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Abstract— This paper introduces a new method for enhancing
highway safety and efficiency by coordinated control of vehicle
platoons. One of our aims is to understand influence of
communication network topologies and uncertainties on control
performance. Vehicle deployment is formulated as a weighted
and constrained consensus control problem. Algorithms are
introduced and their convergence properties are established.
The main advantages of the methods are demonstrated, in-
cluding using local control to achieve a global deployment
so that communication complexity is reduced; scalability to
accommodate dynamic changes of the member vehicles and

communication networks; robustness against road conditions
and communication uncertainties.
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I. INTRODUCTION

The goal of vehicle platoon control is to ensure that all

the vehicles move in the same lane at the same speed with

desired inter-vehicle distances. Platoon control adjusts vehi-

cle spatial distribution such that road utilization is maximized

while the risk of collision is minimized (within an acceptable

bound). In this study, platoon control will be realized in the

framework of weighted and constrained consensus control

with switching network topologies.

This paper aims to introduce a new framework for vehicle

coordination and control, based on the emerging technology

of network consensus control. The core target is to achieve

suitable coordination of the team vehicles based on road

conditions and vehicle types. For instance, wet pavement

demands longer inter-vehicle distance than dry surface; de-

parting of a vehicle from the platoon requires re-distribution

of space among the remaining vehicles. In this paper, vehicle

platoon control is formulated as a weighted and constrained

consensus control problem. Consensus control aims to use

only local information to coordinate all subsystems such that

L.Y. Wang is Department of Electrical and Computer Engineering, Wayne
State University, Detroit, MI 48202, lywang@ece.eng.wayne.edu.
His work was supported in part by the National Science Foundation award
CNS-1136007.

A. Syed is with Department of Electrical and Computer Engineering,
Wayne State University, Detroit, MI 48202, syedali05@gmail.com.

G. Yin is with Department of Mathematics, Wayne State University,
Detroit, MI 48202, gyin@math.wayne.edu. His work was supported
in part by the National Science Foundation award CNS-1136007.

A. Pandya is with Department of Electrical and Computer
Engineering, Wayne State University, Detroit, MI 48202,
apandya@eng.wayne.edu.

H. Zhang is with Department of Computer Science, Wayne State Univer-
sity, Detroit, MI 48202, hongwei@wayne.edu. His work was supported
in part by the National Science Foundation awards CNS-1136007, CNS-
1054634, and GENI-1890.

their formation converges to a desired distribution pattern. In

vehicle applications the desired pattern is that the weighted

distances between consecutive vehicles are equal. Consensus

control is an emerging field in networked control and remains

an active research field. At present, most consensus controls

are unconstrained and un-weighted. However, inter-vehicle

distances are not to be uniform. For example, a heavy truck

needs more distance to stop; distances are to be adjusted

on hilly roads vs straight highways. Consequently, vehicle

platoon control should be weighted. Moreover, a platoon

needs to maintain a certain length for its effectiveness in

improving safety and road utility. Vehicle coordination needs

to be conducted under the constraint of the platoon length.

This implies that the related consensus control must be

constrained.

Employing and enhancing the averaging consensus control

methodologies recently developed by the authors [20], this

paper provides a new vehicle control strategy. Algorithms are

introduced and their convergence properties are established.

We demonstrate the main advantages of this methodology:

(1) Global goal: Using neighborhood information and control

to achieve a global goal. Although a desired goal is achieved

for the entire team, each vehicle only needs to communicate

with its neighboring members. As such communication costs

and complexity remain minimal. (2) Scalability: Expanding

and reduction of the team members does not complicate

control strategies. (3) Robustness: Variations in vehicle po-

sitions, network topology, and team members can be readily

accommodated.

Consensus control has drawn increased attention recently

in a variety of application areas, including load balancing in

parallel computing [16], [17], sensor networks [13], decen-

tralized filtering, estimation, mobile agents [4], etc. Control

methods include deterministic control [4], [15], stochastic

approximation algorithms [1], switching network topologies

[2], [5], [8], [10], [12], etc. In our recent work [20], a Markov

model is used to treat a much larger class of systems, where

the network graph is modulated by a discrete-time Markov

chain. In addition to the switching topology, nonadditive

noise was treated and convergence and rates of convergence

for the corresponding recursive algorithms were provided.

In this paper, we extend some of the useful features of [20].

One of the new significant developments is to treat weighted

and constrained consensus. In addition, the technique of post-

iterate averaging is employed in this paper to enhance the ve-

hicle coordination. With the iterate averaging, our algorithms

provide the best convergence rate in terms of the best scaling

factor and the smallest asymptotic covariance. In fact, they
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achieve asymptotically the well-known Cramér-Rao lower

bounds [11], hence are best over all algorithms. This fast

convergence feature is highly desirable for achieving fast

team formation and robustness against disturbances.

The rest of the paper is organized into the following

sections. We start with a description of vehicle platoon

control problems in Section II. Section III describes how

a typical vehicle deployment problem can be formulated

as a weighted and constrained consensus control problem.

Algorithms for weighted and constrained consensus control

are presented in Section IV. Their convergence properties

and convergence rates are established. Section V further

enhances the algorithms by post-iterate averaging. It is shown

that consensus control for vehicles are subject to noises and

their effect can be attenuated by the post-iterate averaging.

Optimality of such modified algorithms are established. By

using several examples, Section VI demonstrates robustness

and scalability of the methods. Finally, Section VII points

out directions of further studies.

II. PRELIMINARIES

We concentrate on one-dimensional platoon control. This

represents the case of r + 1 vehicles driving in the same

lane, forming a platoon. The leading vehicle serves as a

reference, whose position p0 is used as the origin of the

line coordinate (hence, p0 ≡ 0), and its speed v0 is the

reference speed for all remaining vehicles in the platoon to

follow. Coordination of vehicle control is to sustain a platoon

formation, avoid collision, adjust the formation according

to weather and road conditions, converge fast to a new

formation after disturbances, reconfigure a formation after

vehicle addition and departure. Consequently, inter-vehicle

distances are the variables to be controlled.

0 p1 p2 Pr=L

d1 d2

v2 vrv0 v1 Vr-1

Pr-1

dr

Fig. 1. Platoon coordinates

In a platoon formation (see Figure 1), each vehicle’s

position is defined by the central point of its length and

denoted by pj(t), j = 1, . . . , r, which is the distance of

the jth vehicle to the leading vehicle. The vehicle’s velocity

denoted by vj(t) = dpj(t)/dt ≥ 0, j = 1, . . . , r. Let the

inter-vehicle distances be defined as dj(t) = pj(t)−pj−1(t),
j = 1, . . . , r. The leading vehicle’s speed v0(t) is the speed

target for all the other vehicles in the platoon to follow. Also,

a desired distance between consecutive vehicles is a goal

that balances efficiency and safety. In principle, the desired

distance is a function of weather, road condition, platoon

traveling speed, terrain composition (uphill or downhill), and

road curvatures, and consequently may change with time.

A team consists of r vehicles to be deployed along a

pathway of total length L. In algorithm development, L is

treated as a constant. Its changes will be viewed as a distur-

bance to the consensus control problem. di is the distance

between vehicle i and vehicle i− 1. We have the constraint∑r

i=1 di(t) = L. Due to terrain conditions, a desired distance

before an vehicle differs at different locations. Each inter-

vehicle distance has a terrain factor γi. The goal of platoon

control is to achieve consensus on weighted distance di/γ
i,

namely
di(t)
γi → β, i = 1, . . . , r for some constant β. The

convergence is either with probability one (w.p.1.) or in

means squares (MS).

The basic scheme of platoon formation employs a sensor-

based network topology, in which a vehicle uses sensors

to measure its own speed and relative distance to the ve-

hicle ahead of it. As a result, vj−1, vj , dj are available

to the jth vehicle in its control strategies. On the other

hand, inter-vehicle wireless communications allow enhanced

information exchange between vehicles. Figure 2 represents

a more advanced inter-vehicle communication, in which

the jth vehicle receives not only the parameters from the

(j − 1)th vehicle by sensors, but also the information from

(j − 2)th vehicle via wireless communications. Benefits and

limitations of communication networks on platoon formation

will be studied in this paper.

Vehicle 0

Vehicle 1

Vehicle 2

Vehicle r-1

Vehicle r
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feeding
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Communication 

links

Communication 
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Fig. 2. Information network topologies using inter-vehicle communications

III. WEIGHTED AND CONSTRAINED CONSENSUS

CONTROL FOR PLATOON COORDINATION

For notational convenience in algorithm development,

we use xi(t) = P i(t) and denote the state vector

x(t) = [d1(t), . . . , dr(t)]
′. The weighting coefficients are

γ = [γ1, . . . , γr]′, and the state scaling matrix Ψ =
diag[1/γ1, . . . , 1/γr], where v′ is the transpose of a vector

or a matrix v. Let 11 be the column vector of all 1s. Together

with the constraint
∑r

i=1 di(t) = L, the target of the

constrained and weighted consensus control is Ψx(t) → β11

subject to 11′x(t) = L. It follows from γ′Ψ = 11′ that

β = L

γ′11
= L

γ1+···+γr .

The vehicles are linked by an information network, repre-

sented by a directed graph G whose element (i, j) (called a

directed edge from node i to node j) indicates an observation

by vehicle i on the distance dj . This network defines the

information network: (i, j) ∈ G indicates estimation of the

state dj by vehicle i via a communication link. Also, the

factor γj is known. For node i, (i, j) ∈ G is a departing

edge and (l, i) ∈ G is an entering edge. Due to the nature of

wireless communication, we assume that if (i, j) ∈ G then

(j, i) ∈ G. The total number of communication links in G is
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ls. From its physical meaning, node i can always observe its

own state, which will not be considered as a link in G.

For a selected time interval T ,the consensus control is

performed at the discrete-time steps nT, n = 1, 2, . . .. At

the control step n, the value of x will be denoted by xn =
[x1

n, . . . , x
r
n]

′. Vehicle platoon control updates xn to xn+1

by the amount un

xn+1 = xn + un (1)

with un = [u1
n, . . . , u

r
n]

′. In platoon control, a distance

adjustment aijn (called link control) of vehicle i at the nth

step based on the weighted separations of vehicles i and j
to the vehicles in front of them respectively is the decision

variable. The control ui
n is determined by the link control

aijn as ui
n = −∑

(i,j)∈G
aijn +

∑
(j,i)∈G

ajin . This implies that

for all n,
∑r

i=1 x
i
n =

∑r

i=1 x
i
0 = L that is, the constraint∑r

i=1 di(t) = L is always satisfied. Consensus control seeks

control algorithms such that Ψxn → β11 under the constraint

given above.

A link (i, j) ∈ G entails an estimate x̂ij
n of xj

n by node i
with observation noise dijn . That is, x̂ij

n = xj
n + dijn . Let x̃n

and dn be the ls-dimensional vectors that contain all x̂ij
n and

dijn in a selected order, respectively. Then, we can get a vector

form x̃n = H1xn + dn where H1 is an ls × r matrix whose

rows are elementary vectors such that if the ℓth element of

x̃n is x̂ij then the ℓth row in H1 is the row vector of all

zeros except for a “1” at the jth position. Each link in G
provides information δijn = xi

n/γ
i − x̂ij

n /γ
j , an estimated

difference between weighted xi
n and xj

n. This information

may be represented by a vector δn of size ls containing all

δijn in the same order as x̃n. δn can be written as

δn = H2Ψxn − Ψ̃x̃n = Hxn − Ψ̃dn, (2)

where the link scaling matrix Ψ̃ is the ls× ls diagonal matrix

whose k-th diagonal element is 1/γj if the k-th element of

x̃n is x̂ij
n ; H2 is an ls× r matrix whose rows are elementary

vectors such that if the ℓth element of x̃(k) is x̂ij then the

ℓth row in H2 is the row vector of all zeros except for a “1”

at the ith position, and H = H2Ψ− Ψ̃H1.

Due to network constraints, the information δijn can only

be used by nodes i and j. When the platoon control is linear,

time invariant, and memoryless, we have aijn = µngijδ
ij
n

where gij is the link control gain and µn is a global time-

varying scaling factor which will be used in state updating

algorithms as the recursive step size. Let G be the ls × ls
diagonal matrix that has gij as its diagonal element. In this

case, the control becomes un = −µnJ
′Gδn, where J =

H2 − H1. For convergence analysis, we note that µn is a

global control variable and we may represent un equivalently

as

un = −µnJ
′G(Hxn − Ψ̃dn) = µn(Mxn +Wdn), (3)

with M = −J ′GH and W = J ′GΨ̃. This, together with

(1), leads to

xn+1 = xn + µn(Mxn +Wdn). (4)

It can be directly verified that Ψ̃H1Ψ
−1 = H1, HΨ−1 = J ,

J11 = 0, Ψ−111 = γ. These imply that 11′M = 0, 11′W = 0,

MΨ−111 = Mγ = 0. Note that for simplicity, we presented

the problem using the simplest setup. In the above, the noise

Wdn is additive. Much more general noise can be treated as

demonstrated in [20]. The following assumption is imposed

on the network.

(A0) (1) All link gains are positive, gij > 0.

(2) G contains a complete tree.

We now use an example to illustrate the above concepts.

Since 11′J ′ = 11′(H2 − H1)
′ = 0, we have 11′M = 0 and

11′W = 0. We can show that under Assumption (A0), M
has rank r− 1 and is negative semi-definite. The proof uses

similar ideas as in [20] and hence is omitted here. Recall that

a square matrix Q̃ = (q̃ij) is a generator of a continuous-time

Markov chain if q̃ij ≥ 0 for all i 6= j and
∑

j q̃ij = 0 for

each i. Note that a generator of the associated continuous-

time Markov chain is irreducible if the system of equations

νQ̃ = 0, ν11 = 1 (5)

for a given constant C > 0 has a unique solution, where ν =
[ν1, . . . , νr] ∈ R

1×r with νi/C > 0 for each i = 1, . . . , r.

When C = 1, ν is the associated stationary distribution.

Consequently, under Assumption (A0), M is a generator of

a continuous-time irreducible Markov chain.

IV. WEIGHTED AND CONSTRAINED CONSENSUS

CONTROL ALGORITHMS AND CONVERGENCE

A. Algorithms

We begin by considering the state updating algorithm (4)

xn+1 = xn + µnMxn + µnWdn, (6)

together with the constraint 11′xn = L, where {µn} is a

sequence of stepsizes, M is a generator of a continuous-time

Markov chain (hence 11′M = 0), {dn} is a noise sequence.

Since the algorithm (6) is a stochastic approximation proce-

dure, we can use the general framework in Kushner and Yin

[7] to analyze the asymptotic properties. Since 11′M = 0 and

11′W = 0, starting from the initial condition with 11′x0 = L,

the constraint 11′xn = L is always satisfied by the algorithm

structure.

(A1) (1) The stepsize satisfies the following conditions: µn ≥
0, µn → 0 as n → ∞, and

∑
n µn = ∞. (2) The

noise {dn} is a stationary φ-mixing sequence such that

Edn = 0, E|dn|2+η < ∞ for some η > 0, and that

the mixing measure φ̃n satisfies
∑∞

k=0 φ̃
∆

1+η
n < ∞,

where φ̃n = sup
A∈Fn+m E

1+η
2+η |P (A|Fm) − P (A)|

2+η
1+η ,

Fn = σ{dk; k < n}, Fn = σ{dk; k ≥ n}.

Under (A0), M has an eigenvalue 0 of multiplicity 1 and

all other eigenvalues are in the left complex plan (i.e., the

real parts of the eigenvalues are negative). The null space

of M is spanned by the vector γ = [γ1, . . . , γr]′. As a

consequence of (A1), the φ-mixing implies that the noise

sequence {dn} is strongly ergodic [6, p. 488] in that for

any m 1
n

∑m+n−1
j=m dj → 0 w.p.1 as n → ∞. It is noted that

typical communication noises are either i.i.d. or having finite

memory [3], which are special cases of φ-mixing noises.
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B. Convergence Properties

To study the convergence of the algorithm (6), we employ

the stochastic approximation methods developed in [7]. Due

to the page limitation, all proofs are omitted. Instead of work-

ing with the discrete-time iterations, we examine sequences

defined in an appropriate function space. This enables us to

get a limit ordinary differential equation (ODE). We define

tn =
∑n−1

j=0 µj , m(t) = max{n : tn ≤ t}, the piecewise

constant interpolation x0(t) = xn for t ∈ [tn, tn+1), and the

shift sequence xn(t) = x0(t + tn). the piecewise constant

interpolation x0(t) = x(k) for t ∈ [tk, tk+1), and the shift

sequence xk(t) = x0(t+tk). Then we can show that {xn(·)}
is equicontinuous in the extended sense (see [7, p. 102])

w.p.1. Thus we can extract a convergent subsequence, which

will be denoted by xnℓ(·). Then the Arzela-Ascoli theorem

concludes that xnℓ(·) converges to a function x(·) which is

the unique solution (since the recursion is linear in x) of the

ordinary differential equation (ODE)

ẋ = Mx. (7)

The significance of the ODE is that the stationary point is

exactly the true value of the desired weighted consensus.

Then, convergence becomes a stability issue. Furthermore,

the algorithm (6) together with x′
n11 = L leads to the desired

weighted consensus. The equilibria of the limit ODE (7)

and this constraint lead to the following system of equations

Mx = 0 and 11′x = L. The irreducibility of M then implies

the above system has a unique solution x∗ = βΨ−111 = βγ,

which is precisely the weighted consensus. We record this

in the following theorem.

Theorem 1: Under (A0) and (A1), the iterates gener-

ated by the stochastic approximation algorithm (6) satisfies

Ψxn → β11 w.p.1 as n → ∞.

Example 1: A team of four vehicles has an assigned

total length L. Vehicle i controls the distance di, i =
1, 2, 3, 4. Then the condition d1 + d2 + d3 + d4 = L
is imposed as a constraint. The information topology is

that in addition to observing their own controlled variables,

vehicle 1 observes also d2, vehicle 2 observes also d1 and

d3, vehicle 3 observes d2 and d4. the controller for d4
observes d3 also. The total length L = 53.9 m. Terrain

factors γ1 = 12, γ2 = 15, γ3 = 20, and γ4 = 28.

As a result, G = {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 3)}.

x = [d1, d2, d3, d4]
′, γ = [12, 15, 20, 28]′, Ψ =

diag[1/12, 1/15, 1/20, 1/28]. Since L = 53.9, we have

β = L
γ1+γ2+γ3+γ4 = 0.7187 and the weighted con-

sensus is Ψx = 0.718711 or x = 0.7187Ψ−111 =
[8.624, 10.781, 14.374, 20.124]′.

Suppose that the initial distance distribution from the three

vehicles are d10 = 12 m; d20 = 14 m; d30 = 10.9 m;

d40 = 17 m. Weighted consensus for vehicle control aims

to distribute distances according to the terrain conditions

defined by γ1 = 12, γ2 = 15, γ3 = 20, γ4 = 28, with the

total 11′γ = 75. The target percentage distance distribution

over the whole length is [12/75, 15/75, 20/75, 28/75] =
[0.1600, 0.2000, 0.2667, 0.3733]. From the total length of

53.9 m, the goal of weighted consensus is d1 = 8.624 m;

d2 = 10.780 m; d3 = 14.373 m; d4 = 20.123 m.

Suppose that the link observation noises are i.i.d sequences

of Gaussian noises with mean zero and variance 1. Figure

3 shows the inter-vehicle distance trajectories. Staring from

a large disparity in distance distribution, the top plot shows

how distances are gradually distributed according to the ter-

rain conditions. The middle plot illustrates that the weighted

distances converge to a constant. The weighted consensus

error trajectories are plotted in the bottom figure.
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Fig. 3. Vehicle distance control with weighted consensus

The capability of the consensus control in attenuating

disturbance’s impact on the platoon formation can also be

evaluated. Suppose that a sudden braking of the leading

vehicle results in a sudden distance change in d1 by 4
m. Consensus control then restores the desired distance

distribution, shown in Figure 4.
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Fig. 4. Disturbance rejection in vehicle distance control

V. OBSERVATION NOISE AND POST-ITERATE AVERAGING

The basic stochastic approximation algorithm (6) demon-

strates desirable convergence properties under relatively

small observation noises. However, when noises are large,

its convergence may not be sufficiently fast and its states

show fluctuations. For example, for the same system as in

Example 1, if the noise standard deviation is increased from

1 to 20, its state trajectories demonstrate large variations, as

shown in Figure 5.
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Fig. 5. Vehicle distance control with weighted consensus under large
observation noise

To improve the efficiency, we take a post-iterate averaging,

resulting in a two-stage stochastic approximation algorithm.

Let µn = 1/nα for some (1/2) < α < 1 and c > 0. The

algorithm is modified to

xn+1 = xn +
1

nα
Mxn +

1

nα
Wdn

xn+1 = xn − 1

n+ 1
xn +

1

n+ 1
xn+1.

(8)

Since 11′M = 0 and 11′W = 0, we have 11′xn = L. As a

result, the constraint
∑r

i=1 di(t) = L remains satisfied.

Theorem 2: Suppose the conditions of Theorem 1 are

satisfied. For iterates generated by algorithm (8) (together

with 11′xn = L), xn → βΨ−111 w.p.1 as n → ∞.

We now establish the optimality of the algorithms. Parti-

tion the matrix M as M =

[
M11 M12

M21 M22

]
, where M11 ∈

R
(n−1)×(n−1), M12 ∈ R

(n−1)×1, M21 ∈ R
(n−1)×1, and

M22 ∈ R
1×1. Accordingly, we also partition x̄n, xn, and W

as xn =

[
x̃n

xr
n

]
xn =

[
x̃n

xr
n

]
, W =

[
W̃
W1

]
, respectively,

with compatible dimensions with those of M .

Lemma 1: Under (A0), M11 is full rank.

This result indicates that we can concentrate on r − 1
components of xn. We can show that the asymptotic rate of

convergence is independent of the choice of the r − 1 state

variables. To study the rates of convergence of xn, without

loss of generality we need only examine that of x̃n. It follows

from that



x̃n+1 = x̃n + µn(M̃x̃n + W̃dn),

x̃n+1 = x̃n − 1

n+ 1
x̃n +

1

n+ 1
x̃n+1,

(9)

where M̃ = M11 − M1211′r−1. Note that the noise is now

W̃dn, which is r − 1 dimensional but is a function of ls
dimensional link noise dn. Let D = Ir−1 + 11r−111′r−1. It

can be shown that under (A0), M̃ = M11D and is full rank.

For convergence speed analysis, let en = xn − βΨ−111n.

Decompose en = [ẽ′n, e
r
n]

′.

Theorem 3: Suppose that {dn} is a sequence of i.i.d. ran-

dom variables with mean zero and covariance Ednd
′
n = Σ.

Under (A0), the weighted consensus errors ẽn satisfies that√
nẽn converges in distribution to a normal random variable

with mean 0 and covariance given by M̃−1W̃ΣW̃ ′(M̃−1)′.
Note that the above result does not require any distri-

butional information on the noise {ε(k)} other than the

zero mean and finite second moments. We now state the

optimality of the algorithm when the density function is

smooth.

Theorem 4: Suppose that the noise {dn} is a sequence of

i.i.d. noise with a density f(·) that is continuously differ-

entiable. Then x̃n is asymptotically efficient in the sense of

the Cramér-Rao lower bound on Eẽ′nẽn being asymptotically

attained, nEẽ′nẽn → tr(M̃−1W̃ΣW̃ ′(M̃−1)′).
Corollary 1: Under the conditions of Theorem 4, {xn}

is asymptotically efficient in the sense of the Cramér-Rao

lower bound on Ee′nen being asymptotically attained. The

asymptotically optimal convergence speed is nEe′nen →
tr(DM̃−1W̃ΣW̃ ′(M̃−1)′), where D = Ir−1 + 11r−111′r−1.

Example 2: We now use the system in Example 1 to

illustrate the effectiveness of post-iterate averaging. Sup-

pose that the link observation noises are i.i.d sequences of

Gaussian noises of mean zero and standard deviation 20.

Now, the consensus control is expanded with post-iterate

averaging. Figure 6 shows the distance trajectories. The

distance distributions converge to the weighted consensus

faster with much less fluctuations.
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Fig. 6. vehicle distance control with post-iterate averaging on weighted
consensus algorithms

VI. NETWORK TOPOLOGY AND PLATOON CONTROL

PERFORMANCE

We investigate now the benefits of using communication

systems to enhance platoon control. In a sensor-based infor-

mation network topology, we assume that the vehicles are

equipped with front and rear distance sensors, but controls

its front distance only. On the other hand, if wireless commu-

nications are allowed, inter-vehicle information flows can be

further expanded. From the previous analysis, as long as the

information topology is connected, convergence of consensus

control can be achieved. The main difference is the speed

of convergence, which is essential for system robustness,

disturbance attenuation, and platoon re-configuration.
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Example 3: This example compares the two types of

information network topologies. The platoon contains a lead

vehicles and 5 other vehicles. In the sensor-based topology,

vehicle j measures dj by the front distance sensor and dj+1

by the rear distance sensor. In this case, the last vehicle

will control the overall platoon length L (presumably by

using a GPS device and communicates with the lead vehicle

or the control tower). On the other hand, if inter-vehicle

communication is allowed, d1 is transmitted to vehicle 3, d2
to vehicle 4, etc., adding new network branches in the infor-

mation network topology. Under the same consensus control

gains and step sizes, Figure 7 illustrates inter-vehicle distance

trajectories, starting from the same initial condition. Figure

8 compares the convergence rates under the two topologies.

It is clear that the communication network can potentially

enhance consensus control by adding new information in the

platoon control strategies.
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Fig. 7. Consensus control using different information topologies

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Consensus Error Trajectories

E
rr

o
r 

N
o

rm
s

Iteration Number

 

 

Communication−based topology

Sensor−based topology

Fig. 8. Comparison of convergence speeds between the sensor-based
topology and communication-based topology

VII. CONCLUDING REMARKS

This paper covers some typical environments in which

vehicle platoons are coordinated. These include communi-

cation noises, vehicles’ departure from and arrival in the

platoon etc. However, there are many other uncertainties in

communication systems that are not considered in detail here.

Typical scenarios include communication latency, signal fad-

ing and interference, packet loss, irregular data arrival rates,

etc. These are interesting and important but open issues in

weighted and constrained consensus control.

This paper considers only linearly weighted and

summation-constrained consensus control. Practical systems

often introduce nonlinearity, which needs to be investigated.

Finally, this paper deals with only the system-level (or cyber-

space) vehicle coordination. Actual vehicle dynamics and

control are left to driver-vehicle control. Interaction of the

cyber-space with the physical vehicle control is the ultimate

goal of this study, but not covered in this paper.
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