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Abstract—Co-channel interference is a limiting factor to
the predictability and performance of wireless networks, thus
interference-oriented scheduling of channel access has become
a basic building block of wireless networking. Despite much
work in this area, the existing algorithms did not address the
limiting impact of interference when optimizing transmission
scheduling. Towards understanding the importance of consid-
ering the limiting impact of interference, we formulate the
concept of interference budget, and we propose the scheduling
algorithm iOrder that maximizes the schedulability of future
channel access when scheduling concurrent transmissions. When
selecting concurrent transmitters for a time slot, more specifically,
iOrder tries to maximize the additional interference that can
be tolerated by all the receivers while satisfying the application
requirement on link reliability. We analyze the approximation
ratio of iOrder, and, through extensive simulation and testbed-
based measurement, we observe that addressing the limiting
impact of interference can improve the performance of existing
algorithms by a significant margin, for instance, improving the
throughput of the well-known algorithm LQF by a factor up
to 2. Thus our study demonstrates the importance of explicitly
addressing the limiting impact of interference, which opens up
new avenues for future research and for optimizing wireless
network performance.

I. INTRODUCTION

With the development of networked embedded sensing and

control, wireless networks are increasingly applied to mission-

critical applications such as industrial monitoring and control

[1]. This is evidenced by the recent industry standards such

as WirelessHART [2] and ISA SP100.11a [3] which target

wireless networked sensing and instrumentation. In supporting

mission-critical tasks, these wireless networks are required to

ensure reliable data delivery. In data-intensive sensing such

as in camera sensor networks, it is also necessary to enable

high-throughput data delivery. Nonetheless, wireless commu-

nication is subject to various dynamics and uncertainties. Due

to the broadcast nature of wireless communication, in partic-

ular, concurrent transmissions may interfere with one another

and introduce co-channel interference. Co-channel interference

not only reduces the reliability and throughput of wireless

networks, it also increases the variability and uncertainty

in data communication [4]. Therefore, effectively scheduling

concurrent transmissions to control co-channel interference

has become critical for enabling reliable, predictable wireless

communication.

Optimal interference-oriented scheduling in wireless net-

works has been shown to be NP-complete in general [5],
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[6], and the research community has proposed different

polynomial-time approximation algorithms accordingly. Most

approximation algorithms are greedy in nature, and two

representatives are Longest-Queue-First (LQF) [7], [8], [9]

and GreedyPhysical [10], [11]. When scheduling concurrent

transmissions for a time slot, LQF greedily adds to the slot

non-interfering links in a decreasing order of their senders’

queue lengths; GreedyPhysical selects non-interfering links for

the slot in a decreasing order of their interference numbers,

where the interference number of a link ℓ is defined as the

number of other links that do not share any end-node with ℓ but

can be interfered by ℓ. Different from the greedy algorithms,

Goussevskaia et al. proposed the algorithm LengthDiversity

[5]. In LengthDiversity, the links of a network are grouped

into different classes based on their lengths. Links in different

classes are scheduled independent of one another, and links in

the same class are scheduled using virtual-grid-based coloring.

When scheduling transmissions for a time slot, it is usu-

ally the interference among the transmissions that limits the

number of concurrent transmissions in the slot. In approxi-

mation algorithms where links are added to a time slot in a

sequential manner until reaching the interference limit,1 the

order in which links are added determines the accumulation

of interference at the receivers and thus affects the number of

concurrent links schedulable in the slot (see Section III for an

example). Nonetheless, existing scheduling algorithms either

do not take this ordering effect into account (e.g., in LQF)

or do not explicitly optimize for the ordering effect (e.g., in

GreedyPhysical and LengthDiversity). Thus the open questions

are: 1) how to explicitly optimize the ordering of link addition

in wireless scheduling? and 2) how does link ordering affect

the throughput of scheduling algorithms?

To address these open questions for insight into wireless

scheduling, we formulate the concept of interference budget

that, given a set of scheduled transmissions in a time slot,

characterizes the additional interference power that can be

tolerated by all the receivers without violating the applica-

tion requirement on link reliability. Then we propose the

scheduling algorithm iOrder that optimizes link ordering by

considering both interference budget and queue length in

scheduling. When constructing the schedule for a time slot,

iOrder first picks a link with the maximum number of queued

packets; then iOrder adds links to the slot one at a time in

a way that maximizes the interference budget at each step;

1For example, the SINR at some receiver falls below a minimum threshold.



this process repeats until no additional link can be added to

the slot without violating the application requirement on link

reliability.

To understand the impact of link ordering on scheduling,

we first analytically prove the approximation ratio of iOrder

in Poisson random networks, then we comparatively study the

performance of iOrder and existing algorithms via simulation

and testbed-based measurement. We observe that optimizing

link ordering can improve the performance of existing algo-

rithms by a significant margin, for instance, improving the

throughput of LQF and LengthDiversity by a factor up to 2 and

19.6 respectively. Thus our study demonstrates the importance

of explicitly optimizing link ordering in wireless scheduling,

which opens up new avenues for future research and for

optimizing wireless network performance. Our detailed sim-

ulation study also discover the surprisingly low performance

of LengthDiversity despite its good asymptotic approximation

ratio. We find that this is due to the large constant factor

hidden in the analysis of LengthDiversity [5]. Therefore, it

is important to examine the constant factors when analyzing

wireless scheduling algorithms.

As a first step towards addressing the limiting impact of

interference on wireless scheduling, our objective in this paper

is to characterize the benefits of optimizing link ordering in

TDMA scheduling, and we do not focus on distributed algo-

rithm design. Nonetheless, our scheduling algorithm iOrder

is amenable to distributed implementation, and we discuss

potential approaches in Section VI; we also discuss in Sec-

tion VI the scenarios when centralized TDMA scheduling

is also applicable without having to resort to distributed

implementation.

The rest of the paper is organized as follows. We present

the system models and problem definition in Section II. We

present algorithm iOrder in Section III. Then we perform

detailed simulation and measurement study of iOrder and

existing algorithms in Sections IV and V respectively. We dis-

cuss potential distributed approaches to implementing iOrder

in Section VI. We present related work in Section VII and

concluding remarks in Section VIII.

II. PRELIMINARIES

Here we present the wireless channel and radio models used

in the analytical and simulation parts of this paper, and we

define the problem of wireless TDMA scheduling.

A. Wireless channel and radio models

Channel model. To characterize signal attenuation in wire-

less networks, we use the log-normal path loss model [12]

which is widely adopted in protocol design and analysis. By

this model, the power Pr (in dBm) of the received signal at a

node distance d away from the transmitter is computed as

Pr = Ptx − PL(d0) − 10αlog10
d

d0
+ N(0, σ2) (1)

where Ptx is the transmission power, PL(d0) is the power

decay at the reference distance d0, α is the path loss exponent,

N(0, σ) is a Gaussian random variable with mean 0 and

variance σ.

Radio model. The reception capability of a radio can

be characterized by the bit error rate (BER) and the packet

delivery rate (PDR) in decoding signals with specific signal-

to-interference-plus-noise-ratios (SINR). Our study considers

the CC2420 radios [13], which are compatible with the IEEE

802.15.4 standard and are widely used in wireless sensor

network platforms such as TelosB and Tmote Sky motes. For

CC2420 radio, the BER for a SINR of γ is computed as

follows [14]:

BER(γ) =
8

15
×

1

16
×

16∑

k=2

(−1)k

(
k

16

)
e(20×γ×( 1

k
−1)) (2)

Accordingly, the PDR for a SINR of γ is computed as follows:

PDR(γ, f) = (1 − BER(γ))8f (3)

where f is the packet length (in units of bytes) including

overhead such as packet header.

Remarks. The aforementioned models are among the most

general models commonly used in the literature, even though

they do not capture all the real-world phenomena such as

the irregularity of wireless communication [15]. We use these

models in our analysis and simulation to gain insight into

wireless scheduling, and then we verify the analytical and

simulation results through testbed-based measurement which

captures complex real-world phenomena as we discuss in

Section V.

B. Problem definition

We consider wireless networks where, for the purpose of

reliable data delivery, the scheduling is required to ensure

a minimum signal-to-interference-plus-noise-ratio (SINR) γt

for all the receivers involved in any transmission. Note that

reliable data delivery is important not only for reliability but

also for predictable data delivery latency in mission-critical

networks [16].

We consider a network G(V, E) where V is the set of nodes,

and E is the set of directed links {〈Ti, Ri〉 : i = 1, 2, . . . , |E|};

each link ℓi = 〈Ti, Ri〉 is such that, when node Ti transmits,

the signal-to-noise-ratio (SNR) at receiver Ri is no less than

γt in the absence of interference. We assume a time-slotted

system where a node can finish transmitting a packet in each

time slot. We define a slot-schedule Sj for a time slot j as

the set of concurrent transmitting links in slot j. Given a link

ℓi and a slot-schedule Sj , we define the indicator variable

I(ℓi ∈ Sj) whose value is 1 if ℓi ∈ Sj , and 0 otherwise. A

slot-schedule Sj is valid if, in the presence of the concurrent

transmissions of the schedule, the SINRs at all the receivers

of the schedule is no less than γt and there is no primary

interference between the concurrent transmissions.2 γt can be

chosen based on the desired packet delivery rate (PDR) and

formula (3). To ensure a high PDR (e.g., close to 100%), we

2There is primary interference between two links ℓi and ℓj if ℓi and ℓj

share any common end-node.



use a SINR threshold γt = 5dB in most places of this paper

unless specified otherwise. A schedule S consists of a sequence

of slot-schedules Sj , j = 1, 2, . . ., and S is valid if Sj is valid

for every time slot j.

We consider the case where every transmitter Ti has Li

(Li ≥ 0) number of queued packets to be delivered to the

receiver Ri. Then we define the scheduling problem Pbl as

follows:

Problem Pbl: Given Li queued packets at each transmitter Ti

(i = 1, . . . , |E|), find a valid schedule Sbl = {S1,S2, . . .} such

that
∑

Sj∈Sbl
I(ℓi ∈ Sj) = Li for every i and that |Sbl| ≤ |S′|

for every other valid schedule S′ with
∑

Sj′∈S′ I(ℓi ∈ Sj′ ) =

Li for every i.
For problem Pbl, we can generate the schedule for one

time slot at a time in an iterative manner until all the

packet transmissions are scheduled. To this end, we define

the following slot-scheduling problem Ps:

Problem Ps: Given a link ℓi ∈ E, find a valid slot-schedule

Sℓi
such that ℓi ∈ Sℓi

, and |Sℓi
| ≥ |S ′| for every other valid

slot-schedule S′ with ℓi ∈ S′.

Remarks. Besides the backlogged traffic pattern discussed

above, we have also studied online traffic patterns. We have

observed similar phenomena as with backlogged traffic, thus

we relegate the detailed discussion of online traffic to [17] for

the sake of limited space here.

III. ALGORITHM IORDER

In what follows, we first demonstrate the drawbacks of

existing scheduling algorithms by examining their behavior in

solving an example slot-scheduling problem, then we present

our algorithm iOrder and analyze its approximation ratio.

A. A motivating example

Fig. 1. A simple network

We consider a simple converge-

cast network as shown in Fig-

ure 1, where every node has a

CC2420 radio and uses a trans-

mission power of −25dBm (a.k.a.
power level 3 [13]), and each link

is 3.06 meters long. The environ-

ment is a typical indoor environ-

ment with path loss exponent α =
3.5, reference distance d0 = 1
meter, and PL(d0) = 55dBm;

the mean background noise power

is −105dBm. This network setup

ensures, in the absence of concurrent transmissions, a signal-

to-noise ratio (SNR) of 8dB for every receiver of a trans-

mitting link. We consider a state of the network where the

number of queued packets, denoted by Li, for each link

ℓi (i = 1, 2, . . . , 11) satisfies the following:

L1 > Lk, 2 ≤ k ≤ 11
L2k > L2k+2, 1 ≤ k ≤ 3
L2k = L2k+1, 1 ≤ k ≤ 4
L8 > L10 > L11

We consider the slot-scheduling problem P
′
s where we want

to find a largest valid schedule that includes link ℓ1 and

ensures a minimum SINR γt of 6dB at all the receivers. For

convenience, we define the hop distance between two links

ℓi and ℓj (i 6= j) as the number of links in the shortest

path connecting any end-node of ℓi to any end-node of ℓj .

With the network setup and minimum SINR requirement of

6dB, any two links whose hop distance is 0 or 1 can interfere

with each other, but any two links whose hop distance is no

less than 2 do not interfere with each other in the absence

of other concurrent transmissions. For instance, if links ℓ1

and ℓ4 transmit together, the SINR at the receiver of ℓ4 is

0.64dB which is below the SINR threshold of 6dB; on the

other hand, if ℓ1 and ℓ6 transmit together in the absence of

other transmissions, the SINR at the receiver of ℓ1 and ℓ6 is

7.75dB and 6.08dB respectively, thus ℓ1 and ℓ6 do not interfere

with each other in this case.

For problem P′
s, an optimal solution Sopt is {ℓ1, ℓ11, ℓ9}

where the SINR at the receiver of ℓ1, ℓ11, and ℓ9 is 7.81dB,

7.71dB, and 7.28dB respectively. That is, three concurrent

links can be scheduled together for P′
s. In what follows, we

examine how the existing algorithms LQF [7], GreedyPhysical

[10], and LengthDiversity [5] will behave for problem P
′
s.

LQF. When constructing a slot-schedule Sgms, LQF selects

links in a decreasing order of the number of packets queued at

their senders. Therefore, LQF will consider links ℓ6 or ℓ7 first.

Without loss of generality, we assume that LQF picks ℓ6 at ran-

dom. As discussed earlier, ℓ1 and ℓ6 can transmit concurrently

in the absence of other transmitters. Once ℓ6 is added into the

slot-schedule, however, no other link can be added without

making the SINR at the receiver of ℓ6 lower than 6dB (which

is the minimum SINR allowed by problem P′
s). For instance,

if we also add ℓ9 to the slot-schedule {ℓ1, ℓ6}, the SINR for

the receiver of ℓ6 will become 5.98dB. Therefore, LQF will

generate the slot-schedule Sgms = {ℓ1, ℓ6}, which is one link

less than the optimal slot-schedule Sopt = {ℓ1, ℓ11, ℓ9} in

concurrency.

GreedyPhysical. When constructing a slot-schedule Sgp,

GreedyPhysical selects links in a decreasing order of their

interference number. Among all the links at least 2-hop away

from ℓ1, ℓ6 has the largest interference number. Thus Greedy-

Physical first selects ℓ6 to add to the partial slot-schedule {ℓ1},

after which no more links can be added (similar to the case in

LQF). Therefore, Sgp = {ℓ1, ℓ6}, which is one link less than

the optimal slot-schedule Sopt in concurrency.

LengthDiversity. LengthDiversity divides the network

links into different classes and then schedule the individual

link classes independent of one another. The k-th class Ck

(k = 0, 1, ...) consists of links whose length is in the range

[2k, 2k+1). When scheduling links of a class Ck, LengthDi-

versity first partitions the deployment area of those links into

a square grid where each cell has a side length µ2k, with

µ = 4

(
8γt ·

α−1
α−2

) 1
α

; it then 4-color the cells so that no

neighboring cells have the same color and only the links whose



receivers are inside the cells of the same color can transmit

concurrently. For the example problem P′
s, µ = 12.4 meters.

Therefore, only one link is allowed to transmit at a time in

LengthDiversity, and the slot-schedule for P
′
s is Sld = {ℓ1},

which is two links less than the optimal slot-schedule Sopt in

concurrency.

Goussevskaia et al. [5] proved an approximation ratio

δld = Cldg(L) = O(g(L)) for LengthDiversity, where g(L)
is the logarithm of the largest ratio between the lengths

of any two links in the network, and the constant factor

Cld = 4(2(
√

2µ+1))α

γt
. Note that LengthDiversity does not

consider the inner structure within cells in scheduling and the

constants µ and Cld are usually large (see Table I), which lead

to its low performance as shown in the above example and in

Section IV.

µ Cld

α γt = 5dB γt = 8dB γt = 5dB γt = 8dB

2.5 22.6 29.8 4.5e+4 4.4e+4

3.5 11.7 14.1 3.2e+5 3.1e+5

4.5 8.8 10.3 3.5e+6 3.3e+6

TABLE I
CONSTANTS µ AND Cld IN LENGTHDIVERSITY

B. Scheduling for maximal interference budget

From Section III-A, we see that interference is a major

factor for limiting the number of concurrent transmissions

in a time slot. Existing algorithms LQF, GreedyPhysical,

and LengthDiversity do not explicitly consider or minimize

interference accumulation during scheduling, thus leading to

performance loss. To understand the impact of considering

interference accumulation in scheduling, we propose the algo-

rithm iOrder that tries to minimize interference accumulation

and maximize the additional interference that can be tolerated

by all the receivers of a time slot without violating application

requirement on link reliability. To this end, we first define

the interference budget of a valid slot-schedule Sℓi
, denoted

by Ib(Sℓi
), as the maximum extra interference that can be

tolerated by all the receivers of Sℓi
without invalidating Sℓi

.

Formally, let Pℓj
be the strength of the signal from the sender

to the receiver of link ℓj , Pnoise,ℓj
be the background noise

power at the receiver of ℓj , and Iℓk,ℓj
be the strength of the

signal reaching the receiver of ℓj from the sender of ℓk. Then

the maximum extra interference that can be tolerated by the

receiver of a link ℓj ∈ Sℓi
, denoted by Ib(ℓj), satisfies

Pℓj

Pnoise,ℓj
+

∑
ℓk∈Sℓi

,ℓk 6=ℓj
Iℓk,ℓj

+ Ib(ℓj)
= γt.

Thus

Ib(ℓj) =
Pℓj

γt

− Pnoise,ℓj
−

∑

ℓk∈Sℓi
,ℓk 6=ℓj

Iℓk,ℓj
.

Therefore,

Ib(Sℓi
) = minℓj∈Sℓi

Ib(ℓj)

= minℓj∈Sℓi
(

Pℓj

γt
− Pnoise,ℓj

−
∑

ℓk∈Sℓi
,ℓk 6=ℓj

Iℓk,ℓj
).

(4)

Then, for the slot-scheduling problem Ps, we can add to

the schedule Sℓi
one link at a time, and pick the link that

maximizes the interference budget of the extended schedule

each time a link is to be added. We denote this algorithm as

iOrder-slot and present it in Algorithm 1.

Algorithm 1 iOrder-slot(ℓi, E)

Input: starting link ℓi, a set E of links where ℓi /∈ E
Output: a valid slot-schedule Sℓi

such that ℓi ∈ Sℓi

1: Sℓi
= {ℓi}, E′ = E;

2: Compute the set of schedulable links: Ec = {ℓk : ℓk ∈
E′,Sℓi

∪ {ℓk} is a valid schedule};

3: while Ec 6= ∅ do

4: ℓj = arg maxℓk∈Ec
Ib(Sℓi

∪ ℓk);
5: Sℓi

= Sℓi
∪ ℓj , E′ = E′ \ {ℓj};

6: Ec = {ℓk : ℓk ∈ E′,Sℓi
∪ {ℓk} is a valid schedule};

7: end while

8: Return schedule Sℓi
.

Then, we can apply algorithm iOrder-slot to generate the

schedule for each time slot in solving problem Pbl. For

emptying packet queues, we select the link with the maxi-

mum number of remaining packets to be scheduled as the

starting link for each time slot. We denote this algorithm for

backlogged traffic as iOrder-bl and present it in Algorithm 2.

Algorithm 2 iOrder-bl(E)

Input: a set E of non-empty links where each link ℓi has Li

queued packets

Output: a valid schedule SE for transmitting all the queued

packets

1: SE = ∅, E′ = E;

2: while E′ 6= ∅ do

3: ℓj = arg maxℓk∈E′ Lk;

4: Sℓj
= iOrder-slot(ℓj, E

′ \ {ℓj});

5: SE = SE ∪ {Sℓj
};

6: for all ℓk ∈ Sℓj
do

7: Lk = Lk − 1;

8: if Lk = 0 then

9: E′ = E′ \ {ℓk};

10: end if

11: end for

12: end while

13: Return SE .

In what follows, we use the general term iOrder to refer to

iOrder-slot or iOrder-bl; the context will clarify which one

we refer to exactly.

Now let’s revisit the example problem P′
s discussed in

Section III-A. iOrder will first select link ℓ11 to add to the

schedule {ℓ1}, and the resulting SINR at the receiver of ℓ1

and ℓ11 is 7.93dB and 7.81dB respectively, both of which are

more than 1dB above the required γt = 6dB. Accordingly,

iOrder can add a third link ℓ9 to the slot-schedule {ℓ1, ℓ11}



while still maintaining its validity. In the end, iOrder generates

an optimal schedule {ℓ1, ℓ11, ℓ9} for problem P′
s, and the

resulting SINR at the receiver of ℓ1, ℓ11, and ℓ9 is 7.81dB,

7.71dB, and 7.28dB respectively. Thus iOrder outperforms

existing algorithms for this example problem P′
s.

Approximation ratio. Given that iOrder-slot is a basic

element of iOrder-bl, we analyze the optimality of iOrder-slot

in solving the slot-scheduling problem Ps, which will shed

light on the potential effectiveness of iOrder-bl. As in the

literature [10], we consider the following Poisson network G:

n nodes are uniformly distributed on a 2D plane at random

with a density of λ nodes per unit area; for connectivity

of the network, the transmission range r0(n) = 2
√

log(n)
πλ

for every node, and that the transmission power Ptx(n) =
(γt+γb)Pnoise(r0(n))α

G0
such that the signal-to-noise-ratio (SNR)

is γt + γb at receivers in the absence of interference, where

Pnoise is the background noise power, α is the path loss

exponent of the wireless channel, and G0 is the signal power

gain at a reference distance d0. Then we have

Theorem 1: For network G, the approximation ratio δ(n)
of algorithm iOrder is no more than

PtxG0(π + 2π
α−2 (1 − ( n

πλ
)

2−α
2 ))Uopt

Ibπ(rci(n))2
, (5)

where Uopt = min{1 + Ib(rci(n))α

PtxG0
, π(rci(n))2λ}, Ib =

γb

γt
Pnoise, rci(n) = r0(n)( n

lnn
)

1
2−

1
Γ(α)+ǫ , Γ(α) = 1

2 +
√

9α2−20α+4
2(α−2) , and ǫ is any arbitrarily small positive number.

Proof: For convenience, we denote the optimal scheduling

algorithm as OPT. To characterize the approximation ratio

of iOrder, we consider an arbitrary link 〈nt, nr〉 (with nr

being the receiver) in a large network G, and compare the

maximum single-slot schedule that includes 〈nt, nr〉 in iOrder

and OPT. According to [10], there exists a “close-in” region

Rci of radius rci(n) that is centered at nr such that interference

outside the region converges to 0 as n → 0. Thus we focus on

the number of concurrent transmitters in Rci that are allowed

in the schedules of iOrder and OPT.

In the schedule So that is generated by OPT, let Ib be the

largest interference power that can be introduced to receiver

nr by all the transmitters other than nt such that the SINR at

nr is no less than the required threshold γt. Then

PtxG0(r0(n))−α

Pnoise + Ib

= γt

Thus

Ib =
PtxG0(r0(n))−α

γt

− Pnoise

Since Ptx(n) = (γt+γb)Pnoise(r0(n))α

G0
,

Ib =
γb

γt

Pnoise (6)

The expected number of concurrent transmitters in So, denoted

by Nopt, is maximized if all the transmitters except nt (called

interferers hereafter) is on the boundary of the close-in region

Rci. In this case, the interference power Pci introduced by

each of the interferer is such that

Pci =
PtxG0

(rci(n))α

Thus the total number of interferers N ′
opt is such that

N ′
opt ≤

Ib

Pci

=
Ib(rci(n))α

PtxG0

Thus Nopt = 1 + N ′
opt ≤ 1 + Ib(rci(n))α

PtxG0
. Since the total

expected number of nodes in region Rci is π(rci(n))2λ, thus

Nopt ≤ π(rci(n))2λ. Therefore,

Nopt ≤ min{1 +
Ib(rci(n))α

PtxG0
, π(rci(n))2λ} (7)

In the schedule S′
i generated by iOrder for the Poisson

network G, concurrent transmitters are uniformly distributed

in region Rci. This is because, in the process of generating

S′
i in a uniform geometric network G, iOrder will pick a

transmitter that is of the maximum minimum distance to the

receivers of all the links already scheduled in S′
i . In a large

network, this selection process will lead to a set of statistically

uniformly distributed transmitters. From the results of Che et

al. [16] on the spatial distribution of concurrent transmitters,

the spatial process of transmitters in S′
i can be approximated

by a thinning process Φ of G [18] where a typical node

in G is retained in Φ with some probability p, and the set

of transmitters in region Rci are the nodes of Φ that lie in

Rci. That is, the set of transmitters in schedule S′
i can be

approximated as a spatial Poisson process Φ with density

pλ, and the schedule Si that iOrder generates for region Rci

consists of the nodes of Φ that lie in Rci. According to [19]

and given that the radius of G is
√

n
πλ

, the interference I ′b
that is incurred to receiver nr can be calculated as

I ′b = PtxG0pλ(π +
2π

α − 2
(1 − (

n

πλ
)

2−α
2 ))

Since network G is large, I ′b ≈ Ib. Thus

p ≈
Ib

PtxG0λ(π + 2π
α−2 (1 − ( n

πλ
)

2−α
2 ))

(Note that the path loss exponent α ≥ 2, thus 0 ≤ p ≤ 1.)

Therefore, the expected number of transmitters, denoted by

NiOrder, in the schedule Si of iOrder for region Rci is

calculated as follows:

NiOrder ≈ pλπ(rci(n))2 =
Ibπ(rci(n))2

PtxG0(π + 2π
α−2 (1 − ( n

πλ
)

2−α
2 ))

(8)
Therefore, the approximation ratio δ(n) of iOrder calculates

as follows:

δ(n) =
Nopt

NiOrder

≤
PtxG0(π+ 2π

α−2
(1−( n

πλ
)
2−α

2 ))min{1+
Ib(rci(n))α

PtxG0
,π(rci(n))2λ}

Ibπ(rci(n))2

(9)

We use δ̂(n) to denote the upper bound of δ(n) as shown

in Formula (5). For a setting of λ = 3, γt = 5dB,



bδ(n) n=50 n=100 n=200

α=2.5 6.6 6.3 11.2

α=3.5 11.1 11.7 11.5

α=4.5 15 16.9 18.1

TABLE II
bδ(n): UPPER BOUND ON THE APPROXIMATION RATIO OF IORDER

bδ(n) n=50 n=100 n=200

α=2.5 50 79.2 118.4

α=3.5 32.8 45 60.8

α=4.5 27.4 36.2 47

TABLE III
δ̃(n): APPROXIMATION RATIO OF GREEDYPHYSICAL

γb = 3dB, Pnoise = −95dBm, G0 = 1, and ǫ = 0.1,

Table II shows the upper bounds for the approximation ra-

tios of iOrder with different network size n and wireless

path loss exponent α. We see that the approximation ratio

of iOrder tends to be small, especially in small networks.

Note also that our approved approximation ratio of iOrder

is orders-of-magnitude smaller than the proved approximation

ratio of LengthDiversity as shown in Table I. The proved

approximation ratio of GreedyPhysical [10] in the SINR

model is δ̃(n) = min{πλ(rci(n))2, n} (with rci(n) defined

in Theorem 1); Table III shows δ̃(n), from which we see

that the approximation ratio of GreedyPhysical is significantly

greater than that of iOrder too. The approximation ratio of

LQF also tends to be large because, in the worst case, only

two concurrent transmissions are allowed in the whole network

when the two most queued transmitters are close to one

another and can transmit concurrently. To corroborate these

analytical results in a wide range of scenarios, we next study

the performance of iOrder and the existing algorithms through

simulation and testbed-based measurement in Section IV and

Section V respectively.

Time complexity. Assuming the basic operation in com-

puting time complexity is computing the SINR at a receiver

in the presence of concurrent transmissions, it is not difficult

to find that the time complexity for algorithm iOrder-slot is

O(|E|3). To compute the time complexity for iOrder-bl, we

can replace each link ℓi (having Li queued packets) with Li

virtual links ℓi,1, . . . , ℓi,Li
, each of which has only one queued

packet. Then the system will consist of
∑

ℓi∈E Li number of

virtual links. The time complexity for the lines 3-11 of iOrder-

bl is dominated by that of line 4 (i.e., iOrder-slot), thus their

time complexity is O((
∑

ℓi∈E Li)
3). Accordingly, it is easy to

see that the time complexity for iOrder-bl is O((
∑

ℓi∈E Li)
4).

IV. SIMULATION

To gain insight into the impact of link ordering on wire-

less scheduling, we comparatively study different scheduling

algorithms via simulation. We first discuss the simulation

methodology and then the simulation results. The insight

gained through this simulation study will be verified via

testbed-based measurement in Section V.

A. Simulation methodology

We have built a custom simulation package using Matlab.

To understand the potential impact that the environmental and

network settings have on the behavior of different algorithms,

we use networks of different scales and different wireless

channel parameters. More specifically, we consider the set

{2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6} of wireless path loss exponents

αs, which represent a wide range of real-world environments

[20]; we also set the shadowing variance σ based on mea-

surement data from [20]. We consider 2D Poisson networks

with the node distribution density λ = 1 node/m2 and

the background noise power Pnoise = −95dBm. Given an

environmental setting (i.e., specific values for α and σ), we

set the transmission power Ptx of all the nodes such that every

node has, on average, 10 neighbors to which the signal-to-

noise-ratio (SNR) is above the threshold γt = 5dB in the

absence of interference. Then we choose the average link

length r0 such that receivers r0 distant from their transmitters

have a SNR of γt + γb. We set γt as 5dB to ensure 100%

link reliability during scheduling. We call γb the starting SINR

budget, and γb = 1dB in this paper. (Our study has shown

that γb does not significantly affect the relative performance

of different scheduling algorithms [17].)

We consider networks that are deployed in squares with

side lengths kr0, where k = 5, 7, 9, 11. For convenience, we

denote the network deployed in a square of side length kr0 as

a k × k network. For k = 5, 7, 9, 11, the average number of

nodes in a k×k network is 70, 140, 237, and 346 respectively

in our simulation. We have observed that the trend of how

network size affect algorithm performance is monotonic, thus

we mainly focus on data for 5 × 5 and 11 × 11 networks in

this paper due to the limitation of space. Interested readers

can find more comprehensive data in [17].

Given an average link length r0, we consider one-hop

unicast where the receiver nr of a node nt is the node whose

distance to nt is the closest to r0, with ties broken at random.

(We will study multi-hop convergecast in Section V.) We

assume that each node has m number of packets queued for

transmission, where m is a Poisson random variable with mean

being 30.

Using the above experiment design, we evaluate the

performance of LengthDiversity, GreedyPhysical, LQF, and

iOrder.For each scheduling algorithm and each configuration

of environmental, network, and traffic parameters, we repeat

the experiment 20 times such that we can analyze the vari-

ability and confidence intervals of performance metrics. (Note

that, since we have analyzed the approximation ratios of the

above algorithms in Section III, here we do not numerically

compute the performance of optimal scheduling due to its

NP-completeness [5] and the intractable computation time for

large networks.)

B. Simulation results

In what follows, we first discuss the results for backlogged

traffic and then for online traffic. The data presented in most

of the figures include the medians and their 95%confidence
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(c) 5 × 5 networks, α = 2.5

Fig. 3. Time series of slot SINR

intervals of the corresponding metrics (e.g., throughput and

delay).

For networks of different scales and different wireless path

losses, Figure 4 shows the network throughput of different
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Fig. 4. Network throughput in different algorithms

scheduling algorithms. We see that, except for LengthDiver-

sity, there is a clear throughput increase in all the algorithms

as network size or path loss exponent increases. This is

because larger network size or path loss exponent implies

higher degree of spatial reuse possible in scheduling. Among

all the algorithms, iOrder always performs better than the other

algorithms. For instance, iOrder may double the throughput

of LQF in large networks (e.g., 11 × 11 network) with small

path loss exponents (e.g., 2.5 or 3), and iOrder may improve

the throughput of LengthDiversity by a factor up to 19.6.

Among the existing algorithms, LQF performs better than

GreedyPhysical and LengthDiversity. One reason for this is be-

cause LQF is based on queue length whose stochastic temporal

behavior prevents LQF from getting stuck at low-performance

slot-schedules. Surprisingly, the throughput of LengthDiversity

is very low (even compared with other existing protocols)

despite its good asymptotic approximation ratio. For instance,

LengthDiversity only allows for one transmission per slot in

5 × 5 networks and at most 3 concurrent transmissions per

slot in 11 × 11 networks. As discussed in Section III-A, this

is due to the large µ value in LengthDiversity that schedules

transmissions based on virtual grids of cell side lengths µ2k

(k = 0, 1, . . .).
Since LQF performs better than GreedyPhysical and

LengthDiversity, we only focus on the comparative study of

iOrder and LQF hereafter. To gain insight into the impact

of link ordering on wireless scheduling in different settings,

Figure 2 shows the throughput increase in iOrder, as compared

with LQF, in networks of different scales and different path

loss exponents. We see that the throughput increase (and thus

the importance of optimal link ordering) drops as the path loss

exponent α increases. This is because, when adding a new link

to a partial slot-schedule, the interference between the new

link and the existing links of the slot-schedule decreases as α
increases, which makes the interference budget less sensitive to

the different choices of new link addition and thus the benefit

of optimal ordering/choice of link addition less significant. For

a typical 11×11 network with α = 2.5 and α = 6 respectively,

for instance, Figures 3(a) and 3(b) show how the slot SINR

evolves in LQF and iOrder as new links are added to the

schedule of a typical slot, where the slot SINR is defined as

the minimum SINR at all the receivers of a slot. We see that,

with smaller α, the slot SINR in iOrder decreases much slower

than that in LQF. Despite the impact of α, we observe that the

throughput enhancement as a result of optimized link ordering

in iOrder is still significant (e.g., up to 115%) for typical

indoor and outdoor environments where α is usually less than

4.5 [20]. We also see that the throughput enhancement in

iOrder increases with network size. This is because larger

networks give more opportunity of spatial reuse and thus more

room for optimization. For instance, Figures 3(a) and 3(c)

show that, for the same extra SINR budget in iOrder, more

concurrent links can be scheduled in larger networks since

they provide more schedulable candidates.

V. TESTBED MEASUREMENT

Our simulation results show that, by optimizing link or-

dering in scheduling, iOrder outperforms existing scheduling

algorithms. To corroborate these results, we experimentally

compare the performance of iOrder and LQF using the Mote-

Lab testbed [21].

A. Measurement methodology

We use the MoteLab wireless sensor network testbed at

Harvard University [21]. MoteLab is deployed at three floors

of the EECS building of Harvard. In our experiments, we

use all of the 101 operational Tmote Sky motes, with 32, 39,

and 30 motes distributed at the first, second, and third floors

respectively. We use two radio transmission powers 0dBm
and −3dBm (a.k.a. power level 31 and 23 respectively) to

generate networks of different connectivity.

Through detailed measurement, we have characterized the

empirical radio model, the average background noise at every
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Fig. 5. Histogram of link PDRs in MoteLab

node, and the average strength of signals from any node to

every other node in MoteLab (see [17] for details). These in-

formation vary only slowly over time (e.g., at a scale of several

hours) in the mostly-static MoteLab testbed, thus we collect

these information before our experiments and then use them to

generate TDMA schedules of LQF and iOrder. Figure 5 shows

the histograms of the PDRs of all the wireless links in Mote-

Lab when the transmission power is 0dBm and −3dBm,
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Fig. 6. Histogram of background noise power
in MoteLab

and Figure 6 shows

the histogram of

background noise

power in MoteLab.

We see that there

is a high degree of

spatial variability

in link PDRs and

background noise

power. Thus the

testbed enables us

to do experiments in

non-uniform settings.

To generate the traffic load for scheduling, we consider

convergecast where data packets generated by all the nodes

need to be delivered to a base station node. More specifically,

we let mote #115 at the center of the second floor be the base

station to which the remaining 100 motes deliver their packets

(mostly via multi-hop paths). Then we build the routing tree

by identifying, for each non-base-station mote, a reliable

minimum-hop path to the base station where each link of the

path has a receiver-side SNR of no less than γt + γb in the

absence of interference. Similar to simulation, we set γt and

γb as 5dB and 1dB respectively. Figure 7 shows the histogram
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Fig. 7. Histogram of routing hop length

of the routing hop length when different transmission power

is used. We see that the maximum hop count is 5 and 9 when

the transmission power is 0dBm and −3dBm respectively.

Given a routing tree, we generate the traffic load as follows:

each mote generates 30 packets, and then the number of

packets that need to be delivered across a link is the number

of packets generated in the subtree rooted at the transmitter of

the link. Then the traffic load is used as the input to iOrder

and LQF to generate the transmission schedule. Experiment

with each schedule is repeated 10 times to gain statistical

insight. To experiment with a schedule in MoteLab, we use

the TinyOS Flooding Time Synchronization Protocol (FTSP)

[22] to synchronize transmissions such that the links in the

same time lot of the schedule transmit at the same time; each

slot is repeated 30 times before moving onto the next slot so

that we can get 30 samples on the transmission status (i.e.,

success or failure) along each link of the slot to understand

the behavior of each slot.

B. Measurement results
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Fig. 8. MoteLab-based measurement

Figure 8(a) shows the network-wide throughput (measured

in the total number of packets delivered per time slot) in

LQF and iOrder when different transmission powers and

thus different routing trees are used. We see that iOrder

consistently outperforms LQF, by 22.6% and 28.9% when

the transmission power is 0dBm and −3dBm respectively.

Given that MoteLab is housed in an indoor environment where

the path loss exponent α ≈ 3.5 and that the size (i.e., 101

motes) of our measurement network is between those of the

5 × 5 and 7 × 7 simulation networks (which have 70 and

140 nodes respectively), the MoteLab-based measurement data

very much agrees with the simulation data shown in Figure 2,

thus validating the simulation results. When the transmission

power decreases from 0dBm to −3dBm, the diameter of the

network connectivity graph and the depth of the routing tree

increases, and thus the opportunity of optimizing spatial reuse

increases. Therefore, the throughput enhancement increases

from 22.6% to 28.9% when the transmission power decreases.

The intention of setting γt as 5dB is to ensure a ∼100%

link reliability in scheduling. To verify the correctness of our

schedule, Figure 8(b) presents the actual link PDRs during

experiments. We see that the links are very reliable and

have a mean PDR of ∼98%, which implies that the TDMA

scheduling is able to ensure the required link reliability. From



Figures 8(a) and 8(b), we also see that iOrder improves

network throughput without sacrificing link reliability.

VI. DISCUSSION: DISTRIBUTED IMPLEMENTATION

As a first step towards addressing the limiting impact

of interference on wireless scheduling, our objective in this

paper is to characterize the impact of link ordering on the

throughput of TDMA scheduling, thus we have focused on

centralized TDMA scheduling. In terms of implementation,

even though distributed scheduling algorithms are preferred

in general, centralized scheduling has also found its use in

settings of slowly-varying network and traffic conditions. In

wireless networked sensing for oil field instrumentation, for

instance, the wireless link properties tend to be slowly-varying

only, and the monitoring nodes generate packets at fixed,

pre-specified frequencies; in these cases, centralized TDMA

scheduling (possibly together with frequency scheduling) has

been employed in both engineering practice [23] and industry

standards such as WirelessHART [2]. That said, for cases

where distributed scheduling is more desirable, the scheduling

algorithm iOrder can be implemented in a distributed manner,

and we discuss the potential approaches as follows.

To implement iOrder in a distributed manner, we need

to design mechanisms that generate transmission schedules

similar to those in iOrder; more specifically, we need to

generate the effect of interference-budget- and queue-length-

based scheduling of iOrder. The effect of interference-budget-

based scheduling is that the SINRs at the receivers of a slot-

schedule are close to the required threshold γt. This fact

lends iOrder to distributed implementation via the physical-

ratio-K (PRK) interference model [16], because PRK-based

scheduling makes the SINRs at the receivers close to the

desired threshold γt. The PRK model also integrates the high-

fidelity of the physical interference model with the locality of

the protocol interference model, thus PRK-based scheduling

enables reliable, high-throughput communication while only

requiring coordination among nodes close-by (i.e., no global

information is needed in PRK-based scheduling) [16].

For the effect of centralized, queue-length-based scheduling,

Le et al. [7] and Ni et al. [24] have recently developed dis-

tributed, queue-length-based priority scheduling mechanisms

that achieve a performance close to the centralized, queue-

length-based scheduling. In iOrder, the link with the highest

queue length is selected as the first link of a slot-schedule,

but we have found that the number of links that can be

scheduled for a time slot is insensitive to the location of the

first link picked for the slot. For instance, we have studied

the performance of three variants of iOrder with different

strategies on choosing the starting link of a slot-schedule:

iOrder-C that chooses a link closest to the geometric center of

the network deployment area as the starting link, iOrder-B that

chooses a link farthest away from the network geometric center

as the starting link, and iOrder-M that chooses as the starting

link a link closest to the middle point between the network

geometric center and the point in the deployment area that

is farthest from the center. Figure 9 shows the performance
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Fig. 9. Impact of starting link location on the throughput of iOrder

of these variants of iOrder. We see that iOrder-C tends to

enable the lowest throughput, and iOrder-B tends to enable the

highest throughput. But the differences between the throughput

of these algorithms tend to be small and, in many cases, not

statistically significant.

From the above observations, we believe that iOrder can be

implemented in a distributed manner by leveraging the PRK

model [16] and the distributed queue-length-based priority

scheduling [7], [24], and we will investigate this in detail in

our future work.

VII. RELATED WORK

Different interference-oriented TDMA scheduling algo-

rithms have been proposed in the literature. They include LQF

and its variants [7], [8], [25], [9], GreedyPhysical and its vari-

ants [10], [11], as well as LengthDiversity [5]. The throughput

and delay performance [26], [27] as well as the distributed

implementation [26], [28] of these algorithms have also been

studied, and scheduling based on dominant interferers has been

considered by Badia et al. [25]. Nonetheless, these work have

not focused on the impact of link ordering on interference-

limited scheduling; the analysis of these algorithms has also

mostly focused on the asymptotic behavior without character-

izing the impact of potentially large constants in the analysis.

Our study fills this gap by proposing the algorithm iOrder

for optimizing link ordering in wireless scheduling and by

examining the detailed behavior of different protocols through

analysis, simulation, and testbed-based measurement.

Interference-oriented distributed scheduling has also been

well studied [29], [30], [31], [32], [33], but the existing

work has mostly focused on contention resolution and collision

avoidance without explicitly optimizing network-wide spatial

reuse. Yang et al. [34] have studied how to induce spatial

clustering for the purpose of improving spatial reuse in densely

deployed spread-spectrum networks. Spatial clustering may

not be generically applicable since it is most useful only

when network deployment is dense and the spreading factor

of the spread spectrum radios is large (e.g., a spreading

factor of 512 was considered in [34]). The performance of

spatial clustering has only been compared with the traditional

CSMA/CA random access schemes too.

Scheduling has also been considered together with trans-

mission power control in wireless networks [35], [36], where

nodes adapt their transmission power to further increase net-



work capacity and to reduce delay. Focusing on characterizing

the limiting impact of interference on wireless scheduling,

we have assumed fixed transmission power in this paper.

How to leverage controllable transmission power in addressing

the limiting impact of interference on scheduling will be an

interesting topic to pursue, but detailed study of this is beyond

the scope of this paper.

VIII. CONCLUDING REMARKS

Co-channel interference control is important for the re-

liability and predictability of wireless networks. Towards

understanding the importance of explicitly addressing the

limiting impact of interference on wireless scheduling, we

have formulated the notion of interference budget to charac-

terize a schedule’s tolerance of additional interference, and

we have designed the algorithm iOrder that schedules links

in a decreasing order of the enabled interference budget.

Through analysis, simulation, and testbed-based measurement,

we have demonstrated the benefits of explicitly addressing

the limiting impact of interference by showing the signifi-

cantly better performance of iOrder as compared with the

well-known algorithms such as LQF, GreedyPhysical, and

LengthDiversity. By discovering and understanding the sur-

prisingly low performance of LengthDiversity, our study has

also demonstrated the importance of examining the constant

factors involved in asymptotic analysis. As a side result, our

study has characterized the relative goodness of the existing

algorithms, which is of independent interest. The findings of

this paper shed new insight into the behavior of wireless

scheduling and, via algorithm iOrder, constructively shows

the benefit of optimizing link ordering to address the limiting

impact of interference. Therefore, the findings of this paper

open up new avenues for future research and for optimizing

wireless network performance; one of the future directions is

to investigate mechanisms for realizing iOrder (or interference

budget optimization in general) in a distributed manner, and

we will explore the methods discussed in Section VI as well

as their possible variants.
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