Predictable, Reliable, Real-Time, High-Throughput (PRRT) Wireless Communication and Networking

Predictable Wireless Interference Control as Fundamental Challenge
- Co-channel interference as a major obstacle for predictable reliability, real-time, and throughput in wireless networking
- Reliability as low as ~30% in current wireless scheduling/MAC protocols, thus not suitable for real-time, safety-critical networking control
- Decades of research and practice: high-fidelity interference models that are suitable for distributed, field-deployable protocol design are still missing
- Ratio-K model (i.e., protocol model) is local but not of high-fidelity
- SINR model (i.e., physical model) is of high-fidelity but non-local

Physical-Ratio-K (PRK) Interference Model
- Key idea: use link reliability requirement as the basis of instantiating the ratio-K model
- Model: given a transmission from node S to node R, a concurrent transmitter C does not interfere with the reception at R iff:

 \[P(C) \leq P(S, R) \frac{S, R, t_s}{S, t_s} \]

Optimality of PRK-based Scheduling
- Throughput loss is small, and it tends to decrease as PRK requirement increases

PRKS: PRK-based Scheduling
- **TOA Slab-Based, protcol signaling**
 - Link reliability feedback
 - Link/relay link measurement
- **Prior signaling**
 - Joint reliability distribution
- **state of environment transmission link**
- **Reliability estimation**
 - Data packet
 - Control plane

Predictable Link Reliability and High Throughput in PRKS

Transformative Impact on State of Art/Practice
- **From Predictable Interference Control to PRRT Wireless Communication & Networking**
 - Addressing dynamics & uncertainties of different spatiotemporal scales
 - Multi-scale network structures: joint scheduling, channel hopping, power control, rate control, routing
 - Advanced communication techniques & architectures
 - Interference cancellation, multi-jamming, mmWave
 - Blurred boundary between cellular and ad hoc networks (e.g., D2D mode)
 - Integrated wireless & wired networks and edge computing
 - **New perspectives**
 - From fiber/copper to wireless
 - Wireless backhaul networks
 - From rural communities for smart agriculture farms
 - Enabling technologies & innovation paradigms
 - 5G & beyond
 - Massive & critical machine-type communications
 - CBRS, TWS, dynamic spectrum, innovation zone etc
 - Open-innovation/open-source platforms for distributed innovation
 - OpenAirInterface, SDR, SDN etc
 - Call to action
 - Public-private partnership: academia, industry, government, communities
 - Federal seed programs for innovation & capacity building in rural regions & communities

CyNet: Software-Defined Wireless Living Lab for Cross-Discipline, Cross-Domain Collaboration

Deployment & Partners

CyNet for Smart Agriculture

Software-Defined CyNet

Virtualized Infrastructure (VI)

CyNet for AR/VR-based Multi-Mode CAT Emulation

Open 5G/Wireless Innovation

Cyber Living Lab for Smart Agriculture

ISU IT Partnerships in Agriculture

ISU IT