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Abstract—As sensornets are increasingly being deployed in  on mission-critical sensornets, however, these works have
mission-critical applications, it becomes imperative tha we  mostly ignored the timeliness of data delivery when de-
consider application QoS requirements in in-network proces- signing INP mechanisms. Recently, Becchettil. [3] and

ing (INP). Towards understanding the complexity of joint . . .
QoS and INP optimization, we study the problem of jointly Oswaldet al. [4] examined the issue of data delivery latency

opt|m|z|ng packet packing (i_e_’ aggregating shorter packts n In-netWOI‘k pI‘OCESSIng. TheOI’etlca| n nature, theSdIS&I
into longer ones) and the timeliness of data delivery. We assumedotal aggregationwhere any arbitrary number of
identify the conditions under which the problem is strong information elements (e.g., reports after an event detegti
NP-hard, and we find that the problem complexity heavily .54 pe aggregated into one single packet, which may well

depends on aggregation constraints (in particular, maximm . ; - . . "
packet size and re-aggregation tolerance) instead of netwo be infeasible in many practical settings. Thus, the intéyac

and traffic propertiesl For cases when the pr0b|em is NP- betWeen SpecifiC, reaI'WorId INP methOdS and data delivery
hard, we show that there is no polynomial-time approximatia timeliness remains a largely unexplored issue in sensornet
scheme (PTAS); for cases when the problem can be solved in systems. This is an important issue because 1) it affects
polynomial time, we design polynomial time, offline algorihms the efficiency and quality of real-time embedded sensing

for finding the optimal packet packing schemes. To understad d trol d 2 il sh later in th
the impact of joint QoS and INP optimization on sensomet 2&Nd control, an ) as we will show later in the paper,

performance, we design a distributed, online protocotPack that ~ data aggregation constraints (e.g., aggregation capéoity
schedules packet transmissions to maximize the local utjiof  and re-aggregation tolerance) affect, to a greater extent
packet packing at each node. Using a testbed of 130 TelosB than network and traffic properties, the complexity and the

motes, we experimentally evaluate the properties of tPack. rgt0c0l design in jointly optimizing INP and the timelirses
We find that jointly optimizing data delivery timeliness and .
of data delivery.

packet packing significantly improve network performance.

Our findings shed light on the challenges, benefits, and solians Towards understanding the interaction between INP and

of joint QoS and INP optimization, and they also suggest open data delivery latency in foreseeable real-world sensornet

problems for future research. deployments, we focus on a widely used, application-
Keywords-Wireless network, sensor network, real-time, independent INP method -packet packingvhere multiple

packet packing, in-network processing short packets are aggregated into a single long packet [5],

[6]. In sensornets (especially those for real-time sensing

|. INTRODUCTION and control), an information element from each sensor is

After the past decade of active research and field trialsysually short, for instance, less than 10 bytes [7], [1]. Yet
wireless sensor networks (which we calnsornet here- the header overhead of each packet is relatively high in most
after) have started penetrating into many areas of sciencegnsornet platforms, for instance, up to 31 bytes at the MAC
engineering, and our daily life. They are also envisionedayer alone in IEEE 802.15.4 based networks. It is also
to be an integral part of cyber-physical systems such asxpected that more header overhead will be introduced at
those for alternative energy, transportation, and heatthc other layers (e.g., routing layer) as we standardize sapsor
In supporting mission-critical, real-time, closed loopsi@g  protocols such as in the effort of the IETF working groups
and control, CPS sensornets represent a significant departlbBLowPAN [8] and ROLL [9]. Besides header overhead,
from traditional sensornets which usually focus on opeplo MAC coordination also introduces non-negligible overhead
sensing, and it is critical to ensure messaging quality.(e.gin wireless networks [6]. If we only transmit one short
timeliness of data delivery) in CPS sensornets. The stninge information element in each packet transmission, the high
application requirements in CPS make it necessary to lethinoverhead in packet transmission will significantly reduee t
about sensornet design, and one such problem is in-networetwork throughput; this is especially the case for higrespe
processing. wireless networks such as IEEE 802.15.4a ultrawideband

For resource constrained sensornets, in-network proces@JWB) networks. Fortunately, the maximum size of packet
ing (INP) improves energy efficiency and data deliverypayload is usually much longer than that of each information
performance by reducing network traffic load and thuselement, for instance, 128 bytes per MAC frame in 802.15.4.
channel contention. Over the past years, many INP methodbherefore, we can aggregate multiple information elements
have been proposed for query processing (e.g., TinyDB [1])nto a single packet to reduce the amortized overhead of
and general data collection (e.g., DFuse [2]). Not focusingransmitting each element. Packet packing also reduces the



number of packets contending for channel access, hence it 1l. SYSTEM MODEL AND PROBLEM DEFINITION
reduces the probability of packet collision and improves in o system model

formation delivery reliability, as we will show in Section.V
The benefits of packet packing have also been recogniz

by the IETF working groups 6LowPAN and ROLL. {vi :4=1...N} U{R} whereR is the root of the tree

Unlike total aggregation assumed in [3] and [4], the 5pq represents the data sink of a sensornet, {and i =
number of information elements that can be aggregated into N} are the set ofV sensor nodes in the network. An
a single packet is constrained by the maximum packet Siz%dge(vi,vﬁ € E if v; is the parent of; in the collection

thus we have to carefully schedule information elementtree_ The parent of a node in T is denoted ap;. We use
transmissions so that the degree of packet packing (i.egpy  (7)to denote the expected number of transmissions
the amount of sensing data contained in packets) can %quirédj for delivering a packet of lengttfrom a nodev;
maximized without violating application requirement oe th . .o anceston;, and we use,,. () to denote the time
timeliness of data delivery. As a first step toward undexbstan taken to deIiverja packet of Ien&;t]h‘rom v; 10 ;.
ing the complexity of jointly optimizing INP and QoS with g40h information element: generated in Jthe tree is
aggregation constraints, we analyze the impact that aggregantified by a 4-tupldv,, Iy, 7, d,) Wherew, is the node
gation constraints have on the computational complexity of;, ¢ generatess, I, is the length ofz, r, is the time
the problem, and we prove the following: when z is generated, and, is the deadline by which
« When a packet can aggregate three or more informatiom needs to be delivered to the sink node We use
elements, the problem is strong NP-hard, and there is. = d. — (2 + t,,r(l.)) t0 denote thespare timefor
no polynomial-time approximation scheme (PTAS).  z, and we define théfetime ofz as [r,, ).
« When a packet can o_nly aggregate two informationB_ Problem definition
rerizmzr};sétgzcck(;rpg;enxﬁ)é(jseegzr:gfeg r;,\:\:jh?gjs;;\éveodevlveith Given a collection tred“_ and a set of infprmation ele-
other elements on their way to the sink: if the elementdNeNtsX = {x} generated in the tree, we define the problem

in a packet can be separated, the problem is strong NFQ_f jointly optimizing packet packing and the timeliness of

hard and there is no PTAS for the problem; otherwisedat@ delivery as follows:

it can be solved in polynomial time by modeling the Problem P: givenT and X, schedule the transmission of
problem as a maximum weighted matching problem ineach element inX to minimize the total number of packet
an interval graph. transmissions required for delivering to the sinkR while

« The above conclusions hold whether or not the routingensuring that each element be delivered Robefore its
structure is a tree or a linear chain, and whether or notleadline.
the information elements are of equal length. In an application-specific sensornet, the information ele-

Besides shedding light on the complexity and protocol de_ments generated by different nodes depend on the applica-

. - A . o tion but may well be of equal length [7]. Depending on
sign of jointly optimizing data delivery timeliness and ket whether the sensornet is designed for event detection or

packing (as well as other INP methods), these fmdmg.sdata collection, moreover, the information elemekitsnay

incidentally answer several open gquestions on the contglexi . . e .
y peng y follow certain arrival processes. Based on the specifivalrri

of batch-process scheQullng n mFe.rvaI gra‘,’h"‘? [,10]' process ofX, the following special cases of probléPitend
To understand the impact of jointly optimizing packet to be of practical relevance in particular:
packing and data delivery timeliness, we design a disteithut

online protocoltPackthat schedules packet transmissions toProblem Po:  same a¥ except that 1) the elements af

maximize the local utility of packet packing at each node.are of equal length, and 2 includes at most one element

Using a testbed of 130 TelosB motes, we experimentaIIJrom each node; this problem can represent sensornets that

evaluate the properties of tPack. We find that jointly opti-detect rare events.

mizing data delivery timeliness and packet packing signifi-Problem P;: same a$ except that 1) the elements &f

cantly improve network performance (e.g. in terms of highare of equal length, and 2) every two consecutive elements

reliability, high energy efficiency, and low delay jitter). generated by the same nodg are separated by a time
The rest of the paper is organized as follows. We discusiterval whose length is randomly distributed [im b]; this

the system model and precisely define the joint optimizatiorproblem can represent periodic data collection sensornets

problem in Section IIl. Then we analyze the complexity of (with possible random perturbation to the period).

the problem in Section Ill, and present the tPack protocopygpiem p,: same a® except that the elements &f are

in Section 1IV. We experimentally evaluate the performanceys equal length: this problem represents general apptinati
of tPack and study the impact of packet packing as well a%pecific sensornets.

joint optimization in Section V. We discuss related work in

Section VI, and conclude the paper in Section VDue to I1l. COMPLEXITY OF JOINT OPTIMIZATION

the limitation of space, we relegate the proofs of most of the The complexity of problenl® depends on aggregation
theorems of this paper to [11]. constraints such as maximum packet size and whether infor-

We consider a directed collection trée= (V, E), where
e9 and E are the set of nodes and edges in the tiée-



mation elements in a packet can be separated and repackétbn assign them one by one to the leaf nm{es v% 41
with other elements. For convenience, we uUsdo denote of this subtree. If variableX; occurs unnegated in clause
the maximum number of information elements that canC;, we create an mformatlon elemenﬂ with lifetime
be packed into a single packet. (Note tidtdepends on [/, d/] = [(3i+1)(n+1)+7, (3i+2)(n+1)+j+t1+ta+13).
the maximum packet size and the lengths of informationf X, occurs negated in clausg, we create an information
elements in problen.) In what follows, we first analyze elementl"g [ f,dﬁ] [3i(n+1)—|—j (3i+1)(n+1)+j+t1+

the case wher > 3 and then the case wheli = 2, and ¢, +t3). Letd)] < ... < iz, denote the indices of the clauses

we discuss how aggregation constraints affect the probleny, \which vanabIeX occurs. For every two messag;es
complexity.

andx ,t=1,...,k; — 1, define an information element
A. Complexity wher{ > 3 B
P y CLIJ '[at?d{zt]:[d'_tl_tQ_t& i —|—t1—|—t2—|—t3].
We first analyze the complexity and the hardness of ap- ‘“ “ g
proximation for problent,, then we derive the complexity We also de‘f'nemo D rdys dh,) = 1,77+t + 2+ t5], and
of Py, P, and P accordingly. The analysis is based on ga] : [r] T, By ] = [dfiv—tl—t2—t3a3(m+1)("+1)+j+

reducing the Boolean-satisfiability-problem (SAT) [12]Re
as we show below.
Theorem 1:When K > 3, problemP, is strong NP-hard

whether or not the routing structure is a tree or a linear
chain 9 2k + 1 information elements, we set the source of each

Proof: To prove thatP, is strong NP-hard, we first eIement one by one from nodé to nOde”%jH For each

present a polynomial transformatighfrom the SAT prob- Nnodevy, we define an elementj : [j,j + t1 + t5 + ts].
lem to Py, then we prove that an instandé of SAT is  For each nodev;, ,, we define an element;, .,
satisfiable if and only if the optimal solution &f = f(II)  [B(m+1)(n+1)+74,3(m +1)(n+1) +j+t1 +t2 +t3).
has certain minimum number of transmissions. Figure 2 demonstrates how the lifetimes of thede + 3
Given an instancdl of the SAT problem which has
Boolean variablesXy, ..., X,, andm clausesC,...,C,,,
we derive a polynomial time transformation frofh to /0 ,
an instancell’ of Py with K > 3 as follows. We first L i l AT j i P J

t1 +t2+1t3]. In this Wayf every two consecutive information
elements in this sequence overlap in their lifetimes, amd th
size of the overlap ig; + to + t3. After defining these

construct a tree as shown in Figure 1. In this tree, node
j=1,...,n, corresponds to the variablé;. Nodewv is an
|ntermed|ate node, and nodgeis the sink nodeETXv v IS
D with D > 1, and ET X, is 1. If a variableX; appears Mm+lXn+D+j+e +1 41,
k; times in total in them clauses, theriz_k + 3 children

nodes are attached to nodﬁ labeled aa)m . v% hoe M Figure 2. Lifetimes of information elements
children are also attached to nodglabeled asf, ..., vg,.

rYm*

Each of these edge hastl’ X of 1. The transmission time  jnformation elements are defined.

from each child ofv; to itself is ¢,, and the transmission  gimjlarly, we definem information elements generated
time fromvj’ to v is Z4. by nodesuvs,...,vS,, with elementz; : [r;,d;] = [(3i +
D(n+1) 4+t +ta —ts, Bi +2)(n + 1) + t1 + t2 + t3],
i=1,...,m, being generated by nod¢. Then, for nodes
v; to v, we define an information element for each of them
with lifetime [4(m+1)(n+1)+14, 4(m+1)(n+1)+i+ta+t3],
1 =1,...,n. For nodev, define an information element with
lifetime [4(m +1)2(n+ 1) +4,4(m + 1)2(n + 1) +i + t3].
Given the above polynomial-time reduction from a SAT
problemlII to an instancél’ of Py, we prove that the mini-
mum number of transmissions requiredIhis Z};l (2k;+
D430 [(kj+1)(D+1)]+2n(D+1)+2n+m+1if and
only if II is satisfiable. We also find that the above reduction
can be extended to the case when the routing structure is a
linear chain inPy. Due to the limitation of space, we relegate
the detailed discussion to [11]. Therefol®, is strong NP-
hard whenK > 3, whether or not the routing structure is a
tree or a linear chain. [ |
After constructing the tree, we define the information ele- Having proved the strong NP-hardnessPaf when K >
ments and their lifetimes as follows. For each subtree tbote3, we analyze the hardness of approximationlfgrusing a
at nodev;, we first define2k; + 1 information elements and gap-preserving reduction from MAX-3SAT 8, [13], and

Figure 1. Reduction from SAT t&y when K > 3



we have and we only discuss in detail the case when re-aggregation
Theorem 2:When K > 3, there exists > 1 such that it is prohibited as follows.

is NP-hard to achieve an approximation ratiolefﬁ(l— When K = 2 and re-aggregation is prohibited, we can
%) for problemP,, where N is the number of information solve problemP (and thus its special versiori, P;, and
elements inPy. P3) in polynomial time by transforming it into a maximum

Proof: Interested readers can find the proof in [L1l8  weighted matching problem in an interval graph. An interval
Based on the definition of polynomial time approximationgraphG; is a graph defined on a sétof intervals on the

scheme (PTAS) and Theorem 2, we then have real line such that 1§7; has one and only one vertex for
Corollary 1: There is no polynomial time approximation each interval in the set, and 2) there is an edge between two

scheme (PTAS) for problef, when K > 3. vertices if the corresponding intervals intersect withheac
Based on the findings fdP,, we have other. Given an instance of proble®) we solve it using

Theorem 3:When K > 3, problemsP;, Py, andP are  Algorithm 1 as follows:
strong NP-hard whether or not the routing structure is a
tree or a linear chain, and there is no polynomial-timeAlgorithm 1 Algorithm for solving P when K = 2 and
approximation scheme (PTAS) for solving them. re-aggregation is prohibited

Proof: Interested readers can find the proof in [1M. 1: Generate an interval grapfi;(V;, E;) for problemP

Theorems 1 and 3 show that the joint optimization prob-  gs follows:
lems are strong NP-hard and there is no PTAS, whether
or not the routing structure is a tree or a linear chain
and whether or not the information elements are of equal
length. In contrast, Becchetit al. [3] showed that, for total
aggregation, the joint optimization problems are solvable
in polynomial time via dynamic programming on chain
networks. Therefore, we see that aggregation constraints
make the difference on whether a problem is tractable for
certain networks, and thus it is important to consider them i
the joint optimization. Incidentally, we note that Theor8m
also answers the open question on the complexity of Problem
(P4) of batch-process scheduling in interval graphs [10].

« Select an arbitrary information elemangenerated
by nodev, at timer, and with spare time,, define
an intervallry, rq + s4] for ¢ on the real line.

« For each remaining information elemerngenerated
by nodew, at timer, and with spare time,, let
nodewv,, be the common ancestor of andv, that
is the farthest away fronR among all common
ancestors ofv, and v,, then define an interval
[T‘q - tqupq + tUPUPQ’rq - tqupq + tUP + S‘Z] for
information elemenp.

o Let V7 = (. Then, for each information element
define a vertexs and add it toV;.

o Let E; = (. If the two intervals that represent
any two information elements and h overlap

VUpq

B. Complexity wher = 2

We showed in Section IlI-A that the problenfs,: = with each other, define an edge,”) and add
0,1,2, andP are all strong NP-hard and there is no PTAS it to E;; then assign edgéu,h) with a weight
for these problems wheK > 3. We prove in this section com(u,h) = ETX,,, r(ly) + ETX,,,r(ln) —
that, when K = 2, the complexity of these problems ETX,. r(lu+11), wherel, andl, are the length
depends on whether information elements in a packet can of u and h respectively.

be separated and re-packed with other elements (which we
X . . 2
call re-aggregatiorhereafter) on their way to the sink. When
re-aggregation is disallowed, these problems are soliable
polynomial time; otherwise they are strong NP-hard. Note
that, whenK > 3, these problems are all strong NP-hard
even if re-aggregation is disallowed, which can be seen from
the proof of Theorem 1. Note also that, even though re-
aggregation may well be allowed in most sensornet systems
when the in-network processing (INP) method is packet
packing, re-aggregation may not be possible or allowed For Algorithm 1, we have
when INP is data fusion such as lossy data compression [14]. Theorem 4:When K = 2 and re-aggregation is prohib-
Via the study on the impact of re-aggregation, therefore, wéted, Algorithm 1 solves probler®® in O(n?) time, where
hope to shed light on the structure of the joint optimizationn is the number of information elements considered in the
problems when general INP methods are considered. problem.This holds whether or not the routing structure is
When K = 2 and re-aggregation is allowed, the complex-a tree or a linear chain, and whether or not the information
ity of the joint optimization problems is very much similar elements are of equal length.
to the case wherX > 3; that is, these problems are all Proof: It is easy to see that if information elements
strong NP-hard and there is no PTAS, whether or not theandh are packed together, the total number of transmissions
routing structure is a tree or a linear chain and whether otaken to deliver, andh is ET X, r(l,) + ETX,, r(ln) —
not the information elements are of equal length. Due to the?T X, , r(l,) — ET X, r(ln) + ET Xy, r(lu + 1) =
limitation of space, we relegate the detailed proofs to [11] ET X, r(l,) + ET Xy, r(ln) — com(u, h). Let Vi be the

: Solve the maximum weighted matching problem ¢&r
using Edmonds’ Algorithm [15].

3: For each edgéu, h) in the matching, information ele-

mentsu and h are packed together at nodg,. For all

other vertices not in the matching, their corresponding

information elements are sent to the sink alone without

being packed with any other information element.




set of vertices in the interval graph;, M be a matching global optimal solution, therefore, we focus on designing a
in Gy, V1 be the set of nodes iff, andV, = V;/V4. Then  local, distributed online algorithrtPack that optimizes the

the weight of M, denoted byiW,,, is as follows: local utility of packet packing at each node.
Based on the definition d?, its optimization objective is
W = Ywmen comu, h) to minimize P J
= Yumen ETX o, m(l) + ETX,, n(ln) e~ T .
—(ETXy,r(lu) + ET Xy, r(In) * datane
—com(u, h))]

where T'X,,.; is the total number of transmissions taken
to deliver data,.; amount of data to the sink before their
deadlines. For convenience, we cdlC the amortized cost

= Z(u,h)el\l (ETXvuR(lu) + ETXo,r(ln))
- Z(u,h)eM[ETXvuR(lu) + ETth,R(lh)

—com(u, h)] of delivering data,,.; amount of data. In what follows, we

= Ysevs ETXsr(ls) + 2 pev, ETXor(ly) design an online algorithm tPack based on this concept of
A wmen ETXv,r(lu) + ET Xy, r(ln) amortized cost of data transmission.
—com(u, h)] When node; has a packepkt in its data buffer,;
+ 2 vev, ETXor(l)} can decide to transmijtkt immediately or to hold it. Ifj

= ey, BT Xur(l) transmitspkt immediately, information elements carried in
{2 mem BT X, r(lu) + ET Xy, r(ln) pkt may be packed with packets s ancestors to reduce
—com(u,h)] + 3, cv, ETXyr(ly)} the amortized cost of data transmissions from those nofles; i

1) j holdspkt, more information elements may be packed with

Note that >, .y, ETXur(l,) is a fixed value, and 1t 5o that the amortized cost of transmission froan be
> wnyemETXo, r(lu) + ET Xy, r(ln) — com(u,h)] +  reduced. Therefore, we can define titdity of transmitting
>vev, ETXur(ly) is the total number of transmissions, or holdingpkt as the expected reduction in amortized data
denoted byET X;0:a1, incurred in the packing scheme gen- yransmission cost as a result of the corresponding action,
erated by Algorithm 1. ThereforéyT' X101 Is minimized  gnd then the decision on whether to transmit or to hditl
if and only if W), is maximized, which means that solving depends on the utilities of the two actions. For simplicitgla
the maximum weighted matching problem can give us anor Jow control overhead, we only consider the immediate
optimal solution to the original packet packing problem.  parent of nodel when computing the utility of transmitting

Let n denote the total number of information elementspkt_ We will show the goodness of this local approach
in this problem. The whole algorithm consists of threethrough competitive analysis later in this section andugto
parts. The first one is to define an interval graph andestbed based measurement in Section V.
assign weights to each node and edge in the graph, whose|n what follows, we first derive the utilities of holding

time complexity isO(n?). The second part is to solve the and transmitting a packet, then we present a scheduling rule
maximum weighted matching problem, whose time com-nat improves the overall utility.

plexity is O(n®) by Edmonds’ Algorithm [15]. And the
third part is to convert the optimal matching problem to theA, Utility calculation
optimal packing scheme, whose time complexity(én).

. . v . For convenience, we define the following notations:
Therefore, the time complexity of the whole algorithm is g

O(n?) +0(n?) + O(n) = O(n3). L : maximum payload length per packet;
| ETX;,(l) : expected number of transmissions taken to
By the definition of the weightom(u, h) for elementsu transport a packet of lengthfrom node
and i in Algorithm 1, the solution generated by the maxi- j to its ancestop;
mum weighted matching tends to greedily pack elements asp; : the parent of node; in the routing tree.

soon as possible after they are generated. This observation
motivates us to design a local, greedy online algoritRack . )
in Section IV for the general joint optimization problems, nodev; depend on the following parameters related to traffic
and the effectiveness of this approach will be demonstrate§attern:

through competitive analysis and testbed based measutemen« With respect tov; itself and its children:

study in Sections IV and V. Note that, incidentally, Theo-

The utilities of holding and transmitting a packsgtt at a

. . t; : expected time to receive another packet’
rem 4 also answers the open question on the complexity . )
: . : - from a child or locally from an upper layer;
of scheduling batch-processes with release times in iaterv . ,
sy : expected payload size pft’.

graphs [10].

« With respect to the parent af;:
IV. A UTILITY BASED ONLINE ALGORITHM P P of

t, : expected time till the parent transmits another
packetpkt” that does not contain information
elements generated or forwarded byitself;
expected payload size oft”.

We see from Section Il that problei® and its special
cases in sensornets are strong NP-hard in most system
settings, and there is no polynomial-time approximation
scheme (PTAS) for these problems. Instead of trying to find Sp



The utilities of holding and transmitting a packett also P, to denote this set of packets. Given the limited payload
depend on the following constraints posed by timelinesshatpkt carries, it may happen that not every packePj;
requirement for data delivery as well as limited packet:sizegets packed (to full) via the payload fropit. Accordingly,

« Grace periodt’f for delivering pkt: the maximum the utility U, of immediately transmittingkt is calculated

allowable latency in deliveringkt minus the expected as follows:
time taken to transpoyikt from v; to the sink without « If every packet Ierkt gets packed to fullvith payload

being held at any intermediate node along the route.
If t’f < 0, pkt should be transmitted immediately to
minimize the extra delivery latency.

o Spare packet spaeéf of pkt: the maximum allowable
payload length per packet minus the current payload
length of pkt.

Parameters’f and the size of the packets coming
next from an upper layer ai; or from v;’s children
determine how muchkt will be packed and thus the
potential utility of locally holdingpkt.

Then, the utilities of holding and transmitting a packet are

calculated as follows.

Utility of holding a packet. ~When a nodev; holds a
packetpkt, pkt can be packed with incoming packets from
v;’s children or from an upper layer at;. Therefore, the
utility of holding pkt at v; is the expected reduction in the
amortized cost of transmittingkt after packingpkt. The
utility depends on (a) the expected number of packets that
v; will receive withint’, time (either from a child or locally
from an upper layer), and (b) the expected payload sizé
these packets. Given that the expected inter-packet aiterv
is t;, the expected number of packets to be received;at

within ¢, time |s . Thus, the expected overall si& of

the payload to be received withir) time is tf s;. Given
the spare spacé in the packepkt, the expected siz8; of
the payload that can be packed intbt is min{S], s} =

mm{ Lsi, s}

Therefore the expected amortized cdst; of transport-
ing the packet to the sinik after the anticipated packing
is

1
ACl: L—Sf SIETXJR(L_S}+SI)
where(L — s’f) is the payload length gkt before packing.

Since the amortized costC; of transportingpkt without
the anticipated packing is

1
AC] = 7o ETXjR(L —s)
the utility U; of holdrngpkt is
U = AC]— AC (3)

Ui(Py)

from pkt, i.e., (L—sp) <L—sf
Then, the overaII utilityU,, is

t/
%
U/ _ 23 ETf(ij(sp) _ ETX r(L)
D t
s fL (4)
P
_ BTX, n(sy)  BTX,, (L)
- Sp L

« If not every packet mPPkt gets packed to fulvith

payload frompkt, i.e., (L —8p) > L — s

In this case,LLiz/fJ number of packets are packed to
full; if mod(L — s’;, L—s,) >0, there is also a packet
that gets partially packed with mef — s’, L — s;)
length of payload frompkt. Thus the total number
of packets that benefit from the packet transmission is
[ f} Denoting modL — s, L — sp,) bY ;04 and
Iettlng Lnoqa be Lifl0q >0 and 0 otherwise, then the
overall utility U} is

Lfs}
|—L75p ]ETijR(Sp)

[/
v, = 7
tm]sp

L—s
LLf—S,f)JETij R(L)+mod ETXp; r(sp+Hlmoda)

L—s}
[H-\sp+L75/f

(®)

Therefore, the utilityl,, of immediately transmittingkt
to p; is

l i i _ o
U, = UI;, if o (L. sp) <L — s ©6)
U, otherwise

where U, and U, are defined in Equations (4) and (5)
respectively.

B. Scheduling rule

Given a packet to be scheduled for transmission, if the
probability that the packet is immediately transmittedPis
(0 < P, < 1), then the expected utility/;(P;) is

=P, xU,+(1—-P)U=U +P(U,-U) (7)

whereU,, andU; are the utilities of immediately transmitting

Utility of immediately transmitting a packet. If nodev;
transmits the packetkt immediately to its parenp;, the
utility comes from the expected reduction in the amortized
cost of packet transmissions gt as a result of receiving
the payload carried bykt. Whenwv; transmitspkt to p;,

and locally holding the packet respectively. To maxinlize
P, should be set according to the following rule:

P — 1 if U > U
710 otherW|se

the grace period opkt at p; is still %, thus the expected That s, the packet should be immediately transmitted if
number of packets that do not contain mformatlon elementg,e utility of immediate transmission is greater than that

from v; and can be packed withkt atp; is f , and we use

of locally holding the packet. For convenience, we call



this local, distributed decision rulack (for time-sensitive
packing.

Competitive analysis. To understand the performance of
tPack as compared with an optimal online algorithm, we
analyze the competitive ratio of tPack. Since it is difficult
to analyze the competitive ratio of non-oblivious online
algorithms for arbitrary network and traffic pattern in the
joint optimization [4] and tPack is a non-oblivious algbrit,

we only study the competitive ratio of tPack for complete
binary trees where all the leaf nodes generate information
elements according to a common data generation process,
and we do not consider the impact of packet length on linkhat multihop networks can be created. We also use channel
ETX. We denote these Specia| cases of pro[j]le@s prob|em 26 of the CC2420 radio to avoid external interference from
P’. The theoretical analysis here is to get an intuitive undersources such as the campus WLANs. We use the TinyOS
standing of the performance of tPack; we experimentallycollection-tree-protocol (CTP) [17] as the routing pratbio
analyze the behaviors of tPack with different networks,form the routing structure, and we use the lowa’s Timesync
traffic patterns, and application requirements througtbess ~ Protocol [18] for network wide time synchronization.

based measurement in Section V. We relegate the study gprotocols studied. To understand the impact of packet
the competitive ratio of tPack as well as the lower boundpacking and its joint optimization with data delivery tiriel

on the competitive ratio of non-oblivious online algorittm ness, we comparatively study the following protocols:

for the general problen” as a part of our future work. « noPack information elements are delivered without
(Note that the best results so far on the lower bound of the being packed in the network

competitive ratio of joint INP- and latency- optimizatiolsa « simplePack information elements are packed if they
only considered the cases where only leaf nodes generate happen to be buffered in the same queue, but there is
information elements, and these results are for oblivious not packing-oriented scheduling '

algorithms and for cases where no aggregation constraint | b, the packing- and timeliness-oriented scheduling

is Cﬁnsiderecri] [41.) algorithm that maximizes the local utility at each node,
'Tl'hen, weSI?:ve b B pack i - as we discussed in Section IV. (We have also evaluated
eorém o.ror problem -, ack is min{K, another version of tPack, denoted t®ack-2hopwhere

Figure 3. NetEyewireless sensor network testbed

ETX,.r . .
maxy,ev., prx.ry J-competitive, where K is the the forwarding utilityl/,, considers both the parent node
maximum number of information elements that can and the parent's parent; we find that tPack-2hop does
be packed into a single packét,; is the set of nodes that not bring significant improvement over tPack while
are at least two hops away from the sifk introducing higher overhead and complexity, thus our
Proof: Interested readers can find the proof in [1M. discussion here only focuses on tPack.)

From Theorem 5, we see that tPack is 2-competitive ifiye haye implemented

A ) in TinyOS [19], a system library
every link in the network is of equal ETX value.

which includes all the above protocols. The implementation
Implementation. Interested readers can find the discussiortakes 40 bytes of RAM (plus the memory required for
on how to implement tPack in TinyOS in [11]. regular packet buffers) and 4,814 bytes of ROM.

V. PERFORMANCE EVALUATION Performance metrics. For each protocol we study, we

To characterize the impact of packet packing and its joimevaluate their behaviors based on the following metrics:
optimization with data delivery timeliness, we experimen- « Packing ratio number of information elements carried
tally evaluate the performance of tPack. in a packet;

« Delivery reliability. percentage of information elements
A. Methodology ) correctly received by the sink;
Testbed. ~ We use theNetEyewireless sensor network  , pelivery cost number of transmissions required for

testbed at Wayne State University [16]. NetEye is deployed  gelivering an information element from its source to
in an indoor office as shown in Figure 3. We usé(ax 13 the sink;

grid of TelosB motes in NetEye, where every two closest , | atency jitter variability of the time taken to deliver
neighboring motes are separated by 2 feet. Out of the 130  jnformation elements from the same source node, mea-

motes in NetEye, we randomly select 120 motes (with  syred by the coefficient-of-variation (COV) [20] of
each mote being selected with equal probability) to form information delivery latency.

a random network for our experimentation. Each of these

TelosB motes is equipped with a 3dB signal attenuator andraffic pattern.  To experiment with different sensornet

a 2.45GHz monopole antenna. scenarios, we use both periodic data collection traffic and
In our measurement study, we set the radio transmissiofivent detection traffic trace as follows:

power to be -25dBm (i.e., power level 3 in TinyOS) such « DG6: each source node periodically generates 50 infor-



mation elements with an inter-element interval, denoted —

by A,, uniformly distributed between 500ms and 6s; Blsimplepack

this is to represent high traffic load scenarios. N - .
e Ejes: an event traffic where a source node generates ]

one packet based on the Lites [21] sensornet event

traffic trace.

4
©

o
o

To understand the impact of the timeliness requirement of
data delivery, we experiment with different latency requir
ments. For periodic traffic, we consider maximum allowable
latency in delivering information elements that is 1, 5, 9,
or 14 times the average element generation period, and we 0
denote them by.1, L5, L9, and L14 respectively; for event
traffic, we consider maximum allowable latency that is 3s, _
12s, 36s, or 64s, and we denote themIy/, L12/, L36/, Figure 5.
and L64’ respectively. Out of the 120 motes selected for
experimentation, we let the mote closest to a corner of o
NetEye be the sink node, and the other mote serves as Blsimpiepack
a traffic source if its node ID is even. For convenience,
we regard a specific combination of source traffic model
and latency requirement taffic pattern Thus we have 8
traffic patterns in total. To gain statistical insight, weeat
each periodic traffic pattern 5 times and each event traffic
pattern 10 times in our experiments. In the experiments,
each information element is 16-byte long, and a packet can ﬂ ﬂ ﬂ H
W — =y

Delivery reliability
o
=

=}
o N

I |

L14

L5 L9
Maximum allowable latency

Delivery reliability: D6

Delivery cost
= = N N w
o (4] o (4] o

Gl

aggregate up to 7 information elements (iE.= 7).

o

L1 L5 L9 L14
B. Measurement results Maximum allowable latency
Figures 4, 5, and 6 show the medians as well as their Figure 6. Delivery costD6
Bciorac retransmissions as well as fewer number of packets gener-
6 pack ated. Note that the low delivery reliability in simplePask i
- [T = due to intense channel contention.

[41)

Figure 5 also shows that tPack improves data delivery
reliability even when the allowable latency in data deljwisr
small (e..g, in the case dfl) where the inherent probability
for packets to be packed tends to be small. Therefore,
tPack can be used for real-time applications where high

H H H H data delivery reliability is desirable. Figure 4 shows ttheg
OJ I I I packing ratio in tPack is very high and close to 6 except for
= U 2 o the case of_1 where the packing probability is significantly
reduced by the limited probability for a node to wait due to
Figure 4. Packing ratioD6 stringent timeliness requirement. Note that the upper doun
on the packing ratio in our experiments is 7, thus tPack
95% confidence level confidence intervals for the packingachieves a packing ratio very close to the optimal, which
ratio, delivery reliability, and delivery cost when the so&1  corroborates our analytical result in Theorem 5.
traffic model is D6. (Similar phenomena are observed for These figures show, surprisingly, that simplePack can
Ejies, and we relegate the details to [11] due to theperform worse than noPack despite packet packing in sim-
limitation of space.) We see that the packing ratio in tPackplePack. This is because packet packing in simplePack can
is significantly higher than that in noPack and simplePackbe too limited to significantly reduce channel contention
The increased packing ratio reduces channel contention arglich that the increased packet length as a result of the
thus reduces the probability of packet transmission ¢otlis  packing actually reduces packet delivery reliability;stlé
which improves data delivery reliability. The reduced prob further exacerbated by the fact that losing a packed packet
ability of transmission collision and the increased numbemeans losing more information elements than that of an
of information elements carried per packet in tPack in turnunpacked packet containing only one information element.
reduces delivery cost, since there are fewer number of pack&herefore, it is important to schedule packet transmission

Packing ratio
N w S

-

L L
Maximum allowable latency



to improve the degree of packet packing so that the draw- As a special INP method, packet packing has also been
backs of packing can be overshadowed by the benefitstudied for sensornets as well as general wireless and
On the other hand, the difference between the performanogired networks, where mechanisms have been proposed to
of simplePack and noPack is not statistically significantadjust the degree of packet packing according to network
at the 95% confidence level. Moreover, packet packing ircongestion level [5], [22], to address MAC/link issues teth
simplePack still reduces the delivery cost of noPack as cato packet packing [23], [6], [24], to enable IP level packet
be seen from Figure 6, which is desirable in low-powerpacking [25], and to pack periodic data frames in automotive
sensornets. Due to the reduced contention in simplePack aragplications [26]. These works have focused on issues in
the fact that co-channel contention increases uncertainty local, one-hop networks without considering requirements
data delivery, network performance has lower variabiliga on maximum end-to-end packet delivery latency in multi-
is more predictable (e.g., narrower confidence intervals fohop networks. With the exception of [26], these works did
the medians of performance metrics) in simplePack than imot focus on scheduling packet transmissions to improve
noPack too. the degree of packet packing, and they have not studied the
Similarly, performance variability is low in tPack due to impact of finite packet size either. Saket et 6] stud-
the reduced channel contention which is in turn a resulied packet packing in single-hop controller-area-network
of the improved packet packing. For instance, Figure 7(CAN) with finite packet size. Our work addresses the open
shows the latency jitter in different protocols, and we seeguestions on the complexity and protocol design issues
for jointly optimizing packet packing and data delivery
timeliness in multi-hop wireless sensornets.
Blomicback Most closely related to our work is [3] where the authors
LtPack studied the issue of optimizing INP under the constraint of
maximum end-to-end data delivery latency. But the study
did not consider aggregation constraints and instead axsum
total aggregationwhere any arbitrary number of information
elements can be aggregated into one single packet. The study
did not evaluate the impact of joint optimization on data
H delivery performance either. Our work focuses on settings

o o I I
) © = [N} i

Latency jitter

o
IS

where packet size is finite, and we show that aggregation
constraints (in particular, maximum packet size and re-

o
[N}

0

Maximum allowable latency aggregation tolerance) significantly affect the problemmeo
plexity and protocol design. Using a high-fidelity sensérne
Figure 7. Latency jitterD6 testbed, we also systematically examine the impact of joint

optimization on packet delivery performance in multi-hop
that the jitter is the lowest in tPack. In tPack, moreover,wireless networks.
the latency jitter decreases as allowable latency desease Solis et al [27] also considered the impact that the timing
These properties are desirable in CPS sensornets where reaf packet transmission has on data aggregation, and the
time sensing and control require predictable data deliverproblem of minimizing the sum of data transmission cost
performance (e.g., in terms of low latency jitter), espiygia and delay cost has been considered in [4] and [28]. These
in the presence of potentially unpredictable, transiemt pe studies also assumed total aggregation, and they did not
turbations. consider hard real-time requirements on maximum end-to-
end data delivery latency. Ye et §29] considered the local
VI. RELATED WORK optimal stopping rule for data sampling and transmission in
In-network processing (INP) has been well studied indistributed data aggregation. It did not consider hard-real
sensornets, and many INP methods have been proposéifne requirement either, and it did not study network-wide
for query processing (e.g., TinyDB [1]) and general datacoordination and the limit of data aggregation. Yu et al
collection (e.g., DFuse [2]). When controlling spatial and[30] studied the latency-energy tradeoff in sensornet data
temporal data flow to enhance INP, however, these method#thering by adapting radio transmission rate; it did not
did not consider application requirements on the timenesstudy the issue of scheduling data transmission to improve
of data delivery. As a first step toward understanding théhe degree of data aggregation.
interaction between INP and application QoS requirements,
our study has shown the benefits as well as the challenges
of jointly optimizing INP and QoS from the perspective Through both theoretical and experimental analysis, we
of packet packing. As sensornets are increasingly beingxamine the complexity and impact of jointly optimizing
deployed for mission-critical tasks, it becomes importantpacket packing and the timeliness of data delivery. We
to address the impact of QoS requirements on general INBnd that aggregation constraints (in particular, maximum
methods other than packet packing, which opens interestingacket size and re-aggregation tolerance) affect the @nobl
avenues for further research. complexity more than network and traffic properties do,

VII. CONCLUDING REMARKS



which suggest the importance of considering aggregation[7] A. Arora et al, “A line in the sand: A wireless sensor network

constraints in the joint optimization. We identify conditis
for the joint optimization to be strong NP-hard and condi-
tions for it to be solvable in polynomial time. For cases when

transforming it to the maximum weighted matching problem

in interval graphs; for cases when it is strong NP-hard[10]

we prove that there is no polynomial-time approximation
scheme (PTAS) for the problem. We also develop a local
distributed online protocol tPack for maximizing the local

utility of each node, and we prove the competitiveness of
the protocol with respect to optimal solutions. Our testbed

based measurement study also corroborates the importance
of QoS- and aggregation-constraint aware optimization °f12]

packet packing.
While this paper has extensively studied the complexity,

algorithm design, and impact of jointly optimizing packet [13]

packing and data delivery timeliness, there are still a ric
set of open problems. Even though we have analyzed th
competitiveness of tPack for non-trivial scenarios and thi

has given us insight into the behavior of tPack, it remaing15]

an open question on how to characterize in a closed form
the competitiveness of tPack and non-oblivious online al-
gorithms in broader contexts. The analytical and algorith-

mic design mechanisms developed for packet packing mayp 7]

well be extensible to address other in-network processing
methods such as data fusion, and a detailed study of this

will help us better understand the structure of the joint[18
optimization problem and will be interesting future work [19
to pursue. We have focused on the scheduling aspect ¢f0]

the joint optimization, and we are able to use mathematical

tools such as interval graphs to model the problem; or21]

the other hand, how to mathematically model and analyze

the impact of the joint optimization on spatial data flow [22

is still an open question and is beyond the scope of most
existing network flow theory, thus it will be interesting to

explore new approaches to modeling and solving the joint23]

optimization problem.
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