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Abstract—As sensornets are increasingly being deployed in
mission-critical applications, it becomes imperative that we
consider application QoS requirements in in-network process-
ing (INP). Towards understanding the complexity of joint
QoS and INP optimization, we study the problem of jointly
optimizing packet packing (i.e., aggregating shorter packets
into longer ones) and the timeliness of data delivery. We
identify the conditions under which the problem is strong
NP-hard, and we find that the problem complexity heavily
depends on aggregation constraints (in particular, maximum
packet size and re-aggregation tolerance) instead of network
and traffic properties. For cases when the problem is NP-
hard, we show that there is no polynomial-time approximation
scheme (PTAS); for cases when the problem can be solved in
polynomial time, we design polynomial time, offline algorithms
for finding the optimal packet packing schemes. To understand
the impact of joint QoS and INP optimization on sensornet
performance, we design a distributed, online protocoltPack that
schedules packet transmissions to maximize the local utility of
packet packing at each node. Using a testbed of 130 TelosB
motes, we experimentally evaluate the properties of tPack.
We find that jointly optimizing data delivery timeliness and
packet packing significantly improve network performance.
Our findings shed light on the challenges, benefits, and solutions
of joint QoS and INP optimization, and they also suggest open
problems for future research.

Keywords-Wireless network, sensor network, real-time,
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I. I NTRODUCTION

After the past decade of active research and field trials,
wireless sensor networks (which we callsensornets here-
after) have started penetrating into many areas of science,
engineering, and our daily life. They are also envisioned
to be an integral part of cyber-physical systems such as
those for alternative energy, transportation, and healthcare.
In supporting mission-critical, real-time, closed loop sensing
and control, CPS sensornets represent a significant departure
from traditional sensornets which usually focus on open-loop
sensing, and it is critical to ensure messaging quality (e.g.,
timeliness of data delivery) in CPS sensornets. The stringent
application requirements in CPS make it necessary to rethink
about sensornet design, and one such problem is in-network
processing.

For resource constrained sensornets, in-network process-
ing (INP) improves energy efficiency and data delivery
performance by reducing network traffic load and thus
channel contention. Over the past years, many INP methods
have been proposed for query processing (e.g., TinyDB [1])
and general data collection (e.g., DFuse [2]). Not focusing

on mission-critical sensornets, however, these works have
mostly ignored the timeliness of data delivery when de-
signing INP mechanisms. Recently, Becchettiet al. [3] and
Oswaldet al. [4] examined the issue of data delivery latency
in in-network processing. Theoretical in nature, these studies
assumedtotal aggregationwhere any arbitrary number of
information elements (e.g., reports after an event detection)
can be aggregated into one single packet, which may well
be infeasible in many practical settings. Thus, the interaction
between specific, real-world INP methods and data delivery
timeliness remains a largely unexplored issue in sensornet
systems. This is an important issue because 1) it affects
the efficiency and quality of real-time embedded sensing
and control, and 2) as we will show later in the paper,
data aggregation constraints (e.g., aggregation capacitylimit
and re-aggregation tolerance) affect, to a greater extent
than network and traffic properties, the complexity and the
protocol design in jointly optimizing INP and the timeliness
of data delivery.

Towards understanding the interaction between INP and
data delivery latency in foreseeable real-world sensornet
deployments, we focus on a widely used, application-
independent INP method —packet packingwhere multiple
short packets are aggregated into a single long packet [5],
[6]. In sensornets (especially those for real-time sensing
and control), an information element from each sensor is
usually short, for instance, less than 10 bytes [7], [1]. Yet
the header overhead of each packet is relatively high in most
sensornet platforms, for instance, up to 31 bytes at the MAC
layer alone in IEEE 802.15.4 based networks. It is also
expected that more header overhead will be introduced at
other layers (e.g., routing layer) as we standardize sensornet
protocols such as in the effort of the IETF working groups
6LowPAN [8] and ROLL [9]. Besides header overhead,
MAC coordination also introduces non-negligible overhead
in wireless networks [6]. If we only transmit one short
information element in each packet transmission, the high
overhead in packet transmission will significantly reduce the
network throughput; this is especially the case for high speed
wireless networks such as IEEE 802.15.4a ultrawideband
(UWB) networks. Fortunately, the maximum size of packet
payload is usually much longer than that of each information
element, for instance, 128 bytes per MAC frame in 802.15.4.
Therefore, we can aggregate multiple information elements
into a single packet to reduce the amortized overhead of
transmitting each element. Packet packing also reduces the



number of packets contending for channel access, hence it
reduces the probability of packet collision and improves in-
formation delivery reliability, as we will show in Section V.
The benefits of packet packing have also been recognized
by the IETF working groups 6LowPAN and ROLL.

Unlike total aggregation assumed in [3] and [4], the
number of information elements that can be aggregated into
a single packet is constrained by the maximum packet size,
thus we have to carefully schedule information element
transmissions so that the degree of packet packing (i.e.,
the amount of sensing data contained in packets) can be
maximized without violating application requirement on the
timeliness of data delivery. As a first step toward understand-
ing the complexity of jointly optimizing INP and QoS with
aggregation constraints, we analyze the impact that aggre-
gation constraints have on the computational complexity of
the problem, and we prove the following:

• When a packet can aggregate three or more information
elements, the problem is strong NP-hard, and there is
no polynomial-time approximation scheme (PTAS).

• When a packet can only aggregate two information
elements, the complexity depends on whether two ele-
ments in a packet can be separated and re-packed with
other elements on their way to the sink: if the elements
in a packet can be separated, the problem is strong NP-
hard and there is no PTAS for the problem; otherwise
it can be solved in polynomial time by modeling the
problem as a maximum weighted matching problem in
an interval graph.

• The above conclusions hold whether or not the routing
structure is a tree or a linear chain, and whether or not
the information elements are of equal length.

Besides shedding light on the complexity and protocol de-
sign of jointly optimizing data delivery timeliness and packet
packing (as well as other INP methods), these findings
incidentally answer several open questions on the complexity
of batch-process scheduling in interval graphs [10].

To understand the impact of jointly optimizing packet
packing and data delivery timeliness, we design a distributed,
online protocoltPack that schedules packet transmissions to
maximize the local utility of packet packing at each node.
Using a testbed of 130 TelosB motes, we experimentally
evaluate the properties of tPack. We find that jointly opti-
mizing data delivery timeliness and packet packing signifi-
cantly improve network performance (e.g. in terms of high
reliability, high energy efficiency, and low delay jitter).

The rest of the paper is organized as follows. We discuss
the system model and precisely define the joint optimization
problem in Section II. Then we analyze the complexity of
the problem in Section III, and present the tPack protocol
in Section IV. We experimentally evaluate the performance
of tPack and study the impact of packet packing as well as
joint optimization in Section V. We discuss related work in
Section VI, and conclude the paper in Section VII.Due to
the limitation of space, we relegate the proofs of most of the
theorems of this paper to [11].

II. SYSTEM MODEL AND PROBLEM DEFINITION

A. System model

We consider a directed collection treeT = (V, E), where
V and E are the set of nodes and edges in the tree.V =
{vi : i = 1 . . .N} ∪ {R} whereR is the root of the tree
and represents the data sink of a sensornet, and{vi : i =
1 . . .N} are the set ofN sensor nodes in the network. An
edge〈vi, vj〉 ∈ E if vj is the parent ofvi in the collection
tree. The parent of a nodevi in T is denoted aspi. We use
ETXvivj

(l) to denote the expected number of transmissions
required for delivering a packet of lengthl from a nodevi

to its ancestorvj , and we usetvivj
(l) to denote the time

taken to deliver a packet of lengthl from vi to vj .
Each information elementx generated in the tree is

identified by a 4-tuple(vx, lx, rx, dx) wherevx is the node
that generatesx, lx is the length ofx, rx is the time
when x is generated, anddx is the deadline by which
x needs to be delivered to the sink nodeR. We use
sx = dx − (rx + tvxR(lx)) to denote thespare timefor
x, and we define thelifetime ofx as [rx, dx].

B. Problem definition

Given a collection treeT and a set of information ele-
mentsX = {x} generated in the tree, we define the problem
of jointly optimizing packet packing and the timeliness of
data delivery as follows:

Problem P: givenT andX , schedule the transmission of
each element inX to minimize the total number of packet
transmissions required for deliveringX to the sinkR while
ensuring that each element be delivered toR before its
deadline.

In an application-specific sensornet, the information ele-
ments generated by different nodes depend on the applica-
tion but may well be of equal length [7]. Depending on
whether the sensornet is designed for event detection or
data collection, moreover, the information elementsX may
follow certain arrival processes. Based on the specific arrival
process ofX , the following special cases of problemP tend
to be of practical relevance in particular:

Problem P0: same asP except that 1) the elements ofX
are of equal length, and 2)X includes at most one element
from each node; this problem can represent sensornets that
detect rare events.

Problem P1: same asP except that 1) the elements ofX
are of equal length, and 2) every two consecutive elements
generated by the same nodevi are separated by a time
interval whose length is randomly distributed in[a, b]; this
problem can represent periodic data collection sensornets
(with possible random perturbation to the period).

Problem P2: same asP except that the elements ofX are
of equal length; this problem represents general application-
specific sensornets.

III. C OMPLEXITY OF JOINT OPTIMIZATION

The complexity of problemP depends on aggregation
constraints such as maximum packet size and whether infor-



mation elements in a packet can be separated and repacked
with other elements. For convenience, we useK to denote
the maximum number of information elements that can
be packed into a single packet. (Note thatK depends on
the maximum packet size and the lengths of information
elements in problemP.) In what follows, we first analyze
the case whenK ≥ 3 and then the case whenK = 2, and
we discuss how aggregation constraints affect the problem
complexity.

A. Complexity whenK ≥ 3

We first analyze the complexity and the hardness of ap-
proximation for problemP0, then we derive the complexity
of P1, P2, and P accordingly. The analysis is based on
reducing the Boolean-satisfiability-problem (SAT) [12] toP0

as we show below.
Theorem 1:WhenK ≥ 3, problemP0 is strong NP-hard

whether or not the routing structure is a tree or a linear
chain.

Proof: To prove thatP0 is strong NP-hard, we first
present a polynomial transformationf from the SAT prob-
lem to P0, then we prove that an instanceΠ of SAT is
satisfiable if and only if the optimal solution ofΠ′ = f(Π)
has certain minimum number of transmissions.

Given an instanceΠ of the SAT problem which hasn
Boolean variablesX1, . . . , Xn andm clausesC1, . . . , Cm,
we derive a polynomial time transformation fromΠ to
an instanceΠ′ of P0 with K ≥ 3 as follows. We first
construct a tree as shown in Figure 1. In this tree, nodevj ,
j = 1, . . . , n, corresponds to the variableXj . Nodev is an
intermediate node, and nodeS is the sink node.ETXvjv is
D with D ≫ 1, andETXvs is 1. If a variableXj appears
kj times in total in them clauses, then2kj + 3 children
nodes are attached to nodevj , labeled asvj

0, . . . , v
j
2kj+2. m

children are also attached to nodev, labeled asvc
1, . . . , v

c
m.

Each of these edge has aETX of 1. The transmission time
from each child ofvj to itself is t1, and the transmission
time from vc

i to v is t4.

Figure 1. Reduction from SAT toP0 whenK ≥ 3

After constructing the tree, we define the information ele-
ments and their lifetimes as follows. For each subtree rooted
at nodevj , we first define2kj +1 information elements and

then assign them one by one to the leaf nodesvj
1, . . . , v

j
2kj+1

of this subtree. If variableXj occurs unnegated in clause
Ci, we create an information elementxj

i with lifetime
[rj

i , d
j
i ] = [(3i+1)(n+1)+j, (3i+2)(n+1)+j+t1+t2+t3].

If Xj occurs negated in clauseCi, we create an information
elementxj

i : [rj
i , d

j
i ] = [3i(n+1)+j, (3i+1)(n+1)+j+t1+

t2 + t3]. Let ij1 < . . . < ijkj
denote the indices of the clauses

in which variableXj occurs. For every two messagesxj

i
j
t

andxj

i
j
t+1

, t = 1, . . . , kj − 1, define an information element

axj

i
j
t

: [rj
at

, dj
at

] = [dj

i
j
t

− t1 − t2 − t3, r
j

i
j
t+1

+ t1 + t2 + t3].

We also defineaxj
0 : [rj

a0
, dj

a0
] = [j, rj

i
j
1

+ t1 + t2 + t3], and

axj
kj

: [rj
akj

, dj
akj

] = [dj

i
j

kj

−t1−t2−t3, 3(m+1)(n+1)+j+

t1 + t2 + t3]. In this way, every two consecutive information
elements in this sequence overlap in their lifetimes, and the
size of the overlap ist1 + t2 + t3. After defining these
2kj + 1 information elements, we set the source of each
element one by one from nodevj

1 to nodevj
2kj+1. For each

node vj
0, we define an elementzj

0 : [j, j + t1 + t2 + t3].
For each nodevj

2kj+2, we define an elementzj
2kj+2 :

[3(m + 1)(n + 1) + j, 3(m + 1)(n + 1) + j + t1 + t2 + t3].
Figure 2 demonstrates how the lifetimes of these2kj + 3

Figure 2. Lifetimes of information elements

information elements are defined.
Similarly, we definem information elements generated

by nodesvc
1, . . . , v

c
m, with elementzi : [ri, di] = [(3i +

1)(n + 1) + t1 + t2 − t4, (3i + 2)(n + 1) + t1 + t2 + t3],
i = 1, . . . , m, being generated by nodevc

i . Then, for nodes
v1 to vn, we define an information element for each of them
with lifetime [4(m+1)(n+1)+i, 4(m+1)(n+1)+i+t2+t3],
i = 1, . . . , n. For nodev, define an information element with
lifetime [4(m + 1)2(n + 1) + i, 4(m + 1)2(n + 1) + i + t3].

Given the above polynomial-time reduction from a SAT
problemΠ to an instanceΠ′ of P0, we prove that the mini-
mum number of transmissions required inΠ′ is

∑n

j=1(2kj+
1)+

∑n

j=1[(kj +1)(D+1)]+2n(D+1)+2n+m+1 if and
only if Π is satisfiable. We also find that the above reduction
can be extended to the case when the routing structure is a
linear chain inP0. Due to the limitation of space, we relegate
the detailed discussion to [11]. Therefore,P0 is strong NP-
hard whenK ≥ 3, whether or not the routing structure is a
tree or a linear chain.

Having proved the strong NP-hardness ofP0 whenK ≥
3, we analyze the hardness of approximation forP0 using a
gap-preserving reduction from MAX-3SAT toP0 [13], and



we have
Theorem 2:WhenK ≥ 3, there existsǫ ≥ 1 such that it

is NP-hard to achieve an approximation ratio of1+ 1
200N

(1−
1
ǫ
) for problemP0, whereN is the number of information

elements inP0.
Proof: Interested readers can find the proof in [11].

Based on the definition of polynomial time approximation
scheme (PTAS) and Theorem 2, we then have

Corollary 1: There is no polynomial time approximation
scheme (PTAS) for problemP0 whenK ≥ 3.

Based on the findings forP0, we have
Theorem 3:When K ≥ 3, problemsP1, P2, and P are

strong NP-hard whether or not the routing structure is a
tree or a linear chain, and there is no polynomial-time
approximation scheme (PTAS) for solving them.

Proof: Interested readers can find the proof in [11].
Theorems 1 and 3 show that the joint optimization prob-

lems are strong NP-hard and there is no PTAS, whether
or not the routing structure is a tree or a linear chain
and whether or not the information elements are of equal
length. In contrast, Becchettiet al. [3] showed that, for total
aggregation, the joint optimization problems are solvable
in polynomial time via dynamic programming on chain
networks. Therefore, we see that aggregation constraints
make the difference on whether a problem is tractable for
certain networks, and thus it is important to consider them in
the joint optimization. Incidentally, we note that Theorem3
also answers the open question on the complexity of Problem
(P4) of batch-process scheduling in interval graphs [10].

B. Complexity whenK = 2

We showed in Section III-A that the problemsPi, i =
0, 1, 2, andP are all strong NP-hard and there is no PTAS
for these problems whenK ≥ 3. We prove in this section
that, when K = 2, the complexity of these problems
depends on whether information elements in a packet can
be separated and re-packed with other elements (which we
call re-aggregationhereafter) on their way to the sink. When
re-aggregation is disallowed, these problems are solvablein
polynomial time; otherwise they are strong NP-hard. Note
that, whenK ≥ 3, these problems are all strong NP-hard
even if re-aggregation is disallowed, which can be seen from
the proof of Theorem 1. Note also that, even though re-
aggregation may well be allowed in most sensornet systems
when the in-network processing (INP) method is packet
packing, re-aggregation may not be possible or allowed
when INP is data fusion such as lossy data compression [14].
Via the study on the impact of re-aggregation, therefore, we
hope to shed light on the structure of the joint optimization
problems when general INP methods are considered.

WhenK = 2 and re-aggregation is allowed, the complex-
ity of the joint optimization problems is very much similar
to the case whenK ≥ 3; that is, these problems are all
strong NP-hard and there is no PTAS, whether or not the
routing structure is a tree or a linear chain and whether or
not the information elements are of equal length. Due to the
limitation of space, we relegate the detailed proofs to [11],

and we only discuss in detail the case when re-aggregation
is prohibited as follows.

When K = 2 and re-aggregation is prohibited, we can
solve problemP (and thus its special versionsP0, P1, and
P2) in polynomial time by transforming it into a maximum
weighted matching problem in an interval graph. An interval
graphGI is a graph defined on a setI of intervals on the
real line such that 1)GI has one and only one vertex for
each interval in the set, and 2) there is an edge between two
vertices if the corresponding intervals intersect with each
other. Given an instance of problemP, we solve it using
Algorithm 1 as follows:

Algorithm 1 Algorithm for solving P when K = 2 and
re-aggregation is prohibited

1: Generate an interval graphGI(VI , EI) for problemP

as follows:

• Select an arbitrary information elementq generated
by nodevq at timerq and with spare timesq, define
an interval[rq, rq + sq] for q on the real line.

• For each remaining information elementp generated
by nodevp at time rp and with spare timesp, let
nodevpq be the common ancestor ofvp andvq that
is the farthest away fromR among all common
ancestors ofvp and vq, then define an interval
[rq − tvqvpq

+ tvpvpq
, rq − tvqvpq

+ tvpvpq
+ sq] for

information elementp.
• Let VI = ∅. Then, for each information elements,

define a vertexs and add it toVI .
• Let EI = ∅. If the two intervals that represent

any two information elementsu and h overlap
with each other, define an edge(u, h) and add
it to EI ; then assign edge(u, h) with a weight
com(u, h) = ETXvuhR(lu) + ETXvuhR(lh) −
ETXvuhR(lu + lh), wherelu and lh are the length
of u andh respectively.

2: Solve the maximum weighted matching problem forGI

using Edmonds’ Algorithm [15].
3: For each edge(u, h) in the matching, information ele-

mentsu andh are packed together at nodevuv. For all
other vertices not in the matching, their corresponding
information elements are sent to the sink alone without
being packed with any other information element.

For Algorithm 1, we have
Theorem 4:When K = 2 and re-aggregation is prohib-

ited, Algorithm 1 solves problemP in O(n3) time, where
n is the number of information elements considered in the
problem.This holds whether or not the routing structure is
a tree or a linear chain, and whether or not the information
elements are of equal length.

Proof: It is easy to see that if information elementsu
andh are packed together, the total number of transmissions
taken to deliveru andh is ETXvuR(lu) + ETXvhR(lh)−
ETXvuhR(lu) − ETXvuhR(lh) + ETXvuhR(lu + lh) =
ETXvuR(lu) + ETXvhR(lh) − com(u, h). Let VI be the



set of vertices in the interval graphGI , M be a matching
in GI , V1 be the set of nodes inM , andV2 = VI/V1. Then
the weight ofM , denoted byWM , is as follows:

WM =
∑

(u,h)∈M com(u, h)

=
∑

(u,h)∈M [ETXvuR(lu) + ETXvhR(lh)

−(ETXvuR(lu) + ETXvhR(lh)
−com(u, h))]

=
∑

(u,h)∈M (ETXvuR(lu) + ETXvhR(lh))

−
∑

(u,h)∈M [ETXvuR(lu) + ETXvhR(lh)

−com(u, h)]
=

∑

s∈V1
ETXsR(ls) +

∑

v∈V2
ETXvR(lv)

−{
∑

(u,h)∈M [ETXvuR(lu) + ETXvhR(lh)

−com(u, h)]
+

∑

v∈V2
ETXvR(lv)}

=
∑

v∈VI
ETXvR(lv)

−{
∑

(u,h)∈M [ETXvuR(lu) + ETXvhR(lh)

−com(u, h)] +
∑

v∈V2
ETXvR(lv)}

(1)
Note that

∑

v∈VI
ETXvR(lv) is a fixed value, and

∑

(u,h)∈M [ETXvuR(lu) + ETXvhR(lh) − com(u, h)] +
∑

v∈V2
ETXvR(lv) is the total number of transmissions,

denoted byETXtotal, incurred in the packing scheme gen-
erated by Algorithm 1. Therefore,ETXtotal is minimized
if and only if WM is maximized, which means that solving
the maximum weighted matching problem can give us an
optimal solution to the original packet packing problem.

Let n denote the total number of information elements
in this problem. The whole algorithm consists of three
parts. The first one is to define an interval graph and
assign weights to each node and edge in the graph, whose
time complexity isO(n2). The second part is to solve the
maximum weighted matching problem, whose time com-
plexity is O(n3) by Edmonds’ Algorithm [15]. And the
third part is to convert the optimal matching problem to the
optimal packing scheme, whose time complexity isO(n).
Therefore, the time complexity of the whole algorithm is
O(n2) + O(n3) + O(n) = O(n3).

By the definition of the weightcom(u, h) for elementsu
andh in Algorithm 1, the solution generated by the maxi-
mum weighted matching tends to greedily pack elements as
soon as possible after they are generated. This observation
motivates us to design a local, greedy online algorithmtPack
in Section IV for the general joint optimization problems,
and the effectiveness of this approach will be demonstrated
through competitive analysis and testbed based measurement
study in Sections IV and V. Note that, incidentally, Theo-
rem 4 also answers the open question on the complexity
of scheduling batch-processes with release times in interval
graphs [10].

IV. A UTILITY BASED ONLINE ALGORITHM

We see from Section III that problemP and its special
cases in sensornets are strong NP-hard in most system
settings, and there is no polynomial-time approximation
scheme (PTAS) for these problems. Instead of trying to find

global optimal solution, therefore, we focus on designing a
local, distributed online algorithmtPack that optimizes the
local utility of packet packing at each node.

Based on the definition ofP, its optimization objective is
to minimize

AC =
TXnet

datanet

(2)

where TXnet is the total number of transmissions taken
to deliver datanet amount of data to the sink before their
deadlines. For convenience, we callAC the amortized cost
of deliveringdatanet amount of data. In what follows, we
design an online algorithm tPack based on this concept of
amortized cost of data transmission.

When nodej has a packetpkt in its data buffer,j
can decide to transmitpkt immediately or to hold it. Ifj
transmitspkt immediately, information elements carried in
pkt may be packed with packets atj’s ancestors to reduce
the amortized cost of data transmissions from those nodes; if
j holdspkt, more information elements may be packed with
pkt so that the amortized cost of transmission fromj can be
reduced. Therefore, we can define theutility of transmitting
or holdingpkt as the expected reduction in amortized data
transmission cost as a result of the corresponding action,
and then the decision on whether to transmit or to holdpkt
depends on the utilities of the two actions. For simplicity and
for low control overhead, we only consider the immediate
parent of nodej when computing the utility of transmitting
pkt. We will show the goodness of this local approach
through competitive analysis later in this section and through
testbed based measurement in Section V.

In what follows, we first derive the utilities of holding
and transmitting a packet, then we present a scheduling rule
that improves the overall utility.

A. Utility calculation

For convenience, we define the following notations:

L : maximum payload length per packet;
ETXjp(l) : expected number of transmissions taken to

transport a packet of lengthl from node
j to its ancestorp;

pj : the parent of nodevj in the routing tree.

The utilities of holding and transmitting a packetpkt at a
nodevj depend on the following parameters related to traffic
pattern:

• With respect tovj itself and its children:

tl : expected time to receive another packetpkt′

from a child or locally from an upper layer;
sl : expected payload size ofpkt′.

• With respect to the parent ofvj :

tp : expected time till the parent transmits another
packetpkt′′ that does not contain information
elements generated or forwarded byvj itself;

sp : expected payload size ofpkt′′.



The utilities of holding and transmitting a packetpkt also
depend on the following constraints posed by timeliness
requirement for data delivery as well as limited packet size:

• Grace periodt′f for delivering pkt: the maximum
allowable latency in deliveringpkt minus the expected
time taken to transportpkt from vj to the sink without
being held at any intermediate node along the route.
If t′f ≤ 0, pkt should be transmitted immediately to
minimize the extra delivery latency.

• Spare packet spaces′f of pkt: the maximum allowable
payload length per packet minus the current payload
length ofpkt.
Parameters′f and the size of the packets coming
next from an upper layer atvj or from vj ’s children
determine how muchpkt will be packed and thus the
potential utility of locally holdingpkt.

Then, the utilities of holding and transmitting a packet are
calculated as follows.

Utility of holding a packet. When a nodevj holds a
packetpkt, pkt can be packed with incoming packets from
vj ’s children or from an upper layer atvj . Therefore, the
utility of holding pkt at vj is the expected reduction in the
amortized cost of transmittingpkt after packingpkt. The
utility depends on (a) the expected number of packets that
vj will receive within t′f time (either from a child or locally
from an upper layer), and (b) the expected payload sizesl of
these packets. Given that the expected inter-packet interval
is tl, the expected number of packets to be received atvj

within t′f time is
t′f
tl

. Thus, the expected overall sizeS′
l of

the payload to be received withint′f time is
t′f
tl

sl. Given
the spare spaces′f in the packetpkt, the expected sizeSl of
the payload that can be packed intopkt is min{S′

l , s
′
f} =

min{
t′f
tl

sl, s
′
f}.

Therefore, the expected amortized costACl of transport-
ing the packet to the sinkR after the anticipated packing
is

ACl =
1

L − s′f + Sl

ETXjR(L − s′f + Sl)

where(L−s′f) is the payload length ofpkt before packing.
Since the amortized costAC′

l of transportingpkt without
the anticipated packing is

AC′
l =

1

L − s′f
ETXjR(L − s′f )

the utility Ul of holding pkt is

Ul = AC′
l − ACl (3)

Utility of immediately transmitting a packet. If nodevj

transmits the packetpkt immediately to its parentpj , the
utility comes from the expected reduction in the amortized
cost of packet transmissions atpj as a result of receiving
the payload carried bypkt. When vj transmitspkt to pj ,
the grace period ofpkt at pj is still t′f , thus the expected
number of packets that do not contain information elements

from vj and can be packed withpkt at pj is
t′f
tp

, and we use

Ppkt to denote this set of packets. Given the limited payload
thatpkt carries, it may happen that not every packet inPpkt

gets packed (to full) via the payload frompkt. Accordingly,
the utility Up of immediately transmittingpkt is calculated
as follows:

• If every packet inPpkt gets packed to fullwith payload

from pkt, i.e.,
t′f
tp

(L − sp) ≤ L − s′f :
Then, the overall utilityU ′

p is

U ′
p =

t′
f

tp
ETXpjR(sp)

t′
f

tp
sp

−

t′
f

tp
ETXpjR(L)

t′
f

tp
L

=
ETXpj R(sp)

sp
−

ETXpjR(L)

L

(4)

• If not every packet inPpkt gets packed to fullwith

payload frompkt, i.e.,
t′f
tp

(L − sp) > L − s′f :

In this case,⌊
L−s′

f

L−sp
⌋ number of packets are packed to

full; if mod(L− s′f , L− sp) > 0, there is also a packet
that gets partially packed with mod(L − s′f , L − sp)
length of payload frompkt. Thus the total number
of packets that benefit from the packet transmission is

⌈
L−s′

f

L−sp
⌉. Denoting mod(L − s′f , L − sp) by lmod and

letting Imod be 1 if lmod > 0 and 0 otherwise, then the
overall utility U ′′

p is

U ′′
p =

⌈
L−s′

f
L−sp

⌉ETXpj R(sp)

⌈
L−s′

f
L−sp

⌉sp

−

⌊
L−s′

f
L−sp

⌋ETXpj R(L)+ImodETXpjR(sp+lmod)

⌈
L−s′

f
L−sp

⌉sp+L−s′

f

(5)

Therefore, the utilityUp of immediately transmittingpkt
to pj is

Up =

{

U ′
p if

t′f
tp

(L − sp) ≤ L − s′f
U ′′

p otherwise
(6)

where U ′
p and U ′′

p are defined in Equations (4) and (5)
respectively.

B. Scheduling rule

Given a packet to be scheduled for transmission, if the
probability that the packet is immediately transmitted isPt

(0 ≤ Pt ≤ 1), then the expected utilityUt(Pt) is

Ut(Pt) = Pt × Up + (1 − Pt)Ul = Ul + Pt(Up − Ul) (7)

whereUp andUl are the utilities of immediately transmitting
and locally holding the packet respectively. To maximizeUt,
Pt should be set according to the following rule:

Pt =

{

1 if Up > Ul

0 otherwise

That is, the packet should be immediately transmitted if
the utility of immediate transmission is greater than that
of locally holding the packet. For convenience, we call



this local, distributed decision ruletPack (for time-sensitive
packing).

Competitive analysis. To understand the performance of
tPack as compared with an optimal online algorithm, we
analyze the competitive ratio of tPack. Since it is difficult
to analyze the competitive ratio of non-oblivious online
algorithms for arbitrary network and traffic pattern in the
joint optimization [4] and tPack is a non-oblivious algorithm,
we only study the competitive ratio of tPack for complete
binary trees where all the leaf nodes generate information
elements according to a common data generation process,
and we do not consider the impact of packet length on link
ETX. We denote these special cases of problemP as problem
P
′. The theoretical analysis here is to get an intuitive under-

standing of the performance of tPack; we experimentally
analyze the behaviors of tPack with different networks,
traffic patterns, and application requirements through testbed
based measurement in Section V. We relegate the study on
the competitive ratio of tPack as well as the lower bound
on the competitive ratio of non-oblivious online algorithms
for the general problemP as a part of our future work.
(Note that the best results so far on the lower bound of the
competitive ratio of joint INP- and latency- optimization also
only considered the cases where only leaf nodes generate
information elements, and these results are for oblivious
algorithms and for cases where no aggregation constraint
is considered [4].)

Then, we have
Theorem 5:For problem P

′, tPack is min{K,

maxvj∈V>1

ETXvj R

ETXpjR
}-competitive, where K is the

maximum number of information elements that can
be packed into a single packet,V>1 is the set of nodes that
are at least two hops away from the sinkR.

Proof: Interested readers can find the proof in [11].
From Theorem 5, we see that tPack is 2-competitive if

every link in the network is of equal ETX value.

Implementation. Interested readers can find the discussion
on how to implement tPack in TinyOS in [11].

V. PERFORMANCE EVALUATION

To characterize the impact of packet packing and its joint
optimization with data delivery timeliness, we experimen-
tally evaluate the performance of tPack.

A. Methodology

Testbed. We use theNetEyewireless sensor network
testbed at Wayne State University [16]. NetEye is deployed
in an indoor office as shown in Figure 3. We use a10× 13
grid of TelosB motes in NetEye, where every two closest
neighboring motes are separated by 2 feet. Out of the 130
motes in NetEye, we randomly select 120 motes (with
each mote being selected with equal probability) to form
a random network for our experimentation. Each of these
TelosB motes is equipped with a 3dB signal attenuator and
a 2.45GHz monopole antenna.

In our measurement study, we set the radio transmission
power to be -25dBm (i.e., power level 3 in TinyOS) such

Figure 3. NetEyewireless sensor network testbed

that multihop networks can be created. We also use channel
26 of the CC2420 radio to avoid external interference from
sources such as the campus WLANs. We use the TinyOS
collection-tree-protocol (CTP) [17] as the routing protocol to
form the routing structure, and we use the Iowa’s Timesync
protocol [18] for network wide time synchronization.

Protocols studied. To understand the impact of packet
packing and its joint optimization with data delivery timeli-
ness, we comparatively study the following protocols:

• noPack: information elements are delivered without
being packed in the network.

• simplePack: information elements are packed if they
happen to be buffered in the same queue, but there is
not packing-oriented scheduling.

• tPack: the packing- and timeliness-oriented scheduling
algorithm that maximizes the local utility at each node,
as we discussed in Section IV. (We have also evaluated
another version of tPack, denoted bytPack-2hop, where
the forwarding utilityUp considers both the parent node
and the parent’s parent; we find that tPack-2hop does
not bring significant improvement over tPack while
introducing higher overhead and complexity, thus our
discussion here only focuses on tPack.)

We have implemented, in TinyOS [19], a system library
which includes all the above protocols. The implementation
takes 40 bytes of RAM (plus the memory required for
regular packet buffers) and 4,814 bytes of ROM.

Performance metrics. For each protocol we study, we
evaluate their behaviors based on the following metrics:

• Packing ratio: number of information elements carried
in a packet;

• Delivery reliability: percentage of information elements
correctly received by the sink;

• Delivery cost: number of transmissions required for
delivering an information element from its source to
the sink;

• Latency jitter: variability of the time taken to deliver
information elements from the same source node, mea-
sured by the coefficient-of-variation (COV) [20] of
information delivery latency.

Traffic pattern. To experiment with different sensornet
scenarios, we use both periodic data collection traffic and
event detection traffic trace as follows:

• D6: each source node periodically generates 50 infor-



mation elements with an inter-element interval, denoted
by ∆r, uniformly distributed between 500ms and 6s;
this is to represent high traffic load scenarios.

• Elites: an event traffic where a source node generates
one packet based on the Lites [21] sensornet event
traffic trace.

To understand the impact of the timeliness requirement of
data delivery, we experiment with different latency require-
ments. For periodic traffic, we consider maximum allowable
latency in delivering information elements that is 1, 5, 9,
or 14 times the average element generation period, and we
denote them byL1, L5, L9, andL14 respectively; for event
traffic, we consider maximum allowable latency that is 3s,
12s, 36s, or 64s, and we denote them byL3′, L12′, L36′,
and L64′ respectively. Out of the 120 motes selected for
experimentation, we let the mote closest to a corner of
NetEye be the sink node, and the other mote serves as
a traffic source if its node ID is even. For convenience,
we regard a specific combination of source traffic model
and latency requirement atraffic pattern. Thus we have 8
traffic patterns in total. To gain statistical insight, we repeat
each periodic traffic pattern 5 times and each event traffic
pattern 10 times in our experiments. In the experiments,
each information element is 16-byte long, and a packet can
aggregate up to 7 information elements (i.e.,K = 7).

B. Measurement results

Figures 4, 5, and 6 show the medians as well as their
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Figure 4. Packing ratio:D6

95% confidence level confidence intervals for the packing
ratio, delivery reliability, and delivery cost when the source
traffic model isD6. (Similar phenomena are observed for
Elites, and we relegate the details to [11] due to the
limitation of space.) We see that the packing ratio in tPack
is significantly higher than that in noPack and simplePack.
The increased packing ratio reduces channel contention and
thus reduces the probability of packet transmission collision,
which improves data delivery reliability. The reduced prob-
ability of transmission collision and the increased number
of information elements carried per packet in tPack in turn
reduces delivery cost, since there are fewer number of packet
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Figure 5. Delivery reliability:D6
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Figure 6. Delivery cost:D6

retransmissions as well as fewer number of packets gener-
ated. Note that the low delivery reliability in simplePack is
due to intense channel contention.

Figure 5 also shows that tPack improves data delivery
reliability even when the allowable latency in data delivery is
small (e..g, in the case ofL1) where the inherent probability
for packets to be packed tends to be small. Therefore,
tPack can be used for real-time applications where high
data delivery reliability is desirable. Figure 4 shows thatthe
packing ratio in tPack is very high and close to 6 except for
the case ofL1 where the packing probability is significantly
reduced by the limited probability for a node to wait due to
stringent timeliness requirement. Note that the upper bound
on the packing ratio in our experiments is 7, thus tPack
achieves a packing ratio very close to the optimal, which
corroborates our analytical result in Theorem 5.

These figures show, surprisingly, that simplePack can
perform worse than noPack despite packet packing in sim-
plePack. This is because packet packing in simplePack can
be too limited to significantly reduce channel contention
such that the increased packet length as a result of the
packing actually reduces packet delivery reliability; this is
further exacerbated by the fact that losing a packed packet
means losing more information elements than that of an
unpacked packet containing only one information element.
Therefore, it is important to schedule packet transmissions



to improve the degree of packet packing so that the draw-
backs of packing can be overshadowed by the benefits.
On the other hand, the difference between the performance
of simplePack and noPack is not statistically significant
at the 95% confidence level. Moreover, packet packing in
simplePack still reduces the delivery cost of noPack as can
be seen from Figure 6, which is desirable in low-power
sensornets. Due to the reduced contention in simplePack and
the fact that co-channel contention increases uncertaintyin
data delivery, network performance has lower variability and
is more predictable (e.g., narrower confidence intervals for
the medians of performance metrics) in simplePack than in
noPack too.

Similarly, performance variability is low in tPack due to
the reduced channel contention which is in turn a result
of the improved packet packing. For instance, Figure 7
shows the latency jitter in different protocols, and we see
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Figure 7. Latency jitter:D6

that the jitter is the lowest in tPack. In tPack, moreover,
the latency jitter decreases as allowable latency decreases.
These properties are desirable in CPS sensornets where real-
time sensing and control require predictable data delivery
performance (e.g., in terms of low latency jitter), especially
in the presence of potentially unpredictable, transient per-
turbations.

VI. RELATED WORK

In-network processing (INP) has been well studied in
sensornets, and many INP methods have been proposed
for query processing (e.g., TinyDB [1]) and general data
collection (e.g., DFuse [2]). When controlling spatial and
temporal data flow to enhance INP, however, these methods
did not consider application requirements on the timeliness
of data delivery. As a first step toward understanding the
interaction between INP and application QoS requirements,
our study has shown the benefits as well as the challenges
of jointly optimizing INP and QoS from the perspective
of packet packing. As sensornets are increasingly being
deployed for mission-critical tasks, it becomes important
to address the impact of QoS requirements on general INP
methods other than packet packing, which opens interesting
avenues for further research.

As a special INP method, packet packing has also been
studied for sensornets as well as general wireless and
wired networks, where mechanisms have been proposed to
adjust the degree of packet packing according to network
congestion level [5], [22], to address MAC/link issues related
to packet packing [23], [6], [24], to enable IP level packet
packing [25], and to pack periodic data frames in automotive
applications [26]. These works have focused on issues in
local, one-hop networks without considering requirements
on maximum end-to-end packet delivery latency in multi-
hop networks. With the exception of [26], these works did
not focus on scheduling packet transmissions to improve
the degree of packet packing, and they have not studied the
impact of finite packet size either. Saket et al. [26] stud-
ied packet packing in single-hop controller-area-networks
(CAN) with finite packet size. Our work addresses the open
questions on the complexity and protocol design issues
for jointly optimizing packet packing and data delivery
timeliness in multi-hop wireless sensornets.

Most closely related to our work is [3] where the authors
studied the issue of optimizing INP under the constraint of
maximum end-to-end data delivery latency. But the study
did not consider aggregation constraints and instead assumed
total aggregationwhere any arbitrary number of information
elements can be aggregated into one single packet. The study
did not evaluate the impact of joint optimization on data
delivery performance either. Our work focuses on settings
where packet size is finite, and we show that aggregation
constraints (in particular, maximum packet size and re-
aggregation tolerance) significantly affect the problem com-
plexity and protocol design. Using a high-fidelity sensornet
testbed, we also systematically examine the impact of joint
optimization on packet delivery performance in multi-hop
wireless networks.

Solis et al. [27] also considered the impact that the timing
of packet transmission has on data aggregation, and the
problem of minimizing the sum of data transmission cost
and delay cost has been considered in [4] and [28]. These
studies also assumed total aggregation, and they did not
consider hard real-time requirements on maximum end-to-
end data delivery latency. Ye et al. [29] considered the local
optimal stopping rule for data sampling and transmission in
distributed data aggregation. It did not consider hard real-
time requirement either, and it did not study network-wide
coordination and the limit of data aggregation. Yu et al.
[30] studied the latency-energy tradeoff in sensornet data
gathering by adapting radio transmission rate; it did not
study the issue of scheduling data transmission to improve
the degree of data aggregation.

VII. C ONCLUDING REMARKS

Through both theoretical and experimental analysis, we
examine the complexity and impact of jointly optimizing
packet packing and the timeliness of data delivery. We
find that aggregation constraints (in particular, maximum
packet size and re-aggregation tolerance) affect the problem
complexity more than network and traffic properties do,



which suggest the importance of considering aggregation
constraints in the joint optimization. We identify conditions
for the joint optimization to be strong NP-hard and condi-
tions for it to be solvable in polynomial time. For cases when
it is polynomial-time solvable, we solve the problem by
transforming it to the maximum weighted matching problem
in interval graphs; for cases when it is strong NP-hard,
we prove that there is no polynomial-time approximation
scheme (PTAS) for the problem. We also develop a local,
distributed online protocol tPack for maximizing the local
utility of each node, and we prove the competitiveness of
the protocol with respect to optimal solutions. Our testbed
based measurement study also corroborates the importance
of QoS- and aggregation-constraint aware optimization of
packet packing.

While this paper has extensively studied the complexity,
algorithm design, and impact of jointly optimizing packet
packing and data delivery timeliness, there are still a rich
set of open problems. Even though we have analyzed the
competitiveness of tPack for non-trivial scenarios and this
has given us insight into the behavior of tPack, it remains
an open question on how to characterize in a closed form
the competitiveness of tPack and non-oblivious online al-
gorithms in broader contexts. The analytical and algorith-
mic design mechanisms developed for packet packing may
well be extensible to address other in-network processing
methods such as data fusion, and a detailed study of this
will help us better understand the structure of the joint
optimization problem and will be interesting future work
to pursue. We have focused on the scheduling aspect of
the joint optimization, and we are able to use mathematical
tools such as interval graphs to model the problem; on
the other hand, how to mathematically model and analyze
the impact of the joint optimization on spatial data flow
is still an open question and is beyond the scope of most
existing network flow theory, thus it will be interesting to
explore new approaches to modeling and solving the joint
optimization problem.
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