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Abstract. Stochastic approximation methods have found extensive and diversified applications. Recent emergence of net-
worked systems and cyber-physical systems has generated renewed interest in advancing stochastic approximation into a
general framework to support algorithm development for information processing and decisions in such systems. This paper
presents a survey on some recent developments in stochastic approximation methods and their applications. Using connected
vehicles in platoon formation and coordination as a platform, we highlight some traditional and new methodologies of stochas-
tic approximation algorithms and explain how they can be used to capture essential features in networked systems. Distinct
features of networked systems with randomly switching topologies, dynamically evolving parameters, and unknown delays
are presented, and control strategies are provided.
Keywords: Stochastic approximation, stochastic optimization, simulation, cyber-physical system.
PACS: 02.50.Ey Stochastic processes, 02.50.Fz Stochastic analysis, 02.60.Cb Numerical simulation, 02.70.Uu Applications of Monte Carlo
methods

INTRODUCTION

We are entering a new era in which systems are increasingly high-dimensional, complex in structure, networked,
time varying, and subject to different types of uncertainties. Such systems cannot be represented by stand-alone
systems, and their control strategies and optimization cannot be obtained by deterministic root finding and extreme
seeking algorithms for simple functions. There are pressing needs for designing fast, adaptive, and on-line procedures
to develop strategies under stochastic environments. Stochastic approximation methodologies have emerged as a
promising general framework in this pursuit.

It is well known that stochastic approximation methods are capable of treating a wide variety of estimation and
optimization problems in which the precise forms of the functions are either not known or too complex to evaluate.
Instead, one can use available information obtained from noisy observations to obtain approximate solutions. As a
powerful tool, the methods of stochastic approximation (SA) was introduced in 1951; see [1]. In the original work,
Robbins and Monro aimed for finding the root of a nonlinear real-valued function. Although it appeared to be similar to
classical root finding problems for which many numerical algorithms exist, SA is different from the usual setup in that
the precise form of the function is unknown but only noisy corrupted observations or measurements are available. A
year later, Kiefer and Wolfowitz [2] proposed another algorithm in which in lieu of finding the zero of the function, the
purpose was to find the minimizer of a real-valued function. Since the initiation of the methods of SA, there have been
enormous literature developed with numerous applications. One of the most up-to-date treatment of SA is the work
of Kushner and Yin [3]. Much relaxed conditions compared to the initial setup are used. Sophisticated mathematical
tools based on stochastic analysis and dynamic systems have been developed. Complex constraints as well as set-
valued systems (in terms of differential inclusion) are presented. Nowadays, stochastic approximation methods have
enjoyed a wide range of applications in diverse fields, ranging from medical applications, production planning and
flexible manufacturing systems, to financial engineering, learning and adaptive optimization, and networked systems.

The main purpose of the current paper is to review some recent developments of SA methodologies in consensus
formation, networked systems, and cyber-physical systems. Using connected vehicles in platoon formation and coor-
dination as a platform, we highlight some traditional and new methodologies of stochastic approximation algorithms
and explain how they can be used to capture essential features in networked systems. Distinct features of networked
systems with randomly switching topologies, dynamically evolving parameters, and unknown delays are presented,
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and control strategies are provided. Although some specific examples are considered in this paper, we hope that the
methods and results will shed new lights on treating other systems. The rest of the paper is arranged as follows. First,
we present the basic setup of stochastic approximation problems. In addition to the basic algorithms, some asymptotic
results are also summarized. Then we present several classes of current interests. Due to page limitation, detailed
technical developments are omitted. However, appropriate references are provided for additional reading.

BASIC ALGORITHMS

This section presents the basic setup of stochastic approximation algorithms and some of their variants. We begin with
the Robbins-Monro algorithm that aims at finding the zeros of a nonlinear function. Let f : Rr �→ R

r be a continuous
function. Suppose that we want to find f (x) = 0, but only noisy measurements

yn = f (xn)+ ξn

are available, where {ξn} is a sequence of random noise. Note that n is a positive integer representing the number of
measurements or observations up to this moment. For convenience, it is often thought as a “discrete time.” The basic
setup of the stochastic approximation algorithms proposed by Robbins and Monro takes the form

xn+1 = xn + anyn, (1)

where {an} is a sequence of nonnegative real numbers known as step sizes or gains such that ∑n an = ∞ and an → 0
as n → ∞. The conditions on the step sizes indicate that they cannot be too big, otherwise the noise effect cannot be
suppressed.

However, they cannot be too small either. If they are too small (i.e., ∑n an < ∞), then the iterates produced may
fail to converge to the desired value. To see this, take the noise-free case ξn = 0 and suppose that f (·) is a bounded
function. Then1

∞

∑
j=0

|x j+1 − x j| ≤
∞

∑
j=0

a j| f (x j)| ≤ K.

The above argument indicates that ∑ j(x j+1 − x j) converges absolutely. However,

n

∑
j=0

(x j+1 − x j) = xn+1 − x0

by telescoping. As a result, xn �→ x∗, where x∗ is the true parameter we are approximating, unless x0 is sufficiently
close to x∗.

In 1952, Kiefer and Wolfowitz proposed another class of stochastic approximation algorithms to locate the minima
or maxima of a real-valued function. Suppose that we want to minimize a function f (x), but only noisy observations
F(x,ζ ) are available. Suppose that EF(x,ζ ) = f (x), but we know neither the form of F(·) nor that of f (·). To
approximate/estimate the optimizer, we use the finite difference approximation to the gradient of f (x). Denote the
finite difference interval by {cn} (with cn → 0 as n → ∞). Use xn to denote the nth estimate of the minimum. Suppose
that for each i and each n, we can observe

yn,i =−F(xn + cnei,ζ+
n )−F(xn − cn,ζ−

n )

2cn
,

where ζ±
n are random noise. Denote yn = (yn,1, . . . ,yn,r). Then the approximation algorithm is again given by xn+1 =

xn + anyn, which is the same form as that of (1). By introducing

ξn = (ξn,1, . . . ,ξn,r), βn = (βn,1, . . . ,βn,r),

1 Here and throughout the paper, K > 0 is used as a generic constant; its value may change for different usage. Thus by our convention, K+K = K
and KK = K.
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with
ξn,i = [ f (xn + cnei)−F(xn + cnei,ζ+

n,i)]− [ f (xn − cnei)−F(xn − cnei,ζ−
n,i)]

βn,i = fxi(xn)− f (xn + cnei)− f (xn− cnei)

2cn
,

where fxi(·) and fx(·) denote the partial derivative with respect to xi and gradient of f (·) w.r.t. x, respectively. Now the
above algorithm can be rewritten as

xn+1 = xn − an fx(xn)+ an
ξn
2cn

+ anβn. (2)

In (2), ξn represents the noise and βn denotes the bias. In lieu of the two-sided finite difference, one-sided finite
difference can also be used. However, in practice, the two-sided finite difference is often more preferable since it has
a smaller bias. This is easily seen by taking a Taylor expansion of the finite difference quotient in βn.

Extending the algorithms mentioned above, we may consider algorithms of the form

xn+1 = xn + an fn(xn,ξn). (3)

As can be seen in (3), instead of a fixed function f (·), a time-varying function fn(·) can be treated. The noise may
appear in a non-additive way. Moreover, to be able to track slight parameter variation, one often uses an algorithm
with constant step size of the form

xn+1 = xn + ε fn(xn,ξn), (4)

where ε > 0 is a small parameter. Either (3) or (4) is often used in conjunction with tracking analysis of time-varying
parameters.

In another scenario, the values of {xn} are generated externally, but not by the experimenter. Suppose one still
wants to find the zero of the function f (·), where yn = f (xn,ξn). Then one can combine the stochastic approximation
methods with nonparametric kernel estimation procedures and to approximate the root of equation f̄ (x) = 0 by another
sequence {zn} according to

zn+1 = zn +
an
hr

n
κ
(

xn − zn
hn

)
yn, (5)

where κ(·) is a kernel function, an is the step size, and hn represents the window width. The kernel is crucial. If xn and
zn are far away, κ((xn − zn)/hn) will be small and the measurement yn has little effect on the iteration. If xn and zn are
close, a non-trivial amount will be added similar to the usual stochastic approximation.

During the past several decades, these stochastic approximation algorithms have been the main focus. Great attention
has been devoted to proving convergence and rates of convergence and corresponding properties of the recursively
defined stochastic algorithms. Now, we have rather comprehensive understanding and good techniques to treat such
stochastic approximation problems.

CYBER-PHYSICAL SYSTEMS AND CONSENSUS ISSUES

In this section, we first present a problem arising from cyber-physical systems (CPS). Then we study several algorithms
that can be used to treat the problems in CPS. These algorithms involve new features beyond the traditional stochastic
approximation framework.

A cyber-physical system (CPS) integrates control, communication, and computational systems with physical enti-
ties. Owing to its importance, significant research effort has been devoted to improving the link between information-
processing and physical elements, and to increasing the adaptability, autonomy, efficiency, functionality, reliability,
safety, and usability of cyber-physical systems. To illustrate, in this paper, we consider platoon formation of high-
way vehicles, which is a critical foundation to support autonomous or semi-autonomous vehicle control for enhanced
safety, improved highway utility, increased fuel economy, and reduced emission toward intelligent transportation sys-
tems. Such problems pose great challenges from vehicle control, communications, coordinated control, and uncertain-
ties. Starting from the model introduced in [4] for coordinated control of platoons using integrated network consensus
decisions and vehicle control, we consider the problem without constraint for ease of presentation. To achieve suitable
deployment of the team vehicles based on terrain and environmental conditions, we use the emerging technology of
network consensus.
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Let us begin with a longitudinal platoon control problem, see Fig. 1. There are r+ 1 vehicles driving in the same
lane forming a platoon. The leading vehicle is regarded as a reference, whose position p0 is used as the origin of the
line coordinate (without loss of generality, assume p0 ≡ 0), and its speed v0 is the reference speed for the rest of the
vehicles in the platoon to follow. Coordination of vehicle control aims to sustain a platoon formation, avoid collision,
adjust the formation according to weather and road conditions, converge fast to a new formation after disturbances,
reconfigure a formation after vehicle addition and departure. Therefore, inter-vehicle distances are the variables to be
controlled. The following diagram serves as a demonstration.

FIGURE 1. Platoon coordinates

We work with a discrete time n. In the platoon formation, the position of each vehicle is defined by the central point
of its length and denoted by p j

n, j = 1, . . . ,r, which is the distance of the jth vehicle to the leading vehicle. The vehicle
speed will be denoted by v j

n ≥ 0, j = 1, . . . ,r. Let the inter-vehicle distances be defined as

d j
n = p j

n − p j−1
n , j = 1, . . . ,r.

The leading vehicle’s speed v0
n at time n is the speed target for all the other vehicles in the platoon to follow. Also,

a desired distance β between consecutive vehicles is a goal that balances efficiency and safety. In principle, β is
a function of weather, road condition, platoon traveling speed, terrain composition (uphill or downhill), and road
curvatures, and consequently changes with time.

Definition 1 A platoon is said to be in consensus in weakly (or in mean squares) if

v j
n = v0

n, and d j
n = βn, j = 1, . . . ,r.

Denote dn = [d1
n , . . . ,dr

n]
′ and vn = [v1

n, . . . ,vr
n]
′, and consensus errors

en =

⎡
⎢⎣

e1
n
...

er
n

⎤
⎥⎦= dn −β11 and εn =

⎡
⎢⎣

ε1
n
...

εr
n

⎤
⎥⎦= vn − v0

n11,

where 11 = [1, . . . ,1]′. Starting at t = 0 with initial condition e(0) and ε(0), the goal of consensus control is to achieve
convergence

en → 0, εn → 0 as n → ∞

in probability (or in mean squares, or with probability one). It is noted that to accommodate the time-varying
environment, convergence speeds are of interest also.

The basic scheme of platoon formation employs a sensor-based network topology, in which a vehicle uses sensors
to measure its own speed and relative distance to the vehicle ahead of it. As a result, v j−1, v j, d j are available to the
jth vehicle in its control strategies. We demonstrate this sensor-based inter-vehicle information by a string topology
shown in Figure 2. Nevertheless, inter-vehicle wireless communications allow enhanced information exchange among
vehicles. Figure 3 indicates a more advanced inter-vehicle communication, in which the jth vehicle receives not only
the parameters from the ( j− 1)th vehicle by sensors, but also the information from ( j− 2)th vehicle using wireless
communications.

To mathematically state the problem, in this paper, we start with a simplest setting first. Then in the subsequent
sections, we extend this simple formulation to include topology switching, possible non-trial delays, and asynchronous
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FIGURE 2. Sensor-based inter-vehicle communication networks

FIGURE 3. Information network topologies using inter-vehicle communications

computation and communication times. We begin with a team consisting of r vehicles. Note that in our work in [4],
there is an additional constraint on the states and also weights are allowed to represent variations among the vehicles.
For clarity in conveying the key ideas, we disregard the constraint and weights throughout the paper.

The node control ui
n is determined by the link control vi j

n . Since a positive transportation of quantity vi j
n on (i, j)

means a loss of vi j
n at node i and a gain of vi j

n at node j, the node control at node i is ui
n = −∑(i, j)∈G vi j

n +∑( j,i)∈G v ji
n .

The most relevant implication in this control scheme is that for all n, ∑r
i=1 xi

n = ∑r
i=1 xi

0 := ηr, for some η ∈ R that is
the average of x0. That is, η = ∑r

i=1 xi
0/r. Consensus control seeks control algorithms that achieve xn → η11, where 11

is the column vector of all 1s. A link (i, j) ∈ G entails an estimate, denoted by x̂i j
n , of x j

n by node i with estimation error
di j

n , i.e.,
x̂i j

n = x j
n + di j

n . (6)

The estimation error di j
n is usually a function of the signal x j

n itself and depends on communication channel noises ξ i j
n

in a nonadditive and nonlinear relation
di j

n = g(x j
n,ξ i j

n ) (7)

and can be spatially and temporally dependent. Most existing literature considers much simplified noise classes
di j

n = ξ i j
n with i.i.d. assumptions.

A sampled and quantized signal x in a networked system enters a communication transmitter as a source. To
enhance channel efficiency and reduce noise effects, source symbols are encoded [5, 6]. Typical block or convolutional
coding schemes such as Hamming, Reed-Solomon, or more recently the low-density parity-check (LDPC) code and
Turbo code, often introduce a nonlinear mapping v = f1(x). The code word v is then modulated into a waveform
s = f2(v) = f2( f1(x)) which is then transmitted. Even when the channel noise is additive, namely the received
waveform is w = s+ d where d is the channel noise, after the reverse process of demodulation and decoding, we
have y = g(w) = g(s+d) = g( f2( f1(x))+d). As a result, the error term g( f2( f1(x))+d)− x in general is nonadditive
and signal dependent. In addition, block and convolution coding schemes introduce temporally dependent noises. In
our formulation, this aspect is reflected in dependent φ -mixing noises on ξ i j

n . These will be detailed later.
For simplification on system derivations, we use first di j

n = ξ i j
n in this section. Let η̃n and ξn be the ls dimensional

vectors that contain all x̂i j
n and ξ i j

n in a selected order, respectively. Then, (6) can be written as η̃n = H1xn + ξn,
where H1 is an ls × r matrix whose rows are elementary vectors such that if the �th element of ζ̃n is x̂i j then
the �th row in H1 is the row vector of all zeros except for a “1” at the jth position. Each sensing link provides
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information δ i j
n = xi

n − x̂i j
n , an estimated difference between xi

n and x j
n. This information may be represented, in the

same arrangement as η̃n, by a vector δn of size ls containing all δ i j
n in the same order as η̃n. δn can be written as

δn = H2xn − η̃n = H2xn −H1xn − ξn = Hxn − ξn, where H2 is an ls × r matrix whose rows are elementary vectors
such that if the �th element of ζ̃ (k) is x̂i j then the �th row in H2 is the row vector of all zeros except for a “1” at
the ith position, and H = H2 −H1. The reader is referred to [7] for basic matrix properties in graphs and to [8] for
matrix iterative schemes. Due to network constraints, the information δ i j

n can only be used by nodes i and j. When
the control is linear, time invariant, and memoryless, we have vi j

n = μgi jδ i j
n where gi j is the link control gain on (i, j)

and μ is a global scaling factor that will be used in state updating algorithms as the recursive stepsize. Let G be the
ls × ls diagonal matrix that has gi j as its diagonal element. In this case, the node control becomes un = −μH ′Gδn.
For convergence analysis, we note that μ is a global control variable and we may represent un equivalently as
un =−μ(H ′GHxn −H ′Gξn) = μ(Mxn +Wξn), with M =−H ′GH and W = H ′G.

The following assumption is imposed on the network.

(1) All link gains are positive, gi j > 0.
(2) G is strongly connected. Recall that a directed graph is called strongly connected if there is a path from each node

in the graph to every other node.

We consider the state updating algorithm

xn+1 = xn + μMxn + μWdn, (8)

together with the constraint
11′xn = ηr, (9)

where μ > 0 is a small stepsize, M is a generator of a continuous-time Markov chain so M11 = 0, and {dn} is a noise
sequence. Now. (8) together with (9) becomes an algorithm of consensus type; see the history and related references
in [14, 15, 16, 17].

Random Switching Topology

In lieu of the well-known consensus-type algorithms (8) and (9), we suppose the network topology evolves according
to a random process. The rational is that the platoon formation is usual subject to certain random environment influence
such as the weather, road conditions, traffic intensity changes with respect to time, etc. We illustrate the idea in [9]
below. Suppose that αn is a discrete-time Markov chain and the network topology G (αn) depends on αn. The Markov
chain is used to model, for example, interrupts and rerouting of communication channels. At a given instance n, if
αn = i, then G (αn) = G (i), namely the topology switches according to the values of αn. To include topology switching
and the extended noise class, the network states are updated according to

xn+1 = xn + μM(αn)xn + μW̃(xn,αn, ξ̃n), (10)

where μ > 0 is the step size of consensus control. For each i ∈ M , M(i) is a generator of a continuous-time Markov
chain. The noise term W̃ (·, ·, ·) : Rr ×M ×R

r �→ R
r is allowed to have the following general structure

W̃ (x, i, ξ̃ ) =W (i)ξ +Ŵ(x, i,ζ ), for each x ∈ R
r and i ∈ M . (11)

When W (i) is constant and W̃ ≡ 0, (11) is reduced to the standard additive noise without state dependence. Here,
(11) includes state dependence, and nonadditive noises. We consider more general noise, which are necessary when
we deal with networked systems. The nonadditive portion is a general nonlinear function of the analog state x, the
Markov chain state i ∈ M , as well as the noise source ζ . To state more explicitly dependence on ξn and ζn, in lieu of
using the notation ξ̃n, we rewrite the algorithm as

xn+1 = xn + μM(αn)xn + μW(αn)ξn + μŴ(xn,αn,ζn) (12)

in what follows.
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Depending on their relative values, three distinct scenarios emerge. Under suitable conditions, we show that when
0 < ε = O(μ), a continuous-time interpolation of the iterates converges weakly to a system of randomly varying
ordinary differential equations modulated by a continuous-time Markov chain. In this case a scaled sequence of
tracking errors converges to a system of switching diffusion. When 0 < ε � μ , the network topology is almost non-
switching during consensus control transient intervals, and hence the limit dynamic system is simply an autonomous
differential equation. When μ � ε , the Markov chain acts as a fast varying noise, and only its averaged network
matrices are relevant, which results in a limit differential equation that is an average with respect to the stationary
measure of the Markov chain. Simulation results are presented to demonstrate these findings.

To give some insight on the limit dynamics, we consider one case ε = O(μ). For simplicity, simply assume that
ε = μ . We also assume that the following conditions hold.

(H1) The observation noise {ξn} is a sequence of stationary φ -mixing sequence such that Eξn = 0, E|ξn|2+Δ < ∞ for
some Δ > 0, and that the mixing measure φ̃n satisfies

∞

∑
k=0

φ̃Δ/(1+Δ)
n < ∞, (13)

where φ̃n = supA∈F n+m E(1+Δ)/(2+Δ)|P(A|Fm)−P(A)|(2+Δ)/(1+Δ), Fn = σ{ξn;k < n}, F n = σ{ξn;k ≥ n}.
(H2) Assume the following conditions.

(a) αn is a discrete-time Markov chain with a finite state space M = {1, . . . ,m} representing the random
environment and other random factors. The transition probability matrix of αn is given by

Pε = I + εQ, (14)

where ε > 0 is a small parameter, I is an m×m identity matrix, and Q = [qi j] ∈ R
m×m is the generator of a

continuous-time Markov chain, (i.e., Q satisfies qi j ≥ 0 for i �= j, ∑m
j=1 qi j = 0 for each i = 1, . . . ,m).

(b) The noise sequence {ξn} is given in (A1).
(c) The noise sequence {ζn} is a stationary sequence that is uniformly bounded such that for each x ∈ R

r and
each i ∈ M , EŴ (x, i,ζn) = 0, and for any positive integer m,

1
n

m+n−1

∑
j=m

EmŴ (x, i,ζ j)→ 0 in probability, (15)

where Em denotes the conditioning on the σ -algebra Fm = {x j,α j ,ξ j−1,ζ j−1 : j ≤ m}.
(d) Ŵ (·, i,ζ ) is a continuous function for each i ∈ M and each ζ and |Ŵ (x, i,ζ )| ≤ K(1+ |x|) for each x ∈ R

r,
i ∈ M , and ζ .

(e) {αn}, {ξn}, and {ζn} are mutually independent.
(H3) The generator Q is irreducible.

We can proceed to obtain the following main convergence theorem. Note that the limit is not an ordinary differential
equation but a differential equation with Markov switching.

Theorem 2 Assume (H1) and (H2).

• Then (xε (·),αε (·)) is tight in D([0,T ] : Rr × M ). Moreover, as ε → 0, (xε(·),αε (·)) converges weakly to
(x(·),α(·)) that is a solution of the martingale problem with operator L1. For any f (·, ·) :Rr×M �→R satisfying
for each α ∈M , f (·,α)∈C1

0 (space of continuously differentiable functions with compact support), L1 is defined
as follows:

L1 f (x, i) = (∇ f (x, i))′M(i)x+Q f (x, ·)(i), i ∈ M , (16)

where
Q f (x, ·)(i) =

m

∑
j=1

qi j f (x, j). (17)

• Assume that for each α ∈ M , M(α) is irreducible. Under the conditions of Theorem 2, the following assertions
hold.

(i) The set Z= span{11} is an invariant set.
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(ii) The set Z is asymptotically stable in probability.
• Assume the conditions of Theorem 2. In the recursive algorithm, we also use the constraint (9). Then for any

tε → ∞ as ε → 0, xε(·+ tε) converges to the consensus solution η11 in probability. That is for any δ > 0,

lim
ε→0

P(|xε(·+ tε)−η11| ≥ δ ) = 0.

To study the rate of convergence, define

zn =
xn − yn√μ

=
xn − yn√

ε
since μ = ε. (18)

Then it is readily verified that

zn+1 = zn + εM(αn)zn +
√

εW (αn)ξn + εdiag(zn)Ψ(αn,ζn). (19)

We pose another condition.

(H2’) Condition (H2) holds with the following modifications. Either Ŵ (x,α,ζ ) = diag(x)Ψ(α,ζ ) or Ŵ (x,α,ζ ) =
xψ1(α,ζ ) where Ψ(α,ζ ) : M ×R

r �→ R
r and ψ1(α,ζ ) : M ×R

r �→ R such that Ψ(·, ·) (resp. ψ1(α,ζ )) is a
bounded function, and that for each fixed α ∈ M and each positive integer m, (15) is replaced by

1
n

m+n−1

∑
j=m

EmΨ(α,ζ j)→ 0 in probability,

∞

∑
j=n

|EnΨ(α,ζ j)|< ∞,

(20)

or
1
n

m+n−1

∑
j=m

Emψ1(α,ζ j)→ 0 in probability,

∞

∑
j=n

|Enψ1(α,ζ j)|< ∞,

(21)

where diag(x) = diag(x′, . . . ,x′).

First, we can show that for sufficiently large n, E|zn|2 = O(1). Define zε(t) = zn for t ∈ [(n−Nε)ε,(n−Nε)ε + ε).

Theorem 3 Under conditions (H1)–(H3), (zε(·),αε (·)) converges to (z(·),α(·)) such that z(·) is a solution of the
following Markov regime-switching stochastic differential equation

dz = M(α(t))zdt +W(α(t))dB̂(t). (22)

The study of the asymptotic properties are essentially in [9]. In the above, we only illustrated one of the cases
regarding the relative size of ε and μ . Full considerations of multi-scale formulations can be done. The main reference
for the two-time-scale system is [10].

Algorithm with Delays

We still consider randomly regime-switching network topologies. In addition, we add another fold of complication
by assuming that there are delays in the communication and computation. The delayed information makes the
formulation more realistic. Suppose that the network topology depends on a discrete-time Markov chain. In our
setup, the graph can take m possible values. That is M = {1, . . . ,m}. The Markov chain is used to model, for
example, capacity of the network, random environment, and other random factors such as interrupts and rerouting
of communication channels etc. Thus G (αn) = ∑m

l=1 G (l)I{αn=l}. To illustrate, suppose that initially, the Markov chain
is at α0 = i. Then the graph takes the value G (i). At a random instance τ1, the first jump of the Markov chain takes
place so that ατ1 = j �= i, Then the graph switches to G ( j) and holds that value for a random duration until the next
jump of the Markov chain takes place.
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Although stochastic approximation algorithms have been well studied, introduction of unbounded delays in the
discrete-time algorithms makes the analysis non-classical. There are no established results on such systems at present.
It is noted that in our formulation, the delays are of the order O(1/μ) in their relations to the adaptation stepsize μ . Such
a consideration is motivated by practical systems with non-negligible latency and time delays whose discretization
always lead to unbounded discrete-time delays. The unbounded delays of order O(1/μ) makes it far more difficult
to analyze algorithm convergence and rates of convergence. In addition, in our recursive algorithms, the iterate xn+1
depends on xn−d/μ� but not on state xn, which presents another difficulty. As a direct consequence of the above
formulation, algorithm analysis becomes more challenging and non-standard, compared to traditional stochastic
approximation algorithms. By taking appropriate interpolations, we obtain limit dynamic systems, which involve
delays in equations rather than the usual differential equations. Because of the multiple scales in adaptation stepsize and
dynamics switching frequency, the limit dynamic equation may become either an ordinary differential delay equation
or a stochastic differential delay equation whose random switching is represented by a continuous-time Markov chain.

To include topology switching, to allow the use of correlated noise, and to permit delays in the measured states,
suppose that d > 0 is a constant and consider the following stochastic approximation type algorithm

xn+1 = xn + μM(αn)xn−d/μ�+ μW(αn)[ξn−d/μ�+ ξ̃n]

+μŴ (xn−d/μ�,αn,ζn−d/μ�)+ μŴ(xn−d/μ�,αn, ζ̃n),
(23)

with the initial segment xk for k = −d/μ�, . . . ,0 being arbitrary, where μ > 0 is the stepsize of consensus control
algorithm, and d/μ� denotes the integer part of d/μ . For each i ∈ M , M(i) is the generator of a continuous-time
Markov chain. The sequences {ξn}, {ξ̃n}, {ζn}, and {ζ̃n} are random noise sequences with Ŵ (·, ·, ·) : Rr ×M ×R

r �→
R

r.
When switching topologies are present and delays are allowed, care must be taken. In the traditional setup of

stochastic approximation problems, the limit or averaged system is an ordinary differential equations (ODEs). Very
often these limits are autonomous. Even if they are sometimes time inhomogeneous ordinary differential equations,
these equations are non-random. As can be seen later, for the problem we are treating here, the limit is no longer an
ODE, but an ODE with delays or randomly varying ODE with delays subject to switching modulated by the Markov
switching process. In the literature of stochastic approximation, the rate of convergence study is normally associated
with a limit stochastic differential equation. In the current problem, the limit ODE and SDE are however replaced by

dx(t)
dt

= M(α(t))x(t − d), (24)

dz = M(α(t))z(t − d)dt+W (α(t))dB̂(t), (25)

respectively. That is, they are delay equation with Markovian switching, and switching delay stochastic differential
equation, respectively. The stability of (24) can be analyzed using the methods for switching diffusions [12] and
treatment of delay equations with switching in [18].

Algorithm with Asynchronous Computation and Communication

In this section, we enlarge the applicability of the platoon formation from another angle in that the computation
and communications are done at random times and asynchronously. To carry out the recursive computational task, we
consider a class of asynchronous and distributed algorithms in the following setup. Suppose that the state x ∈ R

r and
there are r processors participating in the computational task. For notational simplicity, we assume that each processor
handles only one component. It is clear that this can be made substantially more general by allowing each processor to
handle a vector of possibly different dimensions. However, the mathematical framework will be essentially the same
albeit the complex notation. Suppose that for each i≤ r, {Y i

n} is a sequence of positive integer-valued random variables
(assuming the random sequence to be positive integer valued is for notational convenience) that are generally state and
data dependent such that the nth iteration of processor i takes Y i

n−1 units of time. Define a sequence of “renewal-type”
random computation times τ i

n as
τ i

0 = 0, τ i
n+1 = τ i

n +Y i
n. (26)

For each i, the sequence {Y i
n} is an inter-arrival time and {τ i

n} is the corresponding “renewal” time. It is well known
that α̃n is strongly Markov, so α̃τ in

is a Markov chain.
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Using constant stepsize μ > 0, we consider the following asynchronous algorithm

xi
τ i
n+1

= xi
τ i
n
+ μ [Mτ i

n
(α̃τ i

n
)xτ i

n
]i + μ [Wτ i

n
(α̃τ i

n
)ξ̃ i

n]
i + μŴ i

τ i
n
(xτ i

n
, α̃τ i

n
, ζ̃ i

n), i ≤ r, (27)

where ξ̃ i
n ∈R

r and ζ̃ i
n ∈R

r are the noise sequences incurred in the (n+1)st iteration. Note that the functions involved
are time dependent. We use the same idea as in the setup of a fixed configuration, but allow more general structure.
Note also that for each n and α ∈ M , Mn(α) is not a generator of a Markov chain as the fixed M. We allow the
non-additive noise be used. When Mn(ι) = M and Wn(ι) = W are constant matrices being generators of continuous
Markov chains for all n and all ι ∈M , and Ŵn ≡ 0, the algorithm reduces to the existing standard consensus algorithm
with additive noise. The nonadditive portion is a general nonlinear function of the analog state x, the Markov chain
state ι ∈ M , the noise source ζ , as well as n. The setup here is in line with [13]. Related asymptotic results can be
obtained.

CONCLUDING REMARKS

In this paper, we have surveyed some recent progress on applications of stochastic approximation methods to consensus
control. Our primary motivations stem from platoon formation and maintenance in cyber-physical systems. Starting
with the simplest basic problem, we have illustrated how random environments in terms of configuration changes,
inclusion of delayed information, and asynchronous computation and communication can be incorporated. It is
conceivable that such effort may lead to significant advances in cyber-physical systems and other related fields.
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