

Unraveling the Subtleties of Link Estimation and Routing in Wireless Sensor Networks

Hongwei Zhang+, Lifeng Sang*, Anish Arora*

+Department of Computer Science, Wayne State University, USA, hzhang@cs.wayne.edu *Department of Computer Science and Engineering, The Ohio State University, USA, {sangl, anish}@cse.ohio-state.edu

Question #1: Basis of link estimation: broadcast beacon vs. data?

Question #2: How to use MAC feedback in data-driven link estimation and routing?

Seemingly similar methods may differ significantly in routing behavior!

□ Tow representative methods for estimating ETX:

- L-NT: directly use feedback information on the number of physical transmissions, {NTi}, to estimate ETX; represents MAC-latency based approach too.
 - L-ETX: first use transformed feedback information {PDRj} to estimate the reliability PDR of individual unicast-physicaltransmissions, then estimate ETX as 1/PDR.
- Proposition: for the commonly used EWMA estimator, L-NT introduces larger estimation error than L-ETX does.
 - For {Xi}, estimation error of EWMA is approximately proportional to COV(Xi);
 - ✓ COV(NTi) > COV(PDRj), because

 $\text{COV}(\text{NT}_{i}) = \frac{\sqrt{P_{0}}}{(1-P_{0})^{2}}, \text{ COV}(\text{PDR}_{i}) = \frac{1}{\sqrt{W}} \frac{\sqrt{P_{0}}}{\sqrt{1-P_{0}}}$

where P_{θ} is the average reliability of unicastphysical-transmission, and is the window size W for calculating PDR_j

Question #3: Convergence and stability of data-driven link estimation and routing?

- Biased link sampling (BLS): the properties of a link is not sampled unless the link is currently used in data forwarding.
- For traffic-induced dynamics (in mostly static deployments, e.g., environmental monitoring),
 - the optimal routing structure in L-ETX remains quite stable even though the properties of individual links and routes vary significantly;
 - ✓ when the optimal routing structure does change, data-driven link estimation and routing is either guaranteed to converge or empirically shown to converge to a close-to-optimal structure.
- These findings provide the foundation for addressing the BLS issue and suggest simpler, lighter-weight approaches as compared to existing schemes.

Estimated ETX values in L-NT and L-ETX for a link 9.15 meters long

Method	Forwarder	Percentage(%)	Cost ratio
	5	0.1	2.3
	6	4.14	1.3
L-NT	7	7.17	1.5
	8	21.26	1.3
	10	67.33	1
L-ETX	6	5.91	1.3
	7	0.2	1.5
	8	5.1	1.3
	10	88.79	1

Variant/stabilized L-NT: L-WNT

L-NADV (variant of L-ETX): estimate PER instead of PDR

Routing Performance

Event reliability

#. Tx per packet received

Dynamics of Best Forwarders

Model B-MAC and IEEE 802.15.4 using a Markov chain where the state *i* is the set S_i of nodes that are transmitting concurrently at a certain time moment. Given a link (t, s), then, the SINR at receiver s is $P_{OW}(t,s)$

$$\frac{V(1 \times 1)}{N_0 + \sum_{i:t \in S_i} \sum_{j: j \in S_i, j \neq t} \pi_i Pow(j, s)}$$

where Pow(x, y) is the received signal strength at y for signals coming from x, N0 is the background noise, and π_i is the stationary probability of state *i*. Accordingly, we can compute the PDR and routing metric value for each link and forwarder

Routing with dynamic traffic patterns Dynamic events:

 $1 \times 1 \rightarrow 3 \times 3 \rightarrow 5 \times 5 \rightarrow 7 \times 7 \rightarrow 5 \times 5 \rightarrow 3 \times 3 \rightarrow 1 \times 1$

Routing stability: 99.98% time with the same routes 0.02% time with decreased hop length

stop 5