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Abstract

Predictable link reliability is required for wireless networked control, yet co-channel interference

remains a major source of uncertainty in wireless link reliability. Formulated specifically for distributed,

predictable control of co-channel interference, the physical-ratio-K (PRK) interference model integrates

the protocol model’s locality and the physical model’s high fidelity while addressing their weaknesses,

and it has the potential to enable scheduling with predictable link reliability. To realize the potential

of the PRK model, we design protocol PRKS that addresses the challenges of model instantiation and

protocol signaling in PRK-based scheduling. In particular, PRKS uses a control-theoretic approach to

instantiate the PRK model, it uses local signal maps to address the challenges of large interference

range and anisotropic, asymmetric wireless communication, and it leverages the different timescales of

PRK model adaptation and data transmission to decouple protocol signaling from data transmission.

Through testbed-based measurement study, we show that, unlike existing scheduling protocols where

link reliability is unpredictable and the ratio of links whose reliability meets application requirements

can be as low as 0%, PRKS enables predictably high link reliability (e.g., 95%) for all the links in

different network and environmental conditions without a priori knowledge of these conditions. Through

local, distributed coordination, PRKS also achieves a channel spatial reuse very close to what is enabled

by the state-of-the-art centralized scheduler while ensuring the required link reliability. By ensuring the

required link reliability in scheduling, PRKS also enables a lower communication delay and a higher

network throughput than existing scheduling protocols.

I. INTRODUCTION

Embedded wireless networks are increasingly being explored for real-time control of physical

processes such as those in industrial IoT systems [1], [2], [3]. In wireless networked control
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(WNC), communication across wireless networks is a basic enabler for the coordination among

distributed sensors, controllers, and actuators; in supporting mission-critical tasks such as indus-

trial process control, wireless communication is required to be reliable (i.e., having high delivery

ratio) [2], [3]. Given the varying impact that the reliability, delay, and throughput of wireless

communication have on networked control and the inherent tradeoff between communication

reliability, delay, and throughput, the optimal operation of WNC systems requires controlling

the tradeoff between the reliability, delay, and throughput in communication, where controlling

data communication reliability across wireless links (or link reliability for short) in a predictable

manner is a basis for such system-level optimization [2], [4], [5], [6]. Causing collisions of

concurrent transmissions, co-channel interference is a major source of unpredictability in link

reliability [6], [7], [8]. Thus scheduling transmissions for co-channel interference control is a

basic element of wireless communication in WNC systems.

Distributed scheduling & PRK interference model. In WNC systems, not only do wireless

link dynamics introduce uncertainty as in traditional wireless sensor networks, dynamic control

strategies also introduce dynamic network traffic patterns and pose different requirements on

communication reliability [4]. For agile adaptation to uncertainties and for avoiding information

inconsistency in centralized scheduling, distributed scheduling becomes desirable for interference

control in wireless control networks. Despite decades of research on interference-oriented channel

access control, most existing literature are either based on the physical interference model or the

protocol interference model, neither of which is a good foundation for distributed interference

control in the presence of uncertainties [6], [9], [10], [11]. The physical model has high-fidelity,

but it is non-local and combinatorial and thus not suitable for distributed protocol design in

dynamic, uncertain settings; the protocol model is local and suitable for distributed protocol

design, but it is inaccurate and does not ensure reliable data delivery in general [6], [12].

Without field-deployable solutions to predictable co-channel interference control, current

systems practice, such as the WirelessHART standard for industrial sensing and control [13],

avoids co-channel interference by allowing only one node in the whole network to transmit in a

wireless channel at any moment in time. Without spatial channel reuse, however, this approach

does not fully utilize wireless network capacity, which is undesirable for high data-rate control

applications and for new networked control paradigms that involve communications between

close-by nodes only [14].

To address the gap between the existing interference models and the design of distributed,
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field-deployable scheduling protocols with predictable data delivery reliability, Zhang et al.

[6] have recently identified the physical-ratio-K (PRK) interference model that defines pair-

wise interference relations between close-by nodes only while ensuring application-required

communication reliability. In the PRK model, a node C ′ is regarded as not interfering and

thus can transmit concurrently with the transmission from another node S to its receiver R

if and only if P (C ′, R) < P (S,R)
KS,R,TS,R

, where P (C ′, R) and P (S,R) is the average strength of

signals reaching R from C ′ and S respectively, and KS,R,TS,R
is the minimum real number

chosen such that, in the presence of background noise and cumulative interference from all

Fig. 1. PRK interference model

concurrent transmitters in the network, the probability for R to

successfully receive packets from S is no less than the minimum link

reliability TS,R required by applications (e.g., control algorithms). As

shown in Figure 1, the PRK model defines, for each link (S,R),

an exclusion region ES,R,TS,R
around the receiver R such that a node

C ∈ ES,R,TS,R
if and only if P (C,R) ≥ P (S,R)

KS,R,TS,R

. Accordingly, every

node C ∈ ES,R,TS,R
is regarded as interfering with and thus shall not

transmit concurrently with the transmission from S to R.

For enabling predictable interference control in the presence of network and environmental

uncertainties, the parameter KS,R,TS,R
of the PRK model adapts to the specific network and

environmental conditions to ensure the application-specific link reliability requirements. By

ensuring the required link reliability and by using signal strength instead of geographic distance

in model formulation, the PRK model captures the properties of wireless communication (e.g.,

cumulative interference, anisotropic signal propagation, and background noise) and thus is of

high-fidelity. For enabling distributed protocol design and implementation, the PRK model is

also local: 1) The parameters of the PRK model are either locally measurable (i.e., for the signal

strength and link reliability between close-by nodes) or locally controllable (i.e., for KS,R,TS,R

of each link (S,R)), thus PRK-based scheduling does not need to rely on parameters such as

nodes’ locations or channel path loss between far-away nodes which are often used in physical-

model-based scheduling [15] but are difficult to obtain precisely, especially in a distributed

manner; 2) Only pairwise interference relations between close-by nodes need to be defined in

the PRK model, thus PRK-based scheduling does not require explicit global coordination which

is often used in physical-model-based scheduling [16], [17]. Through theoretical analysis based

on stochastic geometry [6], simulation with 75,600 different network and environment settings,
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and measurement in high-fidelity wireless network testbeds, Zhang et al. [6] have found that

PRK-based scheduling can enable a channel spatial reuse very close to (e.g., >95%) what is

feasible in physical-model-based scheduling while ensuring application-required reliability.

Focusing on formulating the PRK interference model and understanding the theoretically

achievable performance of PRK-based scheduling, Zhang et al. [6] left the design of distributed

protocols for PRK-based scheduling as an open problem. Yet realizing distributed PRK-based

scheduling in real-world settings poses the following major challenges:

• The parameter KS,R,TS,R
of the PRK model depends on the specific link (S,R), the

application requirement on the link reliability (i.e., TS,R), as well as the network and

environmental conditions such as traffic pattern and wireless path loss which may well

be dynamic and unpredictable, thus it is critical to instantiate the PRK model parameter

KS,R,TS,R
on the fly depending on in-situ application requirements as well as network and

environmental conditions; yet the relations between parameter KS,R,TS,R
and application

requirements as well as network and environmental conditions are complex and difficult to

characterize in closed-forms, which makes PRK model instantiation challenging.

• Given a link (S,R) and a specific instantiation of the PRK model, every node in the

exclusion region ES,R,TS,R
should be prevented from transmitting concurrently with the

transmission from S to R. As we will discuss in detail in Sections III-C and III-D, however, it

is difficult to ensure this property due to large interference range, anisotropy and asymmetry

in wireless communication, as well as the delay in protocol signaling.

Contributions of this paper. To enable predictable link reliability in WNC systems, we address

the aforementioned challenges by designing the distributed PRK-based scheduling protocol

PRKS. In PRKS, we formulate the problem of identifying the PRK model parameter KS,R,TS,R
as

a minimum-variance regulation control problem, and we design distributed controllers that allow

each link to adapt its PRK model parameter for ensuring the desired link reliability through

purely local coordination. For ensuring that nodes interfering with one another do not transmit

concurrently, we propose the concept of local signal map that allows close-by nodes to maintain

the wireless path loss among themselves; together with the PRK model, local signal maps enable

nodes to precisely identify the interference relations among themselves despite large interference

range and anisotropic, asymmetric wireless communication. To address the inherent delay in

protocol signaling and to avoid interference between protocol signaling and data transmissions,
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PRKS decouples protocol signaling from data transmission by leveraging the different timescales

of PRK model adaptation and data transmission.

We have implemented PRKS in TinyOS. Through measurement study in the NetEye [18]

and Indriya [19] wireless network testbeds, we demonstrate the following: 1) The distributed

controllers enable network-wide convergence to a state where the desired link reliabilities are

ensured; 2) With local, distributed coordination alone, PRKS achieves a channel spatial reuse

very close to what is enabled by the state-of-the-art centralized physical-model-based scheduler

iOrder [20] while ensuring the required link reliability; 3) Unlike existing scheduling protocols

where link reliability is unpredictable and the ratio of links whose reliability meets application

requirements can be as low as 0%, PRKS enables predictably high link reliability (e.g., 95%)

for all the links in different network and environmental conditions without a priori knowledge of

these conditions; 4) By ensuring the required link reliability in scheduling, PRKS also enables a

lower communication delay and a higher network throughput than existing scheduling protocols.

Organization of the paper. We present in Section II the network and traffic models as well as

the wireless network testbeds used in this study. Then we elaborate on the design of PRKS in

Section III, and we evaluate the performance of PRKS in Section IV. We discuss related work

in Section V, and we make concluding remarks in Section VI.

II. PRELIMINARIES

Network and traffic models & problem definition. As a first-step towards ensuring predictable

link reliability in distributed scheduling, we consider mostly-immobile wireless control networks

where nodes are statically deployed and are fixed at specific locations most of the time even

though they may be moved around infrequently. In such networks, the average background noise

power and the average wireless path loss tend to be stable at timescales of seconds, minutes, or

even longer [21]. Focusing on predictable co-channel interference control, we also only consider

the cases when the data transmission power along a link is fixed even though different links

may use different transmission powers; mobile networks and data transmission power control

are relegated as future research.

Focusing on interference-oriented scheduling of data transmissions at the link layer, our

study considers one-hop data transmissions between close-by nodes, but the network itself

is multi-hop and with nodes widely distributed in space. Note that predictable reliability in

one-hop transmissions is important by itself for new networked control paradigms that involve
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communications between close-by nodes only [14], and predictably reliable one-hop transmission

is also a basis for reliable multi-hop transmission in general as we show in [12].

With the above network and traffic settings, we study the online slot-scheduling problem [20]

where, given a set of links in a multi-hop network at any time instant, a maximal subset of the

links need to be scheduled in a distributed manner to transmit concurrently while ensuring that

the mean packet delivery reliability (PDR) across each of the scheduled links is no less than an

application-required PDR across the link. To leverage the locality and high-fidelity of the PRK

model, we investigate PRK-based online slot-scheduling.

Wireless network testbeds. The measurement parts of our study use a publicly available

wireless network testbed NetEye [18]. In a large lab space, NetEye deploys 130 TelosB motes

in a grid with every two closest neighboring motes separated by 2 feet (i.e., 0.61 meter). The

grid deployment enables the study of both grid networks and random networks, where random

networks can be generated using a subset of the 130 motes in experiments (e.g., using each

mote with a certain probability). Zhang et al. [6] have shown that, despite its seemingly uniform

deployment pattern, NetEye embodies many of the complexities and heterogeneity experienced

in outdoor, real-world deployments; for instance, there is a high degree of variability in the

background noise power at nodes and in the packet delivery reliabilities for links of equal length,

thus reflecting non-uniform network settings as seen in practice. Each of these TelosB motes

is equipped with a 3dB signal attenuator and a 2.45GHz monopole antenna. Unless mentioned

otherwise, we use a radio transmission power of -25dBm (i.e., power level 3 in TinyOS) for data

packets such that the data transmission reliability is over 95% in the absence of interference for

links up to 6 feet (i.e., 1.83 meters) long.

Considering the high fidelity of NetEye, we mainly present our measurement results in NetEye,

but we verify key observations using the Indriya testbed [19]. Indriya deploys 139 TelosB motes

across three floors of the School of Computing at the National University of Singapore; its sparse

node distribution in a 3D space represents a network and environmental setting different from

that of NetEye.

III. PRK-BASED SCHEDULING

A. Overview

Here we present an overview of our approaches to addressing the challenges of PRK-based

scheduling as discussed in Section I. To instantiate the PRK model parameter according to in-
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situ network and environmental condition as well as application requirement on link reliability,

we model the PRK model instantiation problem as a regulation control problem [22], and

we leverage communication theory and model predictive control theory to derive the optimal

controller that ensures application-required link reliability. Each link executes the controller in

a distributed manner to instantiate and adapt its PRK model parameter according to in-situ

network and environmental condition as well as application requirement on link reliability. To

apply the instantiated PRK model in identifying mutual interference relations between links,

we observe that the PRK model is defined based on wireless signal power between nodes

and the instantiated PRK model parameter. Accordingly, we propose to have close-by nodes

maintain local signal maps that identify wireless signal power attenuation between themselves,

which can be accomplished through received-signal-strength-indicator (RSSI) sampling at each

node. Using the signal maps, instantiated PRK model parameters, and knowledge of nodes’

transmission powers, each node can identify in a distributed manner the set of other links whose

transmissions interfere with its own transmission. Based on mutual interference relations between

links, data transmissions along different links can be scheduled in a TDMA manner to ensure

predictable interference control and thus predictable link reliability.

To integrate the above approaches into a field-deployable solution, we propose the dis-

tributed PRK-based scheduling protocol PRKS whose architecture is shown in Figure 2.

Fig. 2. Architecture of PRKS

In PRKS, data packet transmissions

are executed in the data plane, and

their transmission status (i.e., suc-

cess or failure) serve as the feed-

back to the control plane which

schedules data transmissions to en-

sure application-required link relia-

bility. In particular, the status of data

transmissions are used by individual

links to estimate their in-situ link

reliabilities, which in turn triggers

the PRK model adaptations at indi-

vidual links. The instantiated PRK model parameters are used together with signal maps to

identify interference relations between transmissions, which in turn are used to enable TDMA
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scheduling with predictable link reliability.

In what follows, we elaborate on the individual components of the PRKS scheduling protocol.

We first present our control-theoretic approach to instantiating the PRK model in Section III-B,

then we present our protocol signaling method based on local signal maps in Section III-C, and

we present the detailed design and operation of the PRKS protocol in Section III-D.

B. A control-theoretic approach to PRK model instantiation

Model predictive regulation control. Given a link (S,R), the task of instantiating the PRK

interference model is to identify the parameter KS,R,TS,R
such that the resulting scheduling can

ensure the required minimum link reliability TS,R.1 It is, however, difficult to characterize the

relation between KS,R,TS,R
and the packet delivery reliability along (S,R) in closed-form, and

the relation is complex and dependent on network and environmental conditions which may well

be unpredictable at design time [6]. To address the challenge, we observe that the PRK model

instantiation problem can be formulated as an online regulation control problem [22], where the

“plant” is the link (S,R), the “reference input” is the required link reliability TS,R, the “plant

output” is the actual link reliability YS,R from S to R, the “control input” is the PRK model

parameter KS,R,TS,R
, and the objective of the regulation control is to adjust the control input

so that the plant output is as close to the reference input as possible. To address the difficulty

in characterizing the “plant model” on the relation between the control input KS,R,TS,R
and the

plant output YS,R, we observe that changing the PRK model parameter KS,R,TS,R
changes the

exclusion region around the receiver R and thus the concurrent transmissions along with the

transmission from S to R, which in turn leads to the change in the average interference power

at receiver R. Accordingly, we propose to regard this change in interference power, denoted by

∆IR, as the actual control input. This way, we can leverage the existing communication theory

to derive the plant model on the relation between YS,R and ∆IR as follows.

For conciseness, we use ĨR(t) and IR(t) to denote, in units of dBm, the sum of the background

noise power and the power of all interfering signals at the receiver R and its average respectively

at time instant t (t = 1, 2, . . .), with ĨR(t) = IR(t) + ξR(t) and ξR(t) being a zero-mean random

variable. Assuming a discrete-time model where the changes in the average background noise

power and average wireless channel path loss from a time instant t to the next time instant t+ 1

1Focusing on interference-oriented scheduling, we only consider the links whose packet delivery reliabilities are above the

required ones in the absence of interference.
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are negligible as compared with the background noise power and wireless channel path loss

themselves, IR(t+ 1) may differ from IR(t) for two possible reasons:2

• From time instant t to t + 1, the PRK model parameter may change from KS,R,TS,R
(t) to

KS,R,TS,R
(t + 1). Accordingly, the exclusion region around the receiver R changes from

ES,R,TS,R
(t) to ES,R,TS,R

(t+1). If KS,R,TS,R
(t+1) > KS,R,TS,R

(t), nodes in ES,R,TS,R
(t+1)\

ES,R,TS,R
(t) may transmit concurrently with the transmission from S to R and thus introduce

interference to R at time t but not at time t+1; similarly, if KS,R,TS,R
(t+1) < KS,R,TS,R

(t),

nodes in ES,R,TS,R
(t)\ES,R,TS,R

(t+ 1) may introduce interference to R at time t+ 1 but not

at time t. We use ∆IR(t) to denote the average interference change at receiver R due to the

change of the PRK model parameter from t to t+ 1. Since the receiver R can control the

changes of the PRK model parameter as we will discuss shortly, ∆IR(t) can be controlled

by the receiver R and is thus treated as the “control input”.

• The set of nodes that are not in the exclusion region around the receiver R at time instants

t and t + 1 and are scheduled to transmit concurrently with the link (S,R) may change

from time t to t+ 1. Accordingly, the average interference introduced by nodes outside the

exclusion region around R changes from t to t+1, and we use ∆IU(t) to denote this change.

Since ∆IU(t) is beyond the local control of link (S,R), we treat ∆IU(t) as a “disturbance”

to the system and denote the mean of ∆IU(t) as µU(t). ∆IU(t) tends to be uncorrelated

with ∆IR(t).

Therefore,

IR(t+ 1) = IR(t) + ∆IR(t) + ∆IU(t), ĨR(t+ 1) = IR(t+ 1) + ξR(t+ 1),

where ∆IR(t) and ∆IU(t) are in units of dB, and ξR(t + 1) is a zero-mean random variable

reflecting the impact of factors such as small-scale channel fading.

We use P̃S,R(t) and PS,R(t) to denote the received data signal power from S to R (in units

of dBm) and its average at time instant t respectively, then communication theory and practice

imply the following [6], [23]:

YS,R(t) = f0(P̃S,R(t)− ĨR(t), t) = f1(PS,R(t)− IR(t)) + ξf (t), (1)

2In protocol implementation, the actual time interval between t and t+ 1 can be chosen to be the small interval required for

computing a sample of link reliability.
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where PS,R(t) − IR(t) approximates, in units of dBs, the signal-to-interference-plus-noise-ratio

(SINR) at time instant t, f1(.) is a non-linear, increasing function of PS,R(t) − IR(t) with the

specific function form dependent on the modulation and coding schemes used by the radio, and

ξf (t) is a small, bounded, and zero-mean random perturbation depending on the in-situ network

and environmental conditions [23]. Therefore, the “plant model” for link (S,R) is

ĨR(t+ 1) = IR(t+ 1) + ξR(t+ 1) = IR(t) + ∆IR(t) + ∆IU(t) + ξR(t+ 1)

P̃S,R(t+ 1) = PS,R(t+ 1) + ξP (t+ 1) = PS,R(t) + ξP (t+ 1)

YS,R(t+ 1) = f0(P̃S,R(t+ 1)− ĨR(t+ 1), t+ 1)

(2)

where (ĨR(.), P̃S,R(.)) and YS,R(.) are the “state” and the “output” of the plant respectively, and

the objective of the control problem at time t is to select the control input ∆IR(t) such that

YS,R(t+ 1) is as close to the required link reliability TS,R as possible.

To address the challenges of the nonlinearity and time-dependence of function f0(.) in

control design, we observe that, for the control problem mentioned above, we only needs to

find another function f(.) that approximates well f0(.) at the current system operating point

(P̃S,R(t)− ĨR(t), YS,R(t)) and the target equilibrium point (f−1
1 (TS,R), TS,R) where the required

communication reliability is satisfied. To this end, we approximate function f0(.), at time t, by

the following affine function f(.) in the neighborhood of the target equilibrium point (f−1
1 (TS,R),

TS,R):
f(x) = a(t)x+ b(t),

where a(t) = g(YS,R(t), PS,R(t), IR(t), TS,R) =
TS,R−YS,R(t)

f−1
1 (TS,R)−(PS,R(t)−IR(t))

,

b(t) = TS,R − a(t)f−1
1 (TS,R).

(3)

As shown in Figure 3, function f(.) cuts across the current system operating point (PS,R(t) −

IR(t), YS,R(t)) and the target equilibrium point (f−1
1 (TS,R), TS,R). Therefore, we use the following

approximate plant model at time t:

IR(t+ 1) = IR(t) + ∆IR(t) + ∆IU(t)

PS,R(t+ 1) = PS,R(t)

YS,R(t+ 1) = a(t)(PS,R(t+ 1)− IR(t+ 1)) + b(t)

(4)

Accordingly, the system model is as shown in Figure 4, where Y S,R(t) = cY S,R(t − 1) +

(1 − c)YS,R(t), 0 ≤ c < 1, with Y S,R(1) initialized as YS,R(1). To smooth out the time-

varying randomness in YS,R(.), the exponentially-weighted-moving-average (EWMA) filter in the

feedback loop is introduced to track the link reliability YS,R(.) such that E[Y S,R(t)] = E[YS,R(t)]
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Fig. 3. Affine approximation of function f0(.) by f(.) in the neighborhood of the expected equilibrium point (f−1
1 (TS,R),

TS,R) at time t

Fig. 4. System diagram of PRK model instantiation as model predictive regulation control

but Y S,R(t) has smaller variability than YS,R(t). The weight factor c determines the tradeoff

between the stability and agility of the EWMA filter; the larger the c is, the more stable the

filter. In our implementation, we have tried different values of c, and we find setting c as a

relatively large value (e.g., 15
16

) is a good choice in enabling stable link reliability.

Given the probabilistic nature of wireless communication, the link reliability Y S,R(t) is

expected to be inherently random. To control Y S,R(t) to be as close to the desired reliability

TS,R as possible, we need to minimize E[(Y S,R(t)− TS,R)2]. More formally, the control design

at time t is a model predictive control problem as follows:

min∆IR(t) E[(Y S,R(t+ 1)− TS,R)2]

subject to Y S,R(t+ 1) = cY S,R(t) + (1− c)YS,R(t+ 1),

Plant model (4) for link (S,R).

(5)



12

For this control problem, we have

Theorem 1: The optimal solution to Problem (5) is

∆IR(t) =
(1 + c)Y S,R(t)− cY S,R(t− 1)− TS,R

(1− c)a(t)
− µU(t). (6)

Applying the above optimal control input ∆IR(t) at time t makes E[Y S,R(t + 1)] = TS,R and

the variance of Y S,R(t+ 1) minimum.
Proof:

E[(Y S,R(t+ 1)− TS,R)2] = E[(cY S,R(t) + (1− c)YS,R(t+ 1)− TS,R)2]

= E[(cY S,R(t) + (1− c)(a(t)(PS,R(t+ 1)− IR(t+ 1)) + b(t))− TS,R)2]

= E[(cY S,R(t) + (1− c)(a(t)(PS,R(t+ 1)− IR(t+ 1)) + b(t))− TS,R−

(1− c)a(t)(µU (t)− µU (t)))2]

= E[(X − (1− c)a(t)(∆IU (t)− µU (t)))2],

where X = cY S,R(t)+(1− c)(a(t)(PS,R(t+1)− IR(t))+ b(t))−TS,R− (1− c)a(t)µU (t)− (1− c)a(t)∆IR(t).
At time t, a(t) is given and E[∆IU(t)− µU(t)] = 0. Thus E[(1− c)a(t)(∆IU(t)− µU(t))] =

(1−c)a(t)E[∆IU(t)−µU(t)] = 0. Given that X and ∆IU(t) are uncorrelated, we need X = 0 to
minimize E[(Y S,R(t)−TS,R)2]. Accordingly, the control input that minimizes E[(Y S,R(t)−TS,R)2]

at time t is as follows:

∆IR(t) =
cY S,R(t)+(1−c)[a(t)[PS,R(t+1)−IR(t)]+b(t)]−TS,R

(1−c)a(t) − µU (t).

Since PS,R(t+ 1) = PS,R(t), we have

∆IR(t) =
cY S,R(t)+(1−c)[a(t)[PS,R(t)−IR(t)]+b(t)]−TS,R

(1−c)a(t) − µU (t)

=
cY S,R(t)+(1−c)YS,R(t)−TS,R

(1−c)a(t) − µU (t)

=
cY S,R(t)+Y S,R(t)−cY S,R(t−1)−TS,R

(1−c)a(t) − µU (t)

=
(1+c)Y S,R(t)−cY S,R(t−1)−TS,R

(1−c)a(t) − µU (t).

Given the above control input ∆IR(t) and considering that PS,R(t+ 1) = PS,R(t), we have

Y S,R(t+ 1) = cY S,R(t) + (1− c)[a(t)(PS,R(t+ 1)− IR(t+ 1)) + b(t)]

= cY S,R(t) + (1− c)[a(t)(PS,R(t+ 1)− IR(t)−∆IR(t)−∆IU (t)) + b(t)]

= cY S,R(t) + (1− c)[a(t)(PS,R(t+ 1)− IR(t)− cY S,R(t)+(1−c)YS,R(t)−TS,R

(1−c)a(t) + µU (t)−∆IU (t)) + b(t)]

= cY S,R(t) + (1− c)[a(t)(PS,R(t+ 1)− IR(t)− cY S,R(t)+(1−c)[a(t)[PS,R(t+1)−IR(t)]+b(t)]−TS,R

(1−c)a(t) +

µU (t)−∆IU (t)) + b(t)]

= TS,R + (1− c)a(t)(µU (t)−∆IU (t)).
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Since E[(1−c)a(t)(µU(t)−∆IU(t))] = 0, E[Y S,R(t+1)] = TS,R indeed holds. With E[Y S,R(t+

1)] = TS,R, the objective function (5) is the variance of Y S,R(t+1)]. Hence applying the optimal

control input ∆IR(t) at time t also minimizes the variance of Y S,R(t+ 1).

From ∆IR(t) to KS,R,TS,R
(t+1). Given that it is convenient for the receiver R to measure link

reliability Y S,R(t) [8], we propose to execute the model predictive regulation controller (6) at R.

Using similar techniques as what we will discuss in Section III-C, R can also measure PS,R(t)

and IR(t), thus R can compute a(t). For each time instant t, R can also derive ∆IU(t−1) based

on IR(t), IR(t − 1), ∆IR(t − 1), and Equation (2); using these derived samples of IU(.) and

an EWMA filter, R can then estimate µU(.). Therefore, R can execute the controller (6) using

information that is either locally measured (e.g., for Y S,R(t) and Y S,R(t− 1)) or locally derived

(e.g., for a(t) and µU(t)).

After R computes the control input ∆IR(t) at time t, R needs to compute KS,R,TS,R
(t+ 1) so

that 
KS,R,TS,R

(t+ 1) = KS,R,TS,R
(t), if ∆IR(t) = 0

KS,R,TS,R
(t+ 1) > KS,R,TS,R

(t), if ∆IR(t) < 0

KS,R,TS,R
(t+ 1) < KS,R,TS,R

(t), if ∆IR(t) > 0

(7)

and that, when the PRK model parameter is min{KS,R,TS,R
(t), KS,R,TS,R

(t + 1)}, the expected

interference introduced to R by the nodes in either ES,R,TS,R
(t) or ES,R,TS,R

(t + 1) but not in

both is as close to |∆IR(t)| as possible while ensuring that the expected link reliability is no

less than TS,R when the PRK model parameter is KS,R,TS,R
(t+1).3 To realize this, we define, for

each node C that may be included in the exclusion region of R during network operation, the

expected interference I(C,R, t) that C introduces to R when C is not in the exclusion region

of R. Then I(C,R, t) = βC(t)P (C,R, t), where βC(t) is the probability for C to transmit data

packets at time t and P (C,R, t) is the power strength of the data signals reaching R from C.4

Considering the discrete nature of node distribution in space and the requirement on satisfying

the minimum link reliability TS,R, we propose the following rule for computing KS,R,TS,R
(t+1):

• When ∆IR(t) = 0, let KS,R,TS,R
(t+ 1) = KS,R,TS,R

(t).

3Due to the discrete nature of node distribution, the resulting link reliability may be slightly higher than the required reliability

TS,R instead of being exactly equal to TS,R.
4P (C,R, t) and βC(t) can be estimated through purely local coordination between R and C using the protocol signaling

mechanism of Section III-C.
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• When ∆IR(t) < 0 (i.e., need to expand the exclusion region), let ES,R,TS,R
(t + 1) =

ES,R,TS,R
(t), then keep adding nodes not already in ES,R,TS,R

(t + 1), in the non-increasing

order of their data signal power at R, into ES,R,TS,R
(t+1) until the node B such that adding

B into ES,R,TS,R
(t+1) makes

∑
C∈ES,R,TS,R

(t+1)\ES,R,TS,R
(t) I(C,R, t) ≥ |∆IR(t)| for the first

time. Then let KS,R,TS,R
(t+ 1) = P (S,R,t)

P (B,R,t)
.

• When ∆IR(t) > 0 (i.e., need to shrink the exclusion region), let ES,R,TS,R
(t + 1) =

ES,R,TS,R
(t), then keep removing nodes out of ES,R,TS,R

(t+ 1), in the non-decreasing order

of their data signal power at R, until the node B such that removing any more node after

removing B makes
∑

C∈ES,R,TS,R
(t)\ES,R,TS,R

(t+1) I(C,R, t) > |∆IR(t)| for the first time.

Then let KS,R,TS,R
(t+ 1) = P (S,R,t)

P (B,R,t)
.

For convenience, we call the above rule the PRK-model-adaptation rule. In our study, we set

the initial value of the PRK model parameter such that the initial exclusion region around R

includes every strong interferer whose transmission alone, concurrent with the transmission from

S to R, can make the link reliability drop below TS,R. This way, the initial link reliability is

not too far away from TS,R, which helps ensure the goodness of approximating function f0(.)

by f(.) in the neighborhood of the desired link reliability TS,R.

With the model predictive regulation controller (6) and the PRK-model-adaptation rule

discussed above, scheduling based on the instantiated PRK model ensures the required link

reliability. Formally, we have

Theorem 2: Applying the PRK-model-adaptation rule and the control input ∆IR(t + i) =
(1+c)Y S,R(t+i)−cY S,R(t+i−1)−TS,R

(1−c)a(t+i)
− µU(t+ i) (i = 0, 1, . . .) starting at a time instant t, E[Y S,R(t+

1 + i)] ≥ TS,R (i = 0, 1, . . .).

Proof: Let ∆ÎR(t) =
∑

C∈(ES,R,TS,R
(t+1)\ES,R,TS,R

(t))∪(ES,R,TS,R
(t)\ES,R,TS,R

(t+)) I(C,R, t)), i.e.,

the absolute value of the change of the average interference power at the receiver R due to the

change of the PRK model parameter from t to t+ 1. Applying the PRK-model-adaptation rule

and the predictive minimum-variance regulation control (5) at a time instant t, E[Y S,R(t+ 1)] =

TS,R if ∆ÎR(t) = |∆IR(t)|. Due to the discrete nature of node distribution, however, it may

well be the case that ∆ÎR(t) 6= |∆IR(t)|. In this case, if ∆IR(t) < 0, applying the PRK-

model-adaptation rule will expand the exclusion region such that ∆ÎR(t) > |∆IR(t)|, which

makes E[Y S,R(t + 1)] > TS,R; on the other hand, if ∆IR(t) > 0, applying the PRK-model-

adaptation rule will shrink the exclusion region such that ∆ÎR(t) < |∆IR(t)|, which also makes

E[Y S,R(t + 1)] > TS,R. Therefore, E[Y S,R(t + 1)] > TS,R holds if ∆ÎR(t) 6= |∆IR(t)|. For the
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same reasons as above, E[Y S,R(t+ 2 + i)] ≥ TS,R (i = 0, 1, . . .) holds.

From Theorem 2, it takes one control step (i.e., one adaptation of the PRK model parameter)

for the PRK model parameter to converge to a state where the required link reliability is satisfied.

In practice, due to the use of the approximate function f(.) and the imperfection in estimating

parameters such as µU(t) and βC(t) (which are used in the ∆IR(t) calculation and in the

PRK-model-adaption rule respectively), it takes more than one control step for the PRK model

parameter to converge. As we will present in our testbed-based measurement study in Section IV,

however, the PRK model parameters of all the links still converge quickly to a state where the

required link reliabilities are satisfied, for instance, with a median convergence time of 22 control

steps.

C. Protocol signaling for real-world use of the PRK model

Given a link (S,R) and a specific instantiation of the PRK model, the parameter KS,R,TS,R
(t)

defines an exclusion region ES,R,TS,R
(t) around the receiver R such that a node C ∈ ES,R,TS,R

(t)

if and only if P (C,R, t) ≥ P (S,R,t)
KS,R,TS,R

(t)
. In PRK-based scheduling, every node C ∈ ES,R,TS,R

(t)

should be aware of its existence in ES,R,TS,R
(t) and should not transmit concurrently with

the reception at R. Yet it is challenging to ensure this property for the following real-world

complexities in wireless communication: 1) node C may be located beyond the communication

range of R such that it is challenging for R to inform C of its state (e.g., the value of KS,R,TS,R
(t));

2) wireless communication may be anisotropic such that it is difficult for R to transmit protocol

signaling messages that reach and only reach nodes in ES,R,TS,R
(t); 3) wireless communication

may be asymmetric such that nodes interfering with one another may not know one another’s

state (e.g., KS,R,TS,R
(t)).

Local signal maps. To address these challenges, we propose that every node R maintains

a local signal map that contains the average signal power attenuation between R and every

node C close-by.5 To identify the signal power attenuation P ′(C,R) from a node C to another

node R, C can inform R of the transmission power PC used for a data or control packet

that C transmits to R by piggybacking PC onto the packet, and then R can derive the power

attenuation as long as R can estimate the power of the received signals from C, denoted by

P (C,R). To this end, R samples the RSSI value Ptotal at an instant right before finishing

5The exact set of close-by nodes that shall be included in the signal map will be discussed shortly.



16

Fig. 5. Estimation of signal power attenua-

tion

receiving a packet from C, and, immediately after receiving

the packet, R samples the RSSI value PI again. As shown in

Figure 5, PI is the sum of the background noise power and

the interference power at R right after the packet reception,

and Ptotal = P (C,R) + P ′I where P ′I is the sum of the

background noise power and the interference power at R

right before the packet reception. As we will discuss in

Section III-D, signal maps are maintained in the control plane of the protocol PRKS where

wireless channel access is based on the traditional random access method CSMA/CA as used

in IEEE 802.15.4 and 802.11. Given that Ptotal and PI can be sampled at very short interval

(e.g., less than 0.01 milliseconds for TelosB motes [24]) and that the background noise power as

well as the interference power do not change much in such short intervals in CSMA/CA-based

wireless networks, the sum of the background noise power and the interference power do not

change much immediately before and immediately after a packet reception, i.e., P ′I ≈ PI . Thus,

P (C,R) = Ptotal − P ′I ≈ Ptotal − PI . (8)

Once R gets a sample of P (C,R), it can compute a sample of P ′(C,R) as PC −P (C,R). This

way, R can get a series of samples of P ′(C,R) and then use these samples to derive the average

signal power loss from C to itself.

Using the above method of sampling signal power attenuation, nodes close-by can establish

their local signal maps through purely local sampling of their packet receptions without any
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Fig. 6. Relative errors in estimating link

signal power attenuation in NetEye

global coordination in the network, and the local signal maps

generated in this manner tend to be very accurate too. For

instance, Figure 6 shows the CDF of the relative errors6

in estimating power attenuation across links in the NetEye

[18] sensor network testbed when all the 130 TelosB motes

transmit packets using the CSMA/CA-based B-MAC [25]

and at an average inter-packet interval of 25 seconds, 2.5

seconds, and 0.1 seconds respectively, which we denote as

light traffic, medium traffic, and heavy traffic respectively.

6The relative error for a link is defined as the estimated attenuation minus the ground-truth attenuation and then divided by

the ground-truth attenuation.
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We see that the estimation is quite accurate. For instance, the relative estimation errors are all very

close to 0 and almost always within [−2%, 2%]; in addition, the 95% confidence interval for the

median relative error is [−0.0508%, 0.0535%], [−0.0152%, 0.0280%], and [−0.0087%, 0.0245%]

for the light, medium, and heavy traffic condition respectively, thus the median estimation error

is 0 at the 95% confidence level for all traffic conditions. We have also observed similar accuracy

for estimating link power attenuation in the Indriya testbed [19], showing the effectiveness of

our method of signal power attenuation estimation in different network and traffic conditions;

interested readers can find more detailed validation results for our estimation method in [12].

For protocol signaling in PRK-based scheduling, the local signal maps maintain bi-directional

power attenuation between each pair of close-by nodes. After estimating P ′(C,R), for instance,

R informs C of P ′(C,R) so that C is aware of the power attenuation from itself to R.

Protocol signaling based on signal maps. For ensuring awareness of mutual interference

between nodes, the PRK model parameter KS,R,TS,R
(t) of each link (S,R) needs to be known

by every node C in the exclusion region ES,R,TS,R
(t). To this end, node R broadcasts signaling

packets with the value of KS,R,TS,R
(t) piggybacked, so that nodes within the communication

range of R get to know KS,R,TS,R
(t). To ensure that KS,R,TS,R

(t) is also known to every node

C that is in ES,R,TS,R
(t) but is beyond the communication range of R, every node C ′ that has

learned KS,R,TS,R
(t) and is in ES,R,TS,R

(t) can rebroadcast a signaling packet with the value of

KS,R,TS,R
(t) piggybacked, which enables every node C ∈ ES,R,TS,R

(t) to learn about KS,R,TS,R
(t).

In this process, a node C ′ can check whether it is in ES,R,TS,R
(t) by checking, based on its local

signal map, whether P (C ′, R, t) ≥ P (S,R,t)
KS,R,TS,R

(t)
. Therefore, local signal maps enable addressing

the challenge of large interference range in inter-node coordination through signaling-packet

relay/rebroadcast within exclusion regions. To reduce the number of rebroadcasts needed for

all the nodes in ES,R,TS,R
(t) to learn about KS,R,TS,R

(t), certain rebroadcasts are suppressed

based on well-known broadcast-suppression techniques [26], for instance, giving nodes with

lower interference power to R (i.e., “farther away” from R in the signal map) higher priority

in rebroadcasting and suppressing a node’s rebroadcast if it has heard rebroadcasts from several

close-by nodes.

Once a node C learns about the value of KS,R,TS,R
(t), C can use its local signal map to

decide whether its transmission may interfere with the transmission from S to R (i.e., whether

C ∈ ES,R,TS,R
(t)) by checking whether P (C,R, t) ≥ P (S,R,t)

KS,R,TS,R
(t)

. Therefore, signaling packets

can reach nodes not in ES,R,TS,R
(t) without falsely including those nodes into ES,R,TS,R

(t), thus
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addressing the challenge of anisotropic wireless communication. Using local signal maps and

with signaling-packet relay as discussed above, a pair of nodes C and R can inform each other

of their respective states (e.g., the PRK model parameter and the data transmission probability)

even if communications between C and R are asymmetric, thus addressing the challenge of

asymmetric wireless communication in protocol signaling.

For the correctness of the above protocol signaling method, the local signal map of a node

R should include the set E′ of nodes whose transmission may interfere with the reception at

R or whose reception may be interfered by the transmission by R (e.g., the transmission of

ACK packets by R). Since the set E′ may well be dynamic and uncertain depending on network

and environmental conditions, a node R dynamically adjusts the set of nodes in its local signal

map through local coordination with nodes close-by, and R may also maintain a relatively large

signal map to include the nodes that may be in E′ over time.

Together with the PRK model instantiation method discussed in Section III-B, the above

field-deployable signaling mechanisms enable agile, high-fidelity identification of interference

relations between nodes, thus serving as a foundation for predictable interference control.

Remarks. For awareness of mutual interference relations, nodes exchange PRK model

parameters and maintain local signal maps in the aforementioned protocol signaling method.

The frequency of PRK model parameter exchange tends to be low compared with the frequency

of data communications. For each link, in particular, one link reliability sample is collected only

after every W number of data packets have been transmitted along the link, and a new link

reliability sample may trigger one feedback-control update of the PRK model parameter and its

sharing with nodes in the exclusion region. PRK model parameters can also be piggybacked

into the data packets and control packets (e.g., those for maintaining local signal maps) that

a node has to transmit anyway, thus further reducing the overhead of exchanging PRK model

parameters.

For mostly-immobile wireless control networks which we consider in this study, the average

wireless path loss usually does not change at short timescales (e.g., minutes or longer), thus the

local signal maps can be maintained through infrequent packet exchanges between close-by nodes

too. The control packets for signal map maintenance may be transmitted at a power level higher

than data transmission powers should nodes beyond data communication ranges interfere with

one another. As a first step towards ensuring predictable interference control in data transmission

scheduling, our study here focuses on a single data transmission channel; when multiple data
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transmission channels are used, the size of exclusion regions will significantly decrease [27], and

the power level needed for signal map maintenance will significantly decrease too. To further

reduce power consumption for signal map maintenance, approximate signal maps may be used

such that power attenuation between nodes beyond data communication ranges may be estimated

based on spatial channel correlations [28], [29] and power attenuation between nodes within

data communication ranges. Detailed study of multi-channel scheduling and approximate signal

maps, however, is beyond the scope of this paper, which focuses on the feasibility and basic

mechanisms for ensuring predictable interference control in the presence of uncertainties in data

transmission scheduling. The implementation and deployment of our approach in the NetEye

[18] and Indriya [19] wireless network testbeds with resource-constrained TelosB motes, as we

will discuss in Section IV, also demonstrate the feasibility of our approach in real-world wireless

control networks whose nodes may well be less resource-constrained than TelosB (which only

has a 8MHz processor and 10KB RAM).

D. Protocol PRKS: putting things together

Decoupling of protocol signaling & data transmission. Based on the methods of PRK

model instantiation and protocol signaling presented in Sections III-B and III-C respectively,

two basic tasks of interference control are 1) enabling nodes to be accurately aware of the

mutual interference relations among themselves and 2) controlling channel access so that no

two interfering links use the same wireless channel at the same time. These tasks make the

commonly-used contention-based approach unsuitable for the following reasons:

• In contention-based channel access control, each data transmission is usually preceded by

a protocol signaling phase either implicitly through carrier sensing or explicitly through

RTS-CTS handshake such as in IEEE 802.11. Due to the probabilistic nature of wireless

communication and the potentially large interference range, it is difficult to make such per-

transmission protocol signaling perfectly reliable even with the mechanisms discussed in

Section III-C. Accordingly, it is difficult for nodes to be accurately aware of their mutual

interference relations, thus it is difficult to control interference in a predictable manner.

• Even if we can make the per-transmission protocol signaling more reliable through

mechanisms such as retransmission of signaling packets, this introduces significant delay

and overhead for each data transmission.
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To address the aforementioned challenges, we propose to decouple protocol signaling from

data transmission by leveraging the different timescales of PRK model adaptation and data

transmission. Given a link (S,R), highly accurate estimation of its reliability usually requires

the knowledge of the transmission status of several (e.g., 20) data transmissions along (S,R) [8].

Accordingly, it takes time to get a new link reliability feedback, and the timescale of PRK model

adaptation as well as the resulting change in interference relations between (S,R) and close-by

nodes/links is longer than the timescale of individual data transmissions along (S,R). Using the

protocol signaling mechanisms discussed in Section III-C, the receiver R can inform, after each

PRK model adaptation, the relevant nodes of the new value of parameter KS,R,TS,R
and thus the

corresponding change in interference relations. Therefore, instead of requiring perfectly reliable

signaling for each data transmission as in contention-based channel access control, we propose

to treat protocol signaling as an independent process which ensures timely awareness of the

mutual interference between nodes/links. Based on the latest information on mutual interference

relations, data transmissions can be scheduled in a TDMA fashion without being coupled with

protocol signaling.7

Besides enabling precise awareness of mutual interference relations between nodes/links, the

decoupling of protocol signaling and data transmission also enables separating the transmission

of signaling packets and data packets to prevent interference between protocol signaling and data

transmission. Since protocol signaling does not introduce high traffic load and the timescale of

PRK model adaptation as well as the resulting change in interference relations is longer than

that of data packet transmission, we can separate protocol signaling and data transmission in

time, for instance, by dedicating one time slot for transmitting signaling packets after every N

(e.g., 20) time slots of data packet transmissions. In cases where there exists a control channel

that has been set aside for control information exchange (e.g., in industry standards such as

IEEE 1609.4 [30] and in research proposals [31], [32], [33]), we can also separate protocol

signaling and data transmission in frequency by transmitting signaling packets in the control

channel and data packets in the data channel. (We have experimented with both methods in our

implementation and have observed similar scheduling performance; interested readers can find

7Note that the periodic sampling of physical processes in wireless control networks also makes TDMA an efficient scheduling

mechanism as compared with contention-based approaches.
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more implementation details in [12].)

Protocol PRKS. Based on the above design principles, we propose the PRK-based scheduling

protocol PRKS that separates the functionalities of PRK-based channel access control into control

plane functions and data plane functions as shown in Figure 2. In the control plane, the sender

S and the receiver R of a given link (S,R) get to know the set of links whose transmissions

cannot take place concurrently with the transmission from S to R through the protocol signaling

mechanisms presented in Section III-C, and we define this set of links as the conflict set of link

(S,R). More specifically, a link (C,D) is in the conflict set of (S,R) and thus conflicting with

(S,R) at a time instant t if links (C,D) and (S,R) share a common end-node, C ∈ ES,R,TS,R
(t),

or S ∈ EC,D,TC,D
(t), where TS,R and TC,D are the required packet delivery reliability across (S,R)

and (C,D) respectively. Based on the conflict sets of links, data transmissions along individual

links can be scheduled in a distributed, TDMA manner. In this study, we use the Optimal-

Node-Activation-Multiple-Access (ONAMA) algorithm [34] which is a lightweight, distributed

TDMA scheduling algorithm for wireless networks; we can also use other TDMA scheduling

algorithms [35], but detailed study of TDMA scheduling itself is beyond the scope of this work.

With the ONAMA algorithm, a link (S,R) is regarded as active in a time slot if S transmits

to R in the slot. Given a time slot, the sender S first computes the priorities for (S,R) and the

links in the conflict set of (S,R) to be active in the time slot, then S decides to transmit to R

if and only if, for this time slot, (S,R) has higher priority to be active than every conflicting

link. Every sender in the network computes link activation priorities in the same manner such

that no two conflicting links will be active in the same time slot as long as the senders are

accurately aware of their mutual interference relations. If a link (S,R) is active in a time slot,

S transmits data packet(s) to R in this time slot. The statuses (i.e., successes or failures) of data

transmissions in the data plane are fed back into the control plane for estimating the in-situ link

reliabilities, which in turn triggers PRK model adaptation and then the adaptation of the TDMA

transmission scheduling accordingly. In the control plane, nodes transmit signaling packets based

on CSMA/CA since per-transmission reliability guarantee is not needed for signaling packets;

nodes also leverage the transmissions and receptions of signaling packets to maintain their local

signal maps as we have presented in Section III-C.

With the above approach to PRK-based scheduling, the TDMA scheduling of data transmis-

sions happens at the beginning of each time slot based on the PRK model information that

is readily available in the control plane, hence there is no need for ensuring perfectly reliable
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protocol signaling on a per-transmission basis and thus no delay introduced on a per-transmission

basis just for protocol signaling either. Given that the timescale of PRK model adaptation at a

link (S,R) is longer than that of individual data transmissions along (S,R), in particular, the

time instants ta and tb for two consecutive PRK model adaptations at (S,R) tend to be well

separated such that, within the early part of the time window [ta, tb], the PRK model parameter of

link (S,R) generated at time ta can be reliably delivered to the relevant nodes and then be used

for the TDMA scheduling of data transmissions. In addition, we do not need perfect information

consistency that requires the same PRK model parameter of a link (S,R) to be used by link

(S,R) and all the links whose transmitters are in the exclusion region around receiver R. That

is, a node can use the new PRK model parameter of a link the moment the node learns of the

parameter. The intuition of this design is that the earliest use of new PRK model parameters

helps improve data delivery reliability when the corresponding exclusion regions expand, or it

helps improve the channel spatial reuse and the concurrency of data transmissions when the

corresponding exclusion regions shrink. (Interested readers can find detailed discussions of this

in [12].)

IV. EXPERIMENTAL EVALUATION

We have implemented PRKS in TinyOS [36], and we evaluate PRKS through measurement

in the NetEye [18] and Indriya [19] wireless network testbeds.

A. Methodology

Protocols. To understand the design decisions of PRKS, we have comparatively studied PRKS

with its variants; due to the limitation of space, however, we relegate the detailed discussions

to [12]. Towards understanding the benefits of predictable interference control in PRKS, we

implement in TinyOS the following distributed scheduling protocols and comparatively study

their behavior with that of PRKS:

• CSMA: a contention-based MAC protocol that uses the basic CSMA/CA mechanism to

ameliorate the impact of co-channel interference; this represents the interference control

mechanism used by protocols such as B-MAC [25];

• RTS-CTS: a contention-based MAC protocol that uses CSMA/CA and RTS-CTS to

ameliorate the impact of co-channel interference and hidden terminals; this represents the

interference control mechanism used by protocols such as S-MAC [37];
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• RIDB: a TDMA scheduling protocol that uses a TDMA protocol similar to the one used in

PRKS and that uses the physical interference model to derive interference relations between

nodes but ignores cumulative interference in networks [38].

• CMAC: a contention-based MAC protocol where a node transmits at a time instant only if

the SINR of this transmission and the SINRs of other concurrent transmissions overheard

by the node are above a certain threshold (e.g., for ensuring a certain link reliability); this

represents the interference control mechanism used by protocols such as C-MAC [39];

• SCREAM: a TDMA scheduling protocol using the SCREAM primitive [16] to schedule

concurrent transmissions according to the physical interference model; this represents the

interference relation identification mechanism used by protocols such as FDD [16] and DSS

[40].

Among these protocols, CSMA and RTS-CTS represent the protocol-model-based techniques in

existing industry standards such as IEEE 802.15.4 and 802.11p; RIDB, CMAC, and SCREAM

represent the techniques used in existing physical-model-based scheduling; similar to PRKS,

RIDB and SCREAM also use the technique of separating TDMA-based data transmission from

the control information exchange needed for generating the TDMA data transmission schedule.

Focusing on predictable co-channel interference control, we do not compare PRKS with protocols

such as WirelessHART [41] that do not consider channel spatial reuse.

Network and application settings. We use a subset of the 130 TelosB motes in NetEye by

using each mote of NetEye with probability 0.8. Unless mentioned otherwise, every mote uses

a data transmission power of -25dBm (i.e., power level 3 in TinyOS) such that a mote can only

reach motes no more than 6 feet away with a packet delivery reliability (PDR) of over 95% in

the absence of interference, thus forming a multi-hop network where not every mote can directly

communicate with one another. Focusing on link-layer scheduling for predictable interference

control in this study, we mainly consider one-hop data traffic where each mote transmits data

packets to one of its neighboring motes to whom the PDR is above 95% in the absence of

interference; if there are multiple such neighboring motes, each mote is selected as a receiver

with equal probability. For understanding supportable network throughput while satisfying a

certain application PDR requirement, we consider, unless mentioned otherwise, the saturated

traffic scenario where every mote always has packets to transmit.

For reflecting different application scenarios, we consider the cases when the mean PDR

requirement for each link are set to 70%, 80%, 90%, or 95% respectively. To understand
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the adaptation of PRKS to online dynamics, we run experiments where the mean link-PDR

requirement changes over time, for instance, setting the PDR requirement to 70%, 80%, 90%,

95%, 90%, 80%, and 70% over time.

We have experimented with other network and traffic conditions including in the Indriya

[19] wireless network testbed and with heterogeneous PDR requirements, traffic load, and

transmission power across different links, unsaturated and irregular traffic, temporally-varying

traffic, as well as multi-hop traffic. We have observed similar phenomena as what we will present

in Section IV-B. Interested readers can find the detailed discussions in [12].

B. Measurement results

Behavior of PRKS. For different PDR requirements, Figures 7 and 8 show the boxplots of link

packet delivery reliability (PDR) and PRK model parameter in PRKS respectively. We see that

PRKS adapts the PRK model parameter according to different PDR requirements, and that the

required minimum mean PDR is always guaranteed in PRKS through predictable interference

control.8 In particular, the PRK model parameter increases with the PDR requirement so that

more close-by nodes are prevented from transmitting concurrently with a link’s transmission.

To understand the spatial reuse in PRKS, Figure 9 shows the mean concurrency (i.e., number

of concurrent transmissions at a time instant) and its 95% confidence interval9 in PRKS as well

as in a state-of-the-art, centralized scheduling protocol iOrder [20] which maximizes channel

spatial reuse in interference-oriented scheduling.10 We see that, despite its nature of local and

distributed control, PRKS enables a concurrency and spatial reuse statistically equal or close

to what is enabled by the centralized algorithm iOrder while ensuring the required PDR at the

same time.

Despite the distributed nature of the minimum-variance regulation controller in PRKS, the

individual controllers converge to a state where the required PDR is satisfied. For a typical

link in the network, for instance, Figure 10 shows the temporal behavior of link PDR when the

8Due to the discrete nature of the spatial distribution of concurrent transmitters, the actual PDR tends to be slightly higher

than (instead of being strictly equal to) the required mean PDR.
9For the figures of this section that present performance statistics (e.g., mean concurrency or PDR), we also show the 95%

confidence intervals of the statistics, but some of the confidence intervals may be too narrow to be noticeable in the figures.
10In terms of maximizing spatial reuse, iOrder has been shown to outperform well-known existing scheduling protocols such

as Longest-Queue-First [42], GreedyPhysical [43], and LengthDiversity [44].
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minimum application PDR requirement is 90%. We see that the link PDR converges to its steady

state after around 25 control steps, where the PRK model parameter of the link is adapted once

in each control step and each control step takes ∼100ms time. In general, link PDRs converge

quickly, as shown by Figure 11 where the settling time is defined as the number of control steps

taken for a link to reach its steady state PDR distribution. In addition to convergence to a state

where the required PDRs are satisfied, the collective behavior of the distributed controllers in

PRKS also enables a spatial reuse close to what is feasible with the state-of-the-art, centralized

scheduler iOrder as we have shown in Figure 9.

For the adaptation of PRKS to online dynamics, Figure 12 shows, for a typical link in the

network, the time series of link PDR when the application PDR requirement is set to 70%, 80%,

90%, 95%, 90%, 80%, and 70% over time. We see that, as the application PDR requirement

varies, the link PDR adapts to meet the application requirement.

Comparison with existing protocols. Figure 13 shows the ratio of links whose PDRs are no

less than the application required PDRs in PRKS and other existing protocols. We see that,

unlike PRKS that always ensures application required PDRs for all the links in a predictable

manner, existing protocols do not ensure the required PDRs due to co-channel interference that

is not well controlled. We also see that the PDR satisfaction ratios in the existing protocols tend
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Fig. 13. PDR requirement satisfaction

ratios in different protocols

Fig. 14. Median latency: reliability via

packet retransmission

Fig. 15. Mean network spatial throughput

to decrease with increasing PDR requirements, thus the existing protocols cannot control link

reliability in a predictable manner.

Among the existing protocols, RIDB enables higher PDR satisfaction ratios than RTS-CTS

and CSMA do because RIDB considers the physical interference model and application PDR

requirements in defining pairwise interference relations between nodes; nonetheless, due to its

lack of consideration of cumulative interference from multiple concurrent interferers, RIDB does

not ensure predictable interference control and thus does not ensure predictable link reliability.

When the application PDR requirement is 95%, for instance, RIDB can only enable a PDR

satisfaction ratio 50.72%. RTS-CTS ensures higher PDR satisfaction ratio than CSMA does due

to its use of RTS-CTS handshake, but the PDR satisfaction ratios are quite low in both protocols

(e.g., as low as 8.5% and 0% in RTS-CTS and CSMA respectively) since neither protocols are

based on high-fidelity interference models.

Among the existing protocols that explicitly use the physical interference model, CMAC and

SCREAM consider cumulative interference. Nonetheless, the PDR satisfaction ratio is quite low

in CMAC, and the PDR satisfaction ratio in SCREAM can also be as low as 50%. CMAC cannot

ensure the required PDRs since CMAC cannot ensure predictable interference control when the

interference range is greater than the communication range, which is usually the case in practice

(especially when the required PDR is high). Since CMAC does not decouple control signaling

from data transmissions as in PRKS, interference control in CMAC is also negatively affected

by any unreliability in the per-transmission-based control signaling (e.g., observing neighboring

nodes’ SINRs). In SCREAM, the collision among a set of concurrent transmitters is detected

through network-wide coordination. The detection is based on a sample of the status (i.e., success

or failure) of concurrent data transmissions and cannot ensure accurate collision detection, thus

SCREAM cannot accurately control interference to ensure predictable PDR.
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Incapable of ensuring predictable link reliability in scheduling, existing protocols can try to

improve link reliability by packet retransmission. Nonetheless, packet retransmission increases

data delivery latency; this can be seen from Figure 14 which shows the median packet delivery

latency when packets are retransmitted to ensure a certain required PDR. Packet retransmission

in existing protocols also reduces network throughput, as shown by Figure 15 which shows the

mean number of data packets successfully delivered in the network per second.

Fig. 16. Mean network throughput: reli-

ability via traffic load reduction

Existing protocols can also try to improve link reliability

by reducing the application traffic load such that interference

becomes negligible. Nonetheless, this approach significantly

decreases network throughput; this can be seen from Figure 16

which shows the mean network spatial throughput (i.e., number

of data packets successfully delivered per second in the net-

work) when data packet arrival rates are limited from above to

ensure a certain required PDR.

Control message overhead. Table I shows the control message overhead in different protocols,

Protocol PRKS CSMA RTS-CTS CMAC SCREAM

Overhead W+8
4WL

+ o(t) 0 8
L

9
L

o(t)
TABLE I

CONTROL MESSAGE OVERHEAD

where the overhead is de-

fined as the ratio of the

amount of control infor-

mation exchange to that of

data exchange in different

protocols, W denotes the number of packet transmission status samples taken to generate a link

reliability estimate in PRKS,11 and L denotes the number of bytes of data in each data packet. In

Table I, the term o(t) denotes the type of control message overhead that is incurred at rather low

frequency (as compared with the frequency of data packet exchange) and thus is negligible in the

long-term; this includes the overhead incurred for signal map maintenance in PRKS and TDMA

schedule generation in SCREAM. The overhead analysis in Table I assumes the following: it

takes two bytes to encode a link PRK model parameter, two bits to encode link transmission

status in ONAMA (which is used in PRKS), four bytes to encode the RTS and CTS messages

in RTS-CTS and CMAC, and one byte to encode transmission power in CMAC.

CSMA does not introduce any control overhead since nodes do not explicitly exchange any

11W = 20 in our measurement study.
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control information. The overhead in SCREAM is lower than that in PRKS since the TDMA

schedule is updated at very low frequency in SCREAM. The overhead in RTS-CTS and CMAC

is higher than that in PRKS because the RTS and CTS handshake is needed for every data

transmission in RTS-CTS and CMAC. In PRKS, the limited control message exchange between

close-by nodes enables nodes to be aware of their mutual interference relations; this enables

predictable link reliability, which is a basis for mission-critical wireless networked control. As

we have shown in Figures 14 and 15, predictable link reliability also enables significantly lower

communication delay and higher data throughput, thus compensating for the overhead paid for

the necessary control signaling. As we have discussed in Section III-C, the control overhead in

PRKS can be further reduced (e.g., through approximate PRK models), but detailed study of

this is beyond the scope of this paper.

V. RELATED WORK

Similar to PRKS, existing physical-model-based scheduling algorithms also try to control

concurrent transmissions so that link reliabilities or receiver-side SINRs are above a certain

threshold. Due to the non-local, combinatorial nature of the physical interference model, however,

distributed physical-model-based scheduling algorithms have various drawbacks such as requiring

network-wide coordination and employing strong systems assumptions which make it difficult

to deploy these algorithms in real-world settings [6], [12].

Learning-based approaches have been taken to concurrently schedule throughput-improving

exposed terminals [45], but those approaches did not ensure predictable link reliability since,

similar to CMAC as discussed in Section IV, they only try to improve locally-observed throughput

without ensuring predictable control of receiver-side cumulative interference. Learning-based

approaches have also been taken to generate maximal sets of non-interfering transmitters [46],

but they did not address the important question of how to identify the exclusion regions around

receivers so that a required link reliability is guaranteed. The concepts of guard-zone or exclusion-

region around receivers have also been exercised in distributed scheduling algorithms [47], [48],

but these algorithms assumed uniform traffic load or uniform wireless signal power attenuation

across the whole network, which are unrealistic in general.

Adaptive physical carrier sensing has been proposed to enhance network throughput [49], [50],

but cumulative interference is not considered. We have also observed in [6] that throughput-

optimal scheduling usually leads to low link reliability, which is not desirable in wireless
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networked control. Park et al. [51] considered link reliability when adapting carrier sensing

range, but their solution did not guarantee link reliability due to the price function involved. Fu

et al. [52] proposed to control carrier sensing range to ensure a certain SINR at receivers, but the

derivation of safe-carrier-sensing-range was based on the unrealistic assumption of homogeneous

signal power attenuation across the whole network.

Scheduling via local coordination between close-by nodes has also been considered [43], [53],

[10], [54]. Not focusing on distributed scheduling for predictable link reliability in real-world

settings, however, these work assumed uniform wireless signal power attenuation which does

not hold in practice in general [43], [53], [10], they did not consider the important question of

how to identify the specific local region for inter-node coordination [54], [10], they focused on

centralized scheduling [54], [43], or they focused on maximizing network throughput without

considering predictable link reliability [53].

Focusing on addressing the open problem of predictable co-channel interference control in the

presence of channel spatial reuse, our study in this paper does not consider frequency hopping for

addressing external interference, duty-cycling for energy efficiency, real-time scheduling, other

link-reliability control techniques such as rate adaptation and power control, or other interference

management techniques such as interference cancellation, non-destructive interference, and multi-

channel scheduling. The basic mechanisms of PRKS, however, are synergistic and can be

integrated with the aforementioned techniques; due to the limitation of space, we relegate the

detailed discussion to [12].

VI. CONCLUDING REMARKS

To enable predictable reliability in data delivery for wireless networked control, we have

proposed the wireless transmission scheduling protocol PRKS for predictable interference control

in the presence of non-local interference as well as network and environmental uncertainties.

Extensive experimental analysis shows that PRKS enables predictable link reliability while

achieving a high degree of channel spatial reuse in data transmissions. Besides being important

by itself, the predictable link reliability enabled by PRKS serves as a basis for predictable

real-time data delivery and for predictable, controllable tradeoff between the reliability, delay,

and throughput in wireless control networks; this enables predictable, controllable exploration

of the network real-time capacity region, which in turn enables networking and control co-

design in wireless networked control where the control system can pick the operating point
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in the network real-time capacity region to optimize control performance. The predictable link

reliability enabled by PRKS also represents a fundamental departure from the existing link-layer

scheduling/MAC protocols which can only provide a best-effort communication service due to

the lack of predictable interference control, and this has deep implications to the design of

higher-layer protocols such as routing protocols. These topics of research are interesting future

directions worth pursuing.
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