Tier 2 Architecture

Dependable Distributed and Networked Systems, The Ohio State University http://cast.cse.ohio-state.edu/exscal

Introduction: Extreme Scaling of a A Line in the Sand

Exscal Specifications Imply a Backbone Network Network Hierarchy

- System

A distributed system of ~ 1000 sensor nodes spread across $1.3 \mathrm{Km} \mathrm{X} \mathrm{300m}$

- Real Time Behavior

Detection, classification, and tracking at the base station in real time

- Low Overhead

Low cost, power efficient, robust, accurate, easily deployable, and self configurable system

Tier 2 Anatomy: Hardware and Layout of Stargate Network Deployment

Stargate

Network Topology

Problem Description: Fault Tolerant Services for the Tier 2

Specifications of Middleware Services:

- Initialization of Stargates

- Initialize processes on all stargates and collect the geograhic locations of all stargates at the base station
- Communicate reliably and (energy) efficiently packets, each of size up to 1 Kbyte, to all stargates and collect a packet of size up to 32 bytes from each of stargates
- Convergecast
- Collect data and status from all stargates e.g. intruder event detection, tier1 reprogramming feedback, tier-1 and tier- 2 management feedback
- Reliable and energy efficient delivery of an event detection message from any stargate to the base station within 6 seconds

- Broadcast

- Disseminate bulk of data to all stargates e.g. reprogramming of the XSMs, tier-1 and tier-2 management queries
- Reliable and energy efficient transmission of a file of size up to 200 Kbytes to all stargates
- Management
- Monitor processes on stargates e.g. CPU usage, disk usage
- Configure services running on stargates e.g. change transmission power level
- Invoke Deluge, SNMS queries and collect the result of the queries

Fault Model:

- Crash of one or more user level processes on a stargate
- Fail stop of a stargate
- Change of location for a stargate

Challenges:

- Initialization of Stargates
- No assumption about the topology of the network
- Convergecast
- Estimate the qualities of the links using only data traffic
- Broadcast
- Avoid collisions among messages while broadcasting without timesync

Solution: Tier 2 Network Protocol Suite and Monitoring

Protocols:

- Initid
- Uses controlled flooding to construct a distributed tree over the network

- UniComm

- Chooses route based on beacon-free in-situ link estimation

- Sprinkler

- Constructs a backbone and a corresponding packet forwarding schedule for the backbone nodes to minimize the number of transmissions
- Streaming Phase: Uses explicit acknowledgements, piggybacked on the data packets, to reliably communicate packets to all the nodes on the backbone

- Recovery Phase: Reliably communicates packets to all the non-backbone nodes using pull model and unicast transmission
- T1mgmtd
- Uses Sprinkler to broadcast the queries to all stargates and the responses from all stargates are collected at the base station using the UniComm
- Uses timer to monitor the spawned processes

Performance:

- Initid
- Average latency of $\mathbf{6 . 5}$ seconds with $\mathbf{9 0 \%}$ reliability
- UniComm
- Average end-to-end latency is $\mathbf{0 . 2 5}$ seconds
- Sprinkler
- Latency to transmit a $\mathbf{1 0 0}$ Kbytes file to all stargates is $\mathbf{1 2 . 0 8 3 7 0 2}$ seconds
- Transmits $\mathbf{7 \%}$ of messages as compared to randomized flooding

