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1 Introduction

Recently, considerable attention has been drawn to stochastic controlled sys-
tems with hidden Markov chains. Much motivation stems from applications in
distributed power management and platoon inter-vehicle distance maintenance,
among others. The dynamic systems of interest are controlled diffusions with
switching, known as switching diffusions [6]. Different from the extensive studies
contained in the aforementioned references, the switching process in this paper
is assumed to be a continuous-time Markov chain that is hidden. We can only
observe the state of the Markov chain with additive noise. Mean-variance control
problems were first considered in the Nobel prize winning paper of Markowitz [2].
It was subsequently considered by a host of researchers. The recent advances in
backward stochastic differential equations enable the treatment of the mean-
variance controls in continuous time, which is otherwise impossible because of
the so-called indefinite control weights; see Zhou and Li [7] for the first paper
in this direction and further details. Further work in conjunction with regime-
switching models can be found in Zhou and Yin [8] among others.

As a new twist of the mean-variance portfolio selections, our recent work
focuses on using mean-variance formulation to treat networked control systems.

⋆ This research was supported in part by the National Science Foundation under CNS-
1136007.



That is, we borrow the idea in financial engineering to treat problems arising
in networked control problems. Much of the motivation stems from applications
arising in cyber-physical systems. It has been observed in [4] that a large class
of problems arising from networked systems and platoon controls can be formu-
lated as such systems, similar to the mean variance control problems that were
originally pursued in financial engineering [8]. In [4], we outlined three potential
applications in platoon controls based on mean-variance controls. The first prob-
lem concerns the longitudinal inter-vehicle distance control. To increase highway
utility, it is desirable to reduce the total length of a platoon, resulting in smaller
overall inter-vehicle distances. The drawback of this strategy, however, is the in-
crease in the risk of collision due to traffic uncertainties. The task of minimizing
the risk with desired inter-vehicle distance fits naturally to a mean-variance op-
timization framework. The second one is communication resource allocation of
bandwidths for vehicle to vehicle (V2V) communications. For a given maximum
throughput of a platoon communication system, the communication system op-
erator must find a way to assign this resource to different V2V channels, which
may also be formulated as a mean-variance control problem. The third one is
the platoon fuel consumption that is total vehicle fuel consumptions within the
platoon. Due to variations in vehicle sizes and speeds, each vehicle’s fuel con-
sumption is a controlled random process. Tradeoff between a platoon’s team
acceleration/maneuver capability and fuel consumption can be summarized in a
desired platoon fuel consumption rate. Assigning fuels to different vehicles result
in coordination of vehicle operations modeled by subsystem fuel rate dynamics.
This problem may also be casted into the framework of mean-variance control.
Such problems are highly nonlinear, it is virtually impossible to find closed-form
solutions. Our objective is thus devoted to finding feasible algorithms for the
desired tasks. Recently, in our work [5], numerical approximation methods have
been developed. The convergence of the algorithms is proved. The basic idea is
first to convert the partially observable stochastic control problems to completely
observed systems by means of the Wonham filtering methodologies. Then we use
relaxed controls and Markov chain approximation techniques to build convergent
numerical schemes. Based on that work, this paper aims to provide case stud-
ies of two typical problems in applications. In this paper, we focus on two of
the problems mentioned above. Our main effort is to demonstrate the use of
numerical methods to solve the problems arising in the specific applications.

The rest of the paper is arranged as follows. Section 1 formulates the problem.
Section 1 introduces the Markov chain approximation methods and provides the
approximation of the optimal controls. Sections 1 and 1 present two case studies
to illustrate the wide applications of the scheme developed in our work.

1 Problem Formulation

Consider a given probability space (Ω,F , P ) in which there is w1(t), a standard
ρ-dimensional Brownian motion with w1(t) = (w1

1(t), w
2
1(t), . . . , w

ρ
1(t))

′, here z′

denotes the transpose of z. Let α(t) be a continuous-time finite-state Markov



chain, independent of w1(t), taking values in M = {1, 2, . . . ,m} with generator
Q = (qij)m×m. We consider a networked system that consists of ρ + 1 nodes
(subsystems), which is modeled for t ∈ [s, T ] by

dx0(t) = µ0(t, α(t))x0(t)dt, x0(s) = x0,
dxl(t)= xl(t)µl(t, α(t))dt+ xl(t)σ̄l(t, α(t))dw1(t), xl(s) = xl, l = 1, . . . , ρ,

(1.1)
where for each i, µl(t, i) is the drift and σ̄l(t, i) = (σ̄l1(t, i), . . ., σ̄lρ(t, i)) is the
volatility for the lth node. In our framework, instead of having full information
of the Markov chain, we can only observe

dy(t) = g(α(t))dt+ βdw2(t), y(s) = 0, (1.2)

where β > 0 and w2(·) is a standard scalar Brownian motion, w1(·), w2(·), and
α(·) are independent. Moreover, the initial data p(s) = p = (p1, p2, . . . , pm) in
which pi = pi(s) = P (α(s) = i) is given for 1 ≤ i ≤ m. By distributing the
portion Nl(t) of the lth node’s flow xl(t) at time t and denoting the total flows
for the whole networked system as x(t), we have x(t) =

∑ρ

l=0 Nl(t)xl(t), t ≥ s.
With x(s) =

∑ρ

l=0 Nl(s)xl(s) = x, the dynamics of x(t) are given as

dx(t)= [x(t)µ0(t, α(t)) +M(t, α(t))π(t)]dt+ π′(t)σ̄(t, α(t))dw1(t), (1.3)

in which π(t) = (π1(t), . . . , πρ(t))
′ and πl(t) = Nl(t)xl(t) for l = 1, . . . , ρ is the

actual flow of the network system for the lth node and π0(t) = x(t)−
∑ρ

l=1 πl(t)
is the actual flow of the networked system for the first node, and M(t, α(t)) =
(µi(t, α(t)) − µ0(t, α(t)) : i = 1, . . . , ρ) and σ̄(t, α(t)) = (σ̄lj(t, α(t)))ρ×ρ. We
define Ft = σ{w1(s̃), y(s̃), x(s) : s ≤ s̃ ≤ t}. Our objective is to find an Ft

admissible control π(·) in a compact set π under the constraint that the expected
terminal flow is Ex(T ) = κ for some given κ ∈ R, so that the risk measured by
the variance of the terminal flow is minimized. Specifically, we have the following
goal

min J(s, x, p, π(·)) := E[x(T )− κ]2

subject to Ex(T ) = κ.
(1.4)

We apply the Lagrange multiplier techniques (see, e.g., [7]) to arrive at the
unconstrained optimization problem

min J(s, x, p, π(·), λ) := E[x(T ) + λ− κ]2 − λ2

subject to (x(·), π(·)) admissible,
(1.5)

where λ is the Lagrange multiplier. A pair (
√
Var (x(T )), κ) ∈ R

2, corresponding
to the optimal control if it exists, is called an efficient point.

Next, to treat the partially observed control problem, let pi(t) = P (α(t) =
i|Fy(t)) for i = 1, 2, . . . ,m, with p(t) = (p1(t), . . . , pm(t)) ∈ R

1×m and Fy(t) =
σ{y(s̃) : s ≤ s̃ ≤ t}. It was shown in [3] that this conditional probability satisfies
the following system of stochastic differential equations

dpi(t)=

m∑

j=1

qjipj(t)dt+
1

β
pi(t)(g(i)− α(t))dŵ2(t), pi(s) = pi, i = 1, . . . ,m

(1.6)



where α(t) =
∑m

i=1 g(i)p
i(t) and ŵ2(t) is the innovation process. Now we have

a completely observable system so that x(s) = x, pi(s) = pi, and

dx(t)= µ(x(t), p(t), π(t))dt+ σ(x(t), p(t), π(t))dw1(t)

dpi(t)=

m∑

j=1

qjipj(t)dt+
1

β
pi(t)(g(i)− α(t))dŵ2(t), for i ∈ {1, . . . ,m} (1.7)

where

µ(x(t), p(t), π(t)) =
m∑

i=1

µ0(t, i)p
i(t)x(t) +

ρ∑

l=1

m∑

i=1

(µl(t, i)− µ0(t, i))p
i(t)πl(t)

σ(x(t), p(t), π(t))dw1(t) =

ρ∑

l=1

ρ∑

j=1

m∑

i=1

πl(t)σ̄lj(t, i)p
i(t)dwj

1(t).

For an arbitrary r ∈ π and φ(·, ·, ·) ∈ C1,2,2(R), consider the operator

Lrφ(s, x, p)=
∂φ

∂s
+

∂φ

∂x
µ(x, p, r) +

1

2

∂2φ

∂x2
[σ(x, p, r)σ′(x, p, r)]

+
m∑

i=1

∂φ

∂pi

m∑

j=1

qjipj +
1

2

m∑

i=1

∂2φ

∂(pi)2
1

β2
[pi(g(i)− α)]2.

(1.8)

Let W (s, x, p, π) be the objective function with Eπ
s,x,p denoting the expectation

of functionals on [s, T ] with x(s) = x, p(s) = p, the admissible control π = π(·),
and the value function V (s, x, p)

V (s, x, p) = infπ∈π W (s, x, p, π) = infπ∈π E
π
s,x,p(x(T ) + λ− k)2 − λ2. (1.9)

The value function is a solution of the following equation

infr∈π L
rV (s, x, p) = 0, (1.10)

with boundary condition V (T, x, p) = (x(T ) + λ − κ)2 − λ2. Note that (??)
is known as the Hamilton-Jacobi-Bellman (HJB) equation. To proceed, we use
the relaxed control representation. For the σ-algebra B(π) and B(π × [s, T ]) of
Borel subsets of π and π × [s, T ], an admissible relaxed control or simply a
relaxed control m(·) is a measure on B(π × [s, T ]) such that m(π × [s, t]) =
t − s for all t ∈ [s, T ]. For notational simplicity, for any B ∈ B(π), we write
m(B × [s, T ]) as m(B, T − s). Since m(π × [s, t]) = t − s for all t ∈ [s, T ]
and m(B, ·) is nondecreasing, it is absolutely continuous. Hence the derivative
ṁ(B, t) = mt(B) exists almost everywhere for each B. We can further define
the relaxed control representation m(·) of π(·) by mt(B) = I{π(t)∈B} for any
B ∈ B(π). We say that M(·) is a measure-value Ft martingale with values
M(B, t) if M(B, ·) is an Ft martingale for each B ∈ π, and for each t, the
following holds: supB∈π

EM2(B, t) < ∞,M(A∪B, t) = M(A, t)+M(B, t) w.p.1.
for all disjoint A,B ∈ B(π), and EM2(Bn, t) → 0 if Bn → ∅. We say that M(·)
is orthogonal if M(A, ·) and M(B, ·) are Ft martingales whenever A∩B = ∅. If



M(·), M̄(·) are Ft martingale measures and M(A, ·), M̄(B, ·) are Ft martingales
for any Borel set A,B, then M(·) and M̄(·) are said to be strongly orthogonal.
Letting M(·) = (M1(·), . . . ,Mρ(·))

′, a vector valued martingale measure, we
impose the following conditions.

(A1) M(·) = (M1(·), . . . ,Mρ(·))
′ is square integrable and continuous; each

component is orthogonal; and the pairs are strongly orthogonal.
Under (A1), there are measure-valued random processes mi(·) such that the

quadratic variation processes satisfy, for each t and A,B ∈ B(π),
〈
Mi(A, ·),

Mj(B, ·)
〉
(t) = δijmi(A ∩B, t).

(A2) mi does not depend on i, mi(·) = m(·), and m(π, t) = t for all t.
With the help of the martingale measures and relaxed controls, we can rep-

resent our control system in the following way:

x(t)= x+

∫ t

s

∫

π

µ(x(z), p(z), c)mz(dc)dz +

∫ t

s

∫

π

σ(x(z), p(z), c)M(dc, dz)

pi(t)=

∫ t

s

m∑

j=1

qjipj(z)dz +

∫ t

s

1

β
[pi(z)(g(i)− α(z))]dŵ2(z), i ∈ {1, . . . ,m}

(A3) µ(·, ·, ·) and σ(·, ·, ·) are continuous; µ(·, p, c) and σ(·, p, c) are Lipschitz
continuous uniformly in p, c and bounded.

(A4) σ(x, p, c) = (σ1(x, p, c), . . . , σρ(x, p, c)) > 0.

1 Approximation Algorithms

To facilitate subsequent numerical computations, let vi(t) = log pi(t). Itô’s rule
leads to the dynamics of vi(t). We can then obtain the following discrete-time
approximation of the Wonham filter

vh2,i
n+1= vh2,i

n + h2[
m∑

j=1

qji
ph2,j
n

ph2,i
n

−
1

2β2
(g(i)− ᾱh2

n )2] +
√
h2

1

β
(g(i)− ᾱh2

n )εn,

vh2,i
0 = log(pi), ph2,i

n+1 = exp(vh2,i
n+1),

(1.11)
where ᾱh2

n =
∑m

i=1 g(i)p
h2,i
n and {εn} is a sequence of i.i.d. random variables

satisfying Eεn = 0, Eε2n = 1, and E|εn|
2+γ < ∞ for some γ > 0 with εn =

ŵ2((n+1)h2)−ŵ2(nh2)√
h2

. Here ph2,i
n appeared as a denominator in (1.11) and we have

concentrated on the case that ph2,i
n stays away from 0. Let h1 > 0 be a dis-

cretization parameter for state variables, and recall that h2 > 0 is the step size
for the time variable. We construct a discrete-time finite-states Markov chain to
approximate the controlled diffusion process, x(t). Let Nh2

= (T − s)/h2 be an
integer and define Sh1

= {x : x = kh1, k = 0,±1,±2, . . .}. We use πh1,h2

n to de-
note the random variable that is the control action for the chain at discrete time
n. Let πh1,h2 = (πh1,h2

0 , πh1,h2

1 , . . .) denote the sequence of π-valued random vari-
ables which are the control actions at time 0, 1, . . . and ph2 = (ph2

0 , ph2

1 , . . .) be
the corresponding posterior probabilities in which ph2

n = (ph2,1
n , ph2,2

n , . . . , ph2,m
n ).



We define the difference ∆ξh1,h2

n = ξh1,h2

n+1 − ξh1,h2

n and let Eh1,h2,r
x,p,n , V h1,h2,r

x,p,n

denote the conditional expectation and variance given {ξh1,h2

k , πh1,h2

k , ph2

k , k ≤
n, ξh1,h2

n = x, ph2

n = p, πh1,h2

n = r}. By stating that {ξh1,h2

n , n < ∞} is a con-
trolled discrete-time Markov chain on a discrete-time state space Sh1

with tran-
sition probabilities denoted by ph1,h2((x, y)|r, p), we mean that the transition
probabilities are functions of a control variable r and posterior probability p.
The sequence {ξh1,h2

n , n < ∞} is said to be locally consistent with (1.7) if it
satisfies

Eh1,h2,r
x,p,n ∆ξh1,h2

n = µ(x, p, r)h2 + o(h2),
V h1,h2,r
x,p,n ∆ξh1,h2

n = σ(x, p, r)σ′(x, p, r)h2 + o(h2),
supn |∆ξh1,h2

n | → 0, as h1, h2 → 0.
(1.12)

With the approximating Markov chain given above, we can approximate the cost
function Wh1,h2(s, x, p, πh1,h2) in which x(T ) is replaced by ξh1,h2

Nh2

and can find

approximation of V (s, x, p). Now we will proceed to find a reasonable Markov
chain that is locally consistent. We first suppose that the control space has a
unique admissible control πh1,h2 ∈ π

h1,h2 , so that we can drop inf in (1.10). We
discretize (1.8) by a finite difference method using step-size h1 > 0 for the state
variable and h2 > 0 for the time variable as mentioned above. For simplicity, we
omit the details. We can show that the approximating Markov chain constructed
above satisfies local consistency. Note that we have used local transitions here
so that we can avoid the problem of “numerical noise” or “numerical viscosity”,
which appears in non-local transitions cases, and is even more serious in higher
dimension scenarios, see [1] for more details. We omit most of the details and
please refer to [5] for further demonstration.

It can be shown that the Markov chain {ξh1,h2

n , n < ∞} with transition
probabilities ph1,h2(·) properly defined is locally consistent with (1.7). Next, we
give the discrete-time approximation algorithm for the controlled Markov chain.
Based on the local consistency, we can represent ξh1,h2

n+1 as

ξh1,h2

n+1 = ξh1,h2

n +µ(ξh1,h2

n , ph2

n , πh1,h2

n )h2+ σ(ξh1,h2

n , ph2

n , πh1,h2

n )∆wh1,h2

n + o(1),
(1.13)

where o(1) can be written as εh1,h2

n in which εh1,h2

n → 0 as h1, h2 → 0. To approxi-
mate the continuous-time process (x(t), p(t),m(t),M(t)), we use continuous-time
interpolation. For t ∈ [nh2, (n+1)h2), we define the piecewise constant interpo-
lations by

ξh1,h2(t) = ξh1,h2

n , ph2(t) = ph2

n , ᾱh1,h2(t) =
m∑

i=1

g(i)ph2

n , πh1,h2(t) = πh1,h2

n ,

zh2(t) = n, wh1,h2

l (t) =

zh2 (t)−1∑

k=0

∆wh1,h2

l,k , εh1,h2(t) = εh1,h2

n .

(1.14)
With most of the technical details omitted, which can be found in [5], we present
the main approximation theorem below.



Theorem 1. Assuming (A1)-(A4), let {ξh1,h2

n , n < ∞}, the approximating chain

be constructed with transition probabilities properly defined. Let {πh1,h2

n , n < ∞}
be a sequence of admissible controls, ξh1,h2(·) and ph2(·) be the continuous time

interpolation defined in (1.14), mh1,h2(·) be the relaxed control representation of

πh1,h2(·) (continuous time interpolation of πh1,h2

n ). Then

(ξh1,h2(·), ph2(·),mh1,h2(·),Mh1,h2(·)) is tight,

(ξh1,h2(·), ph2(·), mh1,h2(·), Mh1,h2(·)) converges weakly to (x(·), p(·),m(·),M(·)),
and W (s, x, p,mh1,h2) → W (s, x, p,m). Denoting the limit of a weakly conver-

gent subsequence by (x(·), p(·),m(·),M(·)), the martingale measure M(·) has

quadratic variation process given by m(·) and the desired limit dynamics hold.

Moreover, V h1,h2(s, x, p) → V (s, x, p) as h1 → 0 and h2 → 0.

1 Case Study I: Distributed Power Management

Consider a distribution network of renewable energy generators and energy stor-
age devices. Typically, the distributed generators can be photovoltaic (PV) sys-
tems, wind turbines, bio-engines, fuel cells, etc. Energy storage devices can be
batteries, super-capacitors, etc. To be concrete, let xi(t), i = 1, 2, 3 be the maxi-
mum power generating capacity of the ith generator at time t. In addition, x0(t)
is the available maximum capacity that is allowed to be purchased from the main
grid at t.

Let Ni(t) be the portion of the power generated by the ith generator that is
used to satisfy total power demand, Then, the total locally generated power at
time t is

∑3
i=1 Ni(t)xi(t). Implicitly, the remaining power will be purchased from

the main grid, i.e., π0(t) = N0(t)x0(t) = x(t) −
∑3

i=1 Ni(t)xi(t). A renewable
generator’s maximum capacity is a stochastic process. For example, a wind tur-
bine’s maximum power is determined by the wind speed and direction. Similarly,
a PV system’s output is determined by how much solar radiation is available at
a given time, weather condition, and the angle that the sunlight is shining on
the solar panels. Here, {xi(t) : i = 0, 1, . . . , 3} is given by (1.1) with α(t) being
a 3-state switching process which takes values in {1, 2, 3} with generator

Q =



−0.5 0, 2 0.3
0.3 −0.6 0.3
0.4 0.4 −0.8


, µ1(α) = 2α, µ2(α) = α + 1, µ3(α) = α + 2, σ1(α) =

(α, 0, 0), σ2(α) = (0, α
2 , 0) and σ3(α) = (0, 0, α

3 ), for α = 1, 2, 3, and w1(t) ∈ R
3.

Here, the drift term represents average solar radiation values throughout a day;
and diffusion term represents solar radiation fluctuations which are caused by
many factors such as clouds, weather conditions, etc. The dynamics of the pro-
cess depend on an event variable α which reflects system structural changes. This
is exemplified by scheduled or emergency maintenance of solar modules, failure
of a battery cell, addition of super-capacitor banks, tap changes in transformer
actions, etc.

It is noted that sometimes such switching actions α cannot be observed di-
rectly, such as solar or battery cell failures. However, such switching actions will



affect certain measured variables. For example, battery cell failures will cause a
jump in terminal voltages. In this study, instead of direct access to α, we as-
sume (1.2) is observable where g(1) = 1, g(2) = 2 and g(3) = 3, β = 1 > 0
is a constant, and w2(t) is a Brownian motion, independent of w1(t). y(t) is a
measured quantity. Distributed power management aims to decide dispatching
parameters Ni(t), i = 1, . . . , 3. This can be formulated as a mean-variance con-
trol problem. To meet the total power consumption demand z = 1 MW (mega
watts), it is required that we have the constraint Ex(T ) = z. On the other hand,
to maintain grid stability, smooth operations, and reduced waste, it is desirable
that generation-consumption disparity in transient be as small as possible. It is
well understood in traditional power flow analysis that transient power fluctua-
tions cause energy loss on lines, affect voltage and frequency stability. In view of
(1.4), the Lagrange multiplier technique leads to (1.5). The value function and
corresponding control are in Figure 1 in which x axis is the possible consumption
demand of all the generators in the system at T = 2 and y axis represent the
feedback control π1 for the first generator and value function V , respectively.
The efficient frontier is demonstrated in Figure 2 in which the x axis is the
standard deviation of total generation-consumption of the system and y axis is
the expected power consumption. We use the simplex method to find out the
optimal λ.
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(a) Optimal feedback control π1(t) =
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z = 1 MW
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Fig. 1. Optimal control for the first generator and value function V for the power
management system
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Fig. 2. Mean variance efficient frontier for power management system in which step
sizes for the state variable and time variable are h1 = 0.25 and h2 = 0.001, respectively.

1 Case Study II: Communication Resource Allocation

The second case study is concerned with communication resource allocation of
bandwidths for vehicle-to-vehicle (V2V) communications. For a given maximum
throughput of a platoon communication system, the communication system must
find a way to assign this resource to different V2V channels. If the total band-
width used is lower than the assigned bandwidth, there will be a waste of re-
source. Conversely, usage of bandwidths over the budget may incur high costs
or interfere with other platoons’ operations. In this case, each channel’s band-
width usage is the state of the subsystem. Their summation is a random process
and is desired to approach the maximum throughput (the desired mean at the
terminal time) with variations as small as possible. Consequently, it becomes a
mean-variance control problem.

Consider a platoon of 5 vehicles. Let Bi(t), i = 0, 1, . . . , 4 be the maximum
transmission data rate of vehicle i at time t. In practice, the maximum data
rate is determined by the processing capability limits, the resources used by
other tasks of the vehicle’s communication system, and the bandwidth alloca-
tion scheme between vehicles (e.g., through wireless transmission scheduling).
If the platoon is assigned with a total of data rate B(t) Mbps (mega bits per
second), which must be shared by all the vehicles within the platoon. Let Ni(t)
be the portion of Bi(t) that is used in the actual transmission by vehicle i.
Then, Ni(t)Bi(t) is the data rate of vehicle i and the total data rate of the

entire platoon is desired to be B(t) =
∑4

i=0 Ni(t)Bi(t). Due to dynamics of
many tasks, Bi(t) is a stochastic process. In addition, since vehicles move along
roads, we have a communication network whose topology switches. Assume that
{Bi(t) : i = 0, 1, . . . , 4} obeys the stochastic system (1.1) with the Markov
chain α(t) having m states, representing m possible network topologies. To be
concrete, suppose that m = 1, 2, 3, 4 and the switching process has the gener-



ator Q =




−0.7 0.5 0.1 0.1
0.4 −0.8 0.2 0.2
0.2 0.1 −0.5 0.2
0.1 0.2 0.3 −0.6


 and µ0(α(t), t) = 0.5α, µ1(α(t), t) = α + t,

µ2(α(t), t) = 2α + 1.5t, µ3(α, t) = α − t, σ1(α(t), t) = (α, 0, 0, 0), σ2(α(t), t) =
(0, α

2 , 0, 0), σ3(α(t), t) = (0, 0, α
3 , 0) for α = 1, 2, 3, 4, and w1(t) ∈ R

4. Here, the
drift term represents average maximum data rates during an operating time
interval of the communication system and Bi(t)σi(α(t), t)dw1(t) represents fluc-
tuations on Bi, which are determined by other communication tasks such as
coding, data compression, packet formation, etc. The dynamics of the process
depend on the event variable α which reflects communication network topology
changes. Communication link changes typically contain both observable and un-
observable elements. It is noted that a communication link can be terminated
by the associated vehicles, which is an observable event. However, packet loss
can cause a link to be broken which is not observable directly until the data
transmission is completed and data were lost. In this sense, this unobservable
event can be partially observed from data flows and receipt acknowledgement.
Consequently, the event α can be modeled by (1.2) where g(1) = 2, g(2) = 1.5,
g(3) = 3 and g(4) = −1, and β = 1 > 0 is a constant. Here y(t) is a measured
variable for the event.

Communication system management decides data rate allocation strategies
by assigning Ni(t) proportion of data rate to vehicle i, i = 1, . . . , 4. This can
be formulated as a mean-variance control problem. To use efficiently the total
available data rate z = 2 Mbps, we require that at the end of the resource
assignment period T , EB(T ) = z. To ensure that the platoon does not overuse
resources (causing interruptions to other platoons, incurring penalty, etc.) or
waste resources, it is desirable that the platoon’s actual total data rate is as
close to 2 Mbps as possible. This is consistent to (1.4), or equivalently (1.5).

The value function and corresponding control are in Figure 3 in which x
axis is the possible value for the resource assignment at T = 2 in the platoon
communication system and y axis represents π1- the feedback control or in other
words, data rate of the first vehicle and value function V , respectively. The
efficient frontier is demonstrated in Figure 4 in which the x axis is the standard
deviation of the total data rate of the entire platoon and y axis is the standard
deviation of the total data rate allocation for the V2V communications at the
end of the resource assignment period.

1 Concluding Remarks

This paper has been devoted to case studies on two applications. The main char-
acteristics of the problems are regime-switching diffusions with a hidden Markov
chain. Our effort was devoted to the numerical solutions of the problems. Af-
ter converting the problems into completely observed systems, based on Markov
chain approximation techniques, controlled discrete-time Markov chains were
constructed for the intended task. Although only two examples have been pre-
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Fig. 3. Optimal control for the first vehicle and value function V for the entire platoon
system
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Fig. 4. Mean variance efficient frontier for communication system in which step sizes
for the state variable and time variable are h1 = 0.25 and h2 = 0.001, respectively.



sented, the techniques used and the methods of approximation can be applied
to a wide range of applications.
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