 4PM and then decreases. Figure 5
depicts the preliminary results for the optimization problem
with 14 drones. It is clear that all users are fully covered
before 2PM and drone-BSs collect required data. When they
are out of charge, they return back to the charging stations.
However, with the high peak of demands, 14 drones are not
sufficient to cover all users. In essence, only between 65%
and 70% of users are covered. This is because, the number
of available drones is insufficient (Drones are still charging)
and is lower than the requested number. After charging the
batteries, drones can collect data from all cells and cover all
users (at 7PM).

VI. CONCLUSION

In this paper, we present a dynamic network anomaly
detection approach that has been validated with real dataset.
Then, we developed a 3-D DBS deployment aiming to support
macro-cells when data rate demand is exploded. In essence,
we formulated an optimization problem where its objective
is to maximize the number of users to cover in overloaded
cells by finding the optimal 3-D placement of the UAVs
in addition to minimizing the UAVs’ energy consumption.
Hence, the goal is to improve the quality of service (QoS) of
the network. The proposed solution helps network operators
to efficiently manage their infrastructure and allows them to
implement self-organized and autonomous networks that can
face the plethora of unexpected data. In the future, we will

work toward performing crowd surveillance and analyzing of
recorded videos.
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