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Abstract—Link estimation is a basic element of routing in low-
power wireless networks, and data-driven link estimation @ing
unicast MAC feedback has been shown to outperform broadcast
beacon based link estimation. Nonetheless, little is knowabout the
impact that different data-driven link estimation methods have on
routing behaviors. To address this issue, we classify exisy data-
driven link estimation methods into two broad categories:L-NT
that uses aggregate information about unicast and.-ETX that uses
information about the individual unicast-physical transmissions.
Through mathematical analysis and experimental measurent in
a testbed of 98 XSM motes (an enhanced version of MICA2 motes)
we examine the accuracy and stability of L-NT and L-ETX in
estimating the ETX routing metric. We also experimentally sudy
the routing performance of L-NT and L-ETX. We discover that
these two representative, seemingly similar methods of datdriven
link estimation differ significantly in routing behaviors: L-ETX is
much more accurate and stable than L-NT in estimating the ETX
metric, and, accordingly, L-ETX achieves a higher data delrery
reliability and energy efficiency than L-NT (for instance, by 25.18%
and a factor of 3.75 respectively in our testbed). These findgs
provide new insight into the subtle design issues in data-dren
link estimation that significantly impact the reliability, stability,
and efficiency of wireless routing, thus shedding light on ha
to design link estimation methods for mission-critical wireless
networks which pose stringent requirements on reliability and
predictability.

Index Terms—Low-power wireless networks, sensor networks,
link estimation and routing, data-driven, beacon-based
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driven link estimation has been shown to outperform brosidca
beacon based link estimation in routing [10], [11], [14fildi is
known about how different data-driven link estimation noeth
affect the reliability, latency, stability, and energy eifincy of
routing. This is an important problem because, as low power
wireless sensor networks are increasingly deployed fosioris
critical tasks such as industrial monitoring, it is crititeensure
high reliability, low latency, and high predictability irouting.
Moreover, as the rich information carried in MAC feedbaclk (e
both the number of physical transmissions and the time taken
for a unicast transmission) are used in an increasinglydaoa
context, it is important to understand the impact of theedédht
ways of using these information.

To answer the aforementioned open questions, our objsctive
in this paper are to comparatively study the different mdsho
of data-driven link estimation and to distill the guideknef
using MAC feedback information in wireless link estimatimmd
routing. In most wireless MACs, a unicast packet is retratism
ted, upon transmission failure, until the transmissiorceeds or
until the number of transmissions has reached a certaishbte
value such as 8. For convenience, we call the individualstran
missions involved in transmitting a unicast packet thmécast-
physical-transmissian Accordingly, we classify existing data-
driven link estimation methods depending on whether they us
the aggregate information about unicast or they use infooma
about the individual unicast-physical transmissions. Huog

Wireless communication assumes complex spatial and terauting metric ETX (i.e., expected number of transmissjpns

poral dynamics [1], [2], [3], [4], thus estimating link prepies

more specifically, we find that existing data-driven linki-est

is a basic element of routing in wireless networks. One linkation methods can be represented by two seemingly similar
estimation method that is commonly used in early wireleggotocols: L-NT where the number of physical transmissions

routing protocol design [5], [6] is letting neighbors exolhe

for each unicast is directly used to estimate link ETX, &nd

broadcast beacon packets, and then estimating link pieperETX where we use the number of physical transmissions for
of unicast data transmissions via those of broadcast bsacaach unicast to calculate the reliability of individual camt-
Nonetheless, unicast and broadcast differ in many ways asictphysical-transmissions which is then used to estimateHinK.
transmission rate and MAC coordination method [7], [8], #nd Through mathematical analysis and experimental measure-

is difficult to precisely estimate unicast link propertiéa those

ment in a testbed of 98 XSM motes (an enhanced version of

of broadcast due to factors such as the impact that dynamiCA2 motes), we examine the accuracy and stability of L-NT
unpredictable network traffic patterns have on link prapert and L-ETX in estimating the ETX routing metric. Using traffic

(9], [10].

traces for both bursty event detection and periodic datectbn

The research community has become increasingly awareaofd using both grid and random network topologies, we also
the drawbacks of beacon-based link estimation, and has pesperimentally study the routing performance of L-NT and L-
posed and started to use data-driven link estimation methddl'X. We discover that these two representative, seemingly s
where unicast MAC feedback serves as the basis of link estar methods of data-driven link estimation differ signéfitly

mation [11], [12], [13], [14], [15], [6], [10]. Even thoughada-

in routing behaviors. L-ETX is much more accurate and stable



than L-NT in estimating the ETX metric, and L-ETX correctlyis the ETX for the link and PDRis the expected reliability
identifies the optimal routes with a higher probability than of unicast-physical-transmissions along the link. In L;Nfie
NT does. Accordingly, L-ETX achieves a higher data delivetyme series input{z; : ¢ = 1,2,...} to its estimator is
reliability, higher energy efficiency, and higher throughthan {NT; : ¢ = 1,2,...}, where NT, is the number of physical
L-NT (for instance, by 25.18%, a factor of 3.75, and a factdransmissions taken to deliver thh unicast packet; in L-ETX,
of 3.53 respectively in our testbed); L-ETX also uses longéhme time series inpu{z;} is {PDR;, : i = 1,2,...}, where
yet more reliable links, thus introducing lower data delve PDR; is the packet delivery rate of théth window of unicast-
latency and latency jitter than L-NT. We also find that thehieig physical-transmissions with window sidé&” (i.e., the average
stability in L-ETX enables a much higher stability in rowgin delivery rate of thé(i’ — 1) x W +1)-th, (' —=1) x W +2)-th, ...,
thus improving the predictability of routing performancéish and the((i'—1) x W+W)-th unicast-physical-transmission). Note
is critical to mission-critical networked control. Thesadings that, for thei-th unicast packet, NTis calculated based on MAC
provide new insight into the subtle design issues in daigedr feedback on the number N'Bf physical transmissions incurred
link estimation that significantly impact the reliabilitigtency, and the status of the unicast transmission showing wheltger t
and predictability of wireless routing, thus shedding tigin packet has been successfully delivered or not. If the s&itaws
the principles of using MAC feedback information in missionsuccess, then NT= NT?; otherwise, the feedback simply shows

critical wireless networks. that the packet has not been delivered after transmitting NT
The rest of the paper is organized as follows. We compaiges, thus we set NTas ’;‘l} (0 < P* < 1), where P is

different methods of using MAC feedback in Section Il, and Wghe average unicast reliability calculated based on thausta
present the impact of link estimation accuracy on routingatve  information on transmitting thé unicast packets so far.

iors in Section IIl. Due to the limitation of space, we relegate The rationale for considering the two methods L-NT and L-
to [16] the discussions of additional performance evaloati ETX are as follows:

results and protocols similar to L-NT and L-E7)XFinally, we

i : . i « ETX is a commonly used metric in wireless network
discuss related work in Section IV and make concluding rémar

) ! routing;
In Section V. « The parameter NT is tightly related to MAC latency (e.g.,
II. METHODS OF DATA-DRIVEN ESTIMATION MAC |atency is apprOXimately proportional to NT given

a certain degree of channel contention) such that L-NT
also represents protocols that directly use MAC latency
in routing; (we show in [16] that MAC-latency based
protocols perform similar to L-NT.
e L-NT and L-ETX estimate the same link property ETX,
A. Different data-driven estimation methods which enables fair comparison between different data-
driven estimation methods.

In this section, we first identify the two representative nogis
(i.e., L-NT and L-ETX) of data-driven link estimation, theve
comparatively study their estimation accuracy via matherak
and experimental analysis.

MAC feedback for a unicast transmission usually contains
aggregate information (e.g., MAC latency, number of phylsiCBased on this research design, L-NT represents the mettead us
transmissions, and transmission status) about transmitie N SPEED, LOF, and CARP, and L-ETX represents the method
unicast packet as a whole, but from these information wised in four-bit-estimation, EAR, NADV, and MintRoute.
can derive properties of the individual physical transiniss !N what follows, we first mathematically analyze the dif-
involved in unicasting' According|y, we can Classify emgt ferences between L-NT and L-ETX to gain basic InSIght into
data-driven link estimation methods depending on Whemt the behaViOI‘S Of diﬁerent I|nk estimation methOdS, then we
direct'y use the aggrega‘[e information about unicast w m experimenta"y measure the behaViOI‘S Of L-NT and L-ETX to
information about the individual unicast-physical-tranissions. Corroborate the analytical observations.

In the I|ter§ture, SP_EED [12], LOF [10], and CARP [14] use thE. Analysis of L-NT and L-ETX

aggregate information MAC-latency, yet protocols suchas-f
bit-estimation [11], EAR [13], NADV [15], and MintRoute[6] In low-power, resource constrained wireless sensor nésyor
use the reliability information about individual unicgsttysical- Mmost routing protocols use simple, light-weight estimsitsuch

transmissions. In this paper, we mainly focus on the follmyvi as the exponentially-weighted-moving-average (EWMA)i-est
two data-driven link estimation methods: mator and its variations. Therefore, our analysis in thitiea

« L-NT: directly use feedback information on theimber focuses on the accuracy of estimating ETX for a wirelessviak
of physical transmission§NT) to estimate the expectedthe commonly-used EWMA estimator. But the analytical ressul

number of physical transmissions (ETX) required to su@iso apply to variations of the basic EWMA estimator such
cessfully deliver a packet across a link: as the Window-Mean-with-EWMA (WMEWMA) estimator [6]

« L-ETX: first use feedback information to estimate th&nd the Flip-Flop Filter (FF) [1_7]' ,
reliability, denoted as PDR, of individual unicast-phygic ~ Glven a time series(z; : i = 1,2,...} wherez; is a
transmissions, then estimate ETX %ﬁ random variable with megmand variance?, the corresponding

More specifically, given the same time series of MAC feedba(':‘:kWMA estimator fory. is
information on unicast transmissions along a link, L-NT &nd o= T
ETX try to estimate ETX and PDR respectively, where ETX ye = ayp1+(1—a)zg, 0<a<l, k=2.3,...



By induction, we have

k

yp = aFxy + (1-a) Z i,
i=1

In what follows, we first analyze the accuracy of EWM

k>1

estimator in general, then we compare the accuracy of L-

and L-ETX. For mathematical tractability, our analysisuames
that each unicast-physical-transmission is a Bernoidli tvith a

failure probability P, (0 < Py < 1). We corroborate the validity
of our analytical results through testbed-based expefiahen

analysis in Sections II-C and Il
Accuracy of EWMA estimators. To measure the estimatio
error in the estimatof, = y;, we definesquared error(SE) as

SE}, (yr — p)?
= ((Fz1 + (1= a) L, oF i) — pr)?
= (oM@ — ) + (1= a) i, o i — )’
o (z1 = p)? + (1= a)? iy o230 (@ — )+
CPy
(1)
where
CP. = (1—a)Xi o™ (w1 —p)(w —p)+

(1—a)? Zf:l Z?;&i,j:l oI (1 — p) () — p)
Therefore, thanean squared erro(MSE) is
MSE, E[SEy]
o E[(z1 — )]+
(1—aP i, o®F D E((r; — u))+
E[CP]

)

Note that the expectatioR|[] is taken overzy, xo, ..., Tk.

When each unicast-physical-transmission is a Bernous, tr
the z;’s are mutually uncorrelated in both L-NT and L-ETX,Note that the conditioiV >

that is, Efx;x;] = E[x;|E[z;] if ¢ # j. Then fori # j,

El(w; —p)(@j —p)] = Blwiw; —zip— prj + ]
Elxi|Elx;]-

Elzlp — pEla;] + p?

=0
Thus,
E[CP] = El - aggzif_l a ™ El(a1 — p)(w; — )]+
1—a)“x
k k i
>ic1 Zj;ﬁz j=1 o?F T Bl — p) (x5 — )]
= 0
3
From Equations 2 and 3, we have
MSE, = o*0?+(1—a)? Zil o?(k=1) 52
2202t a1 ! (4)
= 0 14+«

To measure thaegree of estimation erro(DE) using esti-
mator i = y;,, we defineDE}, as 7vaEk Thus
VMSE,

17

o 202k+1 1
n 14+«

COV[X]

DEy

g

®)

202k+1 41
1+«

whereCOV [X] is the coefficient-of-variation (COV) of the's,
i.e., COV[X] = 2. Therefore, we have
Proposition 1: Assuming that:; andz; (i # j) are uncorre-
lated, the degree of estimation error using EWMA estimador i
Aproportional to the COV of the'’s. |

NRelative accuracy of L-NT and L-ETX. To compare the
DEs of L-NT and L-ETX, therefore, we first analyze the COV
of NT; and PDR;: as follows:

o L-NT: By definition, NT; can be modeled as following a
geometric distribution with the probability of succeks-

Pp. Thus EINT;] = —L_, andstd[NT,] = Y-0_1) _
n \/P_ 0 0
-5 - Therefore,
9]

ENT,]

L-ETX: Given a window sizeW > 1, the number N of
successes in W physical transmissions can be modeled
as following a Binomial distribution with the probability

of successl — P, and the number of triald¥. Thus,
E[N] = W(1 — Fy), andvar[N] = W(1 — Py)Py. Let
PDRy I, then E[PDR;] +E[N] = 1- R,
var[PDRy] = trvar[N] = U=E0 and std[PDR:] =

v/var|PDRy/] = 7“1;%)%. Therefore,

std[PDRy/] VP

COV[PDRy/] = = 7
[PDRy/] E[PDR/] 00 (7

From Equations (6) and (7), we see that
COV|NT;] > COVIPDRy], if W > 1 (8)

1-F
1

—F generally holds in practical
scenarios, sincl’ is generally greater than 2 aiiy is generally
less than 50% [18], [10].

From Proposition 1 and Inequality (8), then we have

Proposition 2: Given an EWMA estimator and assuming
that each unicast-physical-transmission is a Bernouidl,tr
DEy(L-ETX) < DEy(L-NT) if W > 5; that is, L-ETX
is more accurate than L-NT in estimating the ETX value of a

H 1
link as long asiW > -5 ]

Proof sketch We first show thatDE(L-ETX) ~ DE(PDR)
as follows. LetP; be the actuaF[PDR, ET X; be the actual
ETX and equal to}%* and P, be the estimate@[PDR. Then
the absolute estimation errddETX of ETX is as follows:

1 1, 1 PR-P, [P, — P
AETX = |5 - 5l = 5l=5—| = ETX, ——F—|
Thus
_ E[AETX] __|P,— P
DE(L-ETX) = —7o—= = B[——5—] ~ DE[PDR.

In the mean time, we know from Proposition 1 and Inequality 8
that DE(L-NT) > DE[PDR]. Therefore, DE,(L-NT) >
DE}(L-ETX).

O



From the above analysis, we see that, even though L-NT aBdperiment design. In an open warehouse with flat aluminum
L-ETX use the same MAC feedback information in a seeminglyalls (see Figure 2(a)), Kansei deploys 98 XSM motes [20] in
similar fashion (e.g., PDRs assume, approximately, a forma 14x7 grid (see Figure 2(b)) where the separation between
of the reciprocal of NTs), the variability (more precisely, the neighboring grid points is 0.91 meter (i.e., 3 feet). Thedgri
COV) of NT;'s tends to be greater than that of PDR and this
difference in variability makes L-NT a less accurate estona
than L-ETX. We corroborate these analytical observations
through experimental analysis in Sections II-C and Il

Impact of W and a. Note that, even though they do not

affect the relative accuracy of L-NT and L-ETX, the window

size W used in L-ETX and the weight facter of the EWMA

estimator also affect estimation accuracy. In what follows

briefly discuss the impact diV and . Fig. 2. Sensor network testbéthnsei
From Equations 5 and 7, we see that larger window 8§ize

will lead to smaller estimation error in L-ETX; on the other . . . .
hand, a largerV leads to reduced agility for the estimato@€PlOyment pattern enables experimentation with reguad

to respond to changes, which can negatively affect routifgPelogies, as well as random topologies (e.g., by randomly

performance in the presence of network dynamics. In prrﬂctiéelecting nodes of the grid to participate in experimeiSM is
we usually choose a medium-sizétl as a tradeoff between an enhanced version of Mica2 mote, and each XSM is equipped

estimation accuracy and agility, amd is set as 20 for the study with a Chipcon CC1000 radiq operating at 433 MHz. To form
: multihop networks, the transmission power of the CC100®sad
of this paper. ) ) )
—  J20*—at1 4 bv Equation SDE: i is set at -14dBm (i.e., power level 3) for the experiments of
Let Qk(o‘) - ITfa ! then, by qug lon SPER IS his paper unless otherwise stated. XSM uses TinyOS [21] as
proportional to Qx(c). Figure 1 shows the impact af on jts gperating system. For all the experiments in this pajber,
default TinyOS MAC protocol B-MAC [22] is used; a unicast

(a) Kansei (b) 14x7 grid

packet is retransmitted, upon transmission failure, atMiAe€C
¥ layer (more specifically, the TinyOS component QueuedSend)
0.8f X . . . .
2 for up to 7 times until the transmission succeeds or until&he
— 06f|7k=1 & transmissions have all failed; a broadcast packet is tratesin
G k=2 o . o ;
& gallxk=1 only once at the MAC layer (without retransmission even & th
k=8 transmission has failed).
Ak = . . .
02 o t - ;2 o To collect measurement data on unicast link propertiesgive |
LYk=64 ‘ ‘ ‘ the mote on the left end of the middle row (shown as black dots
0 02 04 06 08 1 in Figure 2(b)) be theenderand the rest 13 motes of the middle
row as thereceives, and we measure the unicast properties of
Fig. 1. Qg(e) the links between the sender and individual receivers. &N\t

we have observed similar phenomena as what we will present in
) ) this section for other sender-receiver pairs.) The semdasinits
Qx(a) and thusDE),. We see that the optimal value increases 15,000 unicast packets to each of the receivers with a 128-

as k increases, and the intuition is that, asincreases, the pjjisecond inter-packet interval, and each packet has ta da

contribution of the history data (i.exo, 21, ..., 2x-1) 10 gy anload of 30 bytes. Based on packet reception status (i.e.,
becomes more and more important compared with that of . ess or failure) at the receivers, we measure unicdst lin
most recent observatiop,. On the other hand, the agility Ofproperties

the estimator decreases @sncreases. Aftery exceeds certain
threshold value, moreoveR(«) (and thusDE}) increases as
« increases further. In practice, therefore, we can choosduz v
that tradeoffs between estimation precision and agilityg e
seta as in our study.

To examine the impact of traffic-induced interference oR lin
properties and link estimation, we randomly select 42 motes
out of the light-colored (of color cyan) 6 rows asterferers,
with 7 interferers from each row on average. Each interferer
transmits unicast packets (of payload length 30 bytes) to a
. . . destination randomly selected out of the other 41 interfefEhe
C. Experimentation with L-NT and L-ETX load of the interfering traffic is controlled by letting imterers

Having shown that L-ETX is a more accurate estimatiomansmit packets with a certain probability whenever the
method than L-NT in Proposition 2, we experimentally eviduachannel becomes clear. Ng al. [23] showed that the optimal
the validity of the analytical results and study the impatt draffic injection rate is 0.245 in a regular linear topologynd
estimation accuracy on the optimality and stability of ingt the optimal traffic injection rate will be even lower in geakr
using theKansei[19] sensor network testbed. In what followsfwo-dimensional network. Thus our measurement study fecus
we first present the experiment design and then the expet@nemore on smalletl’s than on larger ones, but we still study larger
results. d’s to get a sense on how systems behave in extreme conditions.



More specifically, we use the following’s in our study: 0, show immediately below, that L-NT introduces large estiorat
0.01, 0.04, 0.07, 0.1, 0.4, 0.7, and 1. Thus the interfereneors in the presence of transmission failures.

pattern is controlled byl in this case. (Note that phenomena To elaborate on the details of link estimation, Figure 5 show
similar to what we will present have been observed for other
interfering traffic patterns, for instance, with differespatial

=
(6]

distribution and different number of interferers.) We halane —{\r‘LTeETX
the experimental analysis for differedis and observed similar 10r -L=NT
phenomena. Due to the limitation of space, here we only ptese <+L-ETX

21

XX 7
data for the case wheh= 0.1. ko0 s

Estimation accuracy. Figure 3 shows the COV of NT and PDR

Number of transmissions
o

|
L

1250 1260 1270 _ 1280 1290
Time series

Fig. 5. Time series of estimated ETX values in L-NT and L-ETof & link
of length 9.15 meters (i.e., 30 feet)

cov

for a link of length 9.15 meters (i.e., 30 feet), the time agri
L : ‘ ‘ ‘ of the estimated ETX values via L-NT and L-ETX respectively.

2 stace (mgter) 10 12 (Note: the figure is more readable in color-print than blagiite

print.) To visualize the accuracy of L-NT and L-ETX, we also

Fig. 3. COV[NT] vs. COV[PDR] wheni = 0.1; Note that the reason why show the NT values carried in MAC feedbacks and the actual
the COVs are not monotonic with link length (i.e., sendeeieer distance) is ETX value for the link. To easily represent a unicast trarssion
because of radio and environment variations [4]. In thisepawe use distance fail f 7 . 8 he N
mainly to identify individual links associated with a sendand for clarity of allure (a ter retra_nsm'ss_'ons)' we pre_se_nt -8 as the eva
presentation, we do not present confidence intervals uttessare necessary for the corresponding unicast transmission. We see that the
for certain claims of the paper. estimated ETX in L-NT tends to deviate from the actual ETX

value, especially in the presence of MAC transmission fagy
for different links. We see that COV[NT] is significantly grer, the estimated ETX in L-ETX, however, is very close to the attu
up to a factor of 17.78, than COV[PDR], which is consisterftTX value, even in the presence of MAC transmission failures
with our analysis as shown by Inequality 8. Accordingly, th¥é/e also see that the estimated ETX value in L-ETX is pretty
degree of estimation error (DE) in L-NT is Consistenﬂy desa stable whereas the estimation of L-NT oscillates S|gn|tllyan

than that in L-ETX, as shown in Figure 4 where DE(L-NT)hich has significant implications to routing behaviors as w
discuss next and in Section IlI-B.

10°

Routing optimality and stability. To understand the routing
behaviors in L-NT and L-ETX, we consider the case where the
sender on the left end of the middle row of Figure 2(b) needs to

select the best next-hop forwarder among the set of receiner

5 . the middle row, and the destination is far away from the sende
107y but in the direction extending from the sender along the teidd
row to the right. For simplicity, we assume that the sendesus
‘ ‘ a localized, geographic routing metric ETD (fRf X per unit-
0 disance (meter) 10 distapce to destinati()_rin eval_uatin_g the goodness o_f forwarder
candidates. The metric ETD is defined as follows: given asend
Fig. 4. DE(L-NT) vs. DE(L-ETX) wherd = 0.1 S, a neighborR of S, and the destinatio®, the ETD via R is
defined as
and DE(L-ETX) for different links are presented. Therefdhe ETXsr i Lan>L
. .. L. Lsp—LrpD S,D R,D (9)
experimental results corroborate the prediction of Pritijoos?2. o otherwise

Note that the reason why, given an estimation method, timel tre

for its curves of COV and DE are slightly different (unlike ath where ET Xg r is the ETX of the link fromS to R, Lgp
Equation 5 would suggest to be exactly the same) is due to tfenotes the distance from S to D, ahg p denotes the distance
simplifying assumption (i.e., each unicast-physicah$maission from R to D. (We show in [16] that this local, geographic metric

is a Bernoulli trial) used in the analysis. Nonetheless, thperforms in a similar way as the global, distance-vector rinefor
analytical and experimental analysis do agree on the velatuniformly distributed networkk.

accuracy between L-NT and L-ETX. The reason why the DE In our case, the best forwarder is 10 grid-hops away from
value for the 11-meter-long link is very large in L-NT is dughe sender since the corresponding link has the minimum ETD
to the extremely low reliability of the link and the fact, a® w value. To see how L-NT and L-EXT perform in selecting the



Method Forvéarder Percegtfge (% Coszt :;ano Using the above setup, we comparatively study the perfor-
6 4.14 13 mance of the following data-driven link estimation and rogt
L-NT 7 7.17 15 protocols
8 21.26 13 « L-NT: a distance-vector routing protocol whose objective is
10 67.33 1 to minimize the expected number of transmissions (ETX)
6 5.91 1.3 . S .
L-ETX 7 0.2 15 from each source node to its destination. The ETX metric
8 5.1 1.3 of each link (and thus each route) is estimated via the L-NT
10 88.79 1 data-driven method.
TABLE | o L-ETX same as L-NT except that the ETX metric is
FORWARDERS USED INL-NT AND L-ETX estimated via the L-ETX method.
o L-WNT: a variant of L-NT where the input to the EWMA
estimator is the average of BT values for every 5
consecutive unicast transmissions. We study this protocol
next-hop forwarder, Table | shows the forwarders (idermtifie to check whether the performance of protocol L-NT can be
terms of their grid hop distance from the sender) used in L-NT improved by increasing the stability of the L-NT method
and L-ETX respectively. To illustrate the optimality of fifent through the window-based NT average.
methods, we measure the percentage of time each forwarder is L-NADV: a variant of L-ETX where the window siz8/
used, and the cost ratio of this forwarder to the optimal foder is 1 and the EWMA estimator is used to estimate packet

10. We see that L-ETX is able to identify and use the optimal ~error rate (PER) instead of PDR. We study this protocol

forwarder more than 20% of the time compared with L-NT. The ~mainly to examine the impact d#'.> L-NADV is also the

average ETD of using L-ETX is 3.26% more than the optimal  distance-vector version of the geographic protocol NADV

ETD, yet the average ETD of using L-NT is 11.34% more than  [15]-

the optimal ETD. In the above data-driven protocols, periodic, broadcaattes
We also measure the number of times that the sender changfesnever used. We use the approactinifal link sampling

its forwarder when using L-NT and L-ETX respectively, and10] to jump-start the routing process, where a node proelgti

we observe that the number of forwarder changes is 95 andtaBes 7 samples of MAC feedback (by transmitting 7 unicast

in L-NT and L-ETX respectively. Thus, L-ETX ensures muclpackets) for each of its candidate forwarders and then @soos

higher routing stability than L-NT, which is due to the facthe best forwarder based on the initial sampling results.

that L-ETX is a more stable estimator than L-NT as can be For each protocol we study, we ran the event traffic trace

seen from Figure 5. Higher routing stability helps improlie t sequentially for 40 times, and we measure the followingqurot

predictability of packet delivery performance in netwarks performance metrics:

« Event reliability (ER) the number of unique packets re-
ceived at the base station divided by the total number of

Having discussed the significant impact that link estinratio  unique packets generated for an event. This metric reflects

methods have on estimation accuracy and routing optimality the amount of useful information that can be delivered for
in Section I, we experimentally evaluate the performante o  gn event.

different data-driven link estimation methods in this gattWe « Number of transmissions per packet delivered (NUfTﬂ'-]E)

first present the methodology and then compare differert-dat  total number of physical transmissions incurred in defiver
driven estimation methods. ing packets of an event divided by the number of unique
A. Methodology packets received at .the base station. This metrlc_ gﬁects
) ) _ ) network throughput; it also reflects the energy efficiency
We use a publicly available event traffic trace for a field 4f 5 protocol, since it not only affects the energy spent in

sensor network deployment [24] to evaluate the performaiice transmission but also the degree of duty cycling which in
different protocols. Since the traffic trace is collectednir49 turn affects the energy spent at the receiver side.

nodes that are deployed in7ax 7 grid, we randomly select \We also compare data delivery latency and predictabilitpgus

aﬂd use a 27 subgrid (_)f the Kansei testbed _(as shown '8ur data on the reliability and detailed properties of thetes
Figure 2(b)) in our experiments. To form a multi-hop networliJsed in different protocols

we set the radio transmission power at -14dBm (i.e., powel le
3). The mote at one corner of the subgrid serves as the b&seExperimental results

station, the other 48 motes generate data packets accdming Figures 6 and 7 show the event reliability and the average

the aforementioned event traffic trace, and the destinatiall ,mber of transmissions required for delivering each packe

the data packets is the base statiowle have also evaluatedin ifferent data-driven protocols respectively, Figu@sand

protocols with other traffic patterns, e.g., periodic dataffic,

and other network setups, e.g., random networks. We hav8n this paper, we sometimes use the same name for the protdeel

observed phenomena similar to what we will present, but v?glmatlon met_hod, and the routing metric. The contextotigage will clarify
. . . .. . IS exact meaning.

relegate the detailed discussion to [16] due to the limdatiof 20ur experiments show that routing performance is staiijicthe same

space. whether we use PER or PDR as the input to the EWMA estimator.

IIl. ROUTING PERFORMANCE
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from nodes at different grid-hops away from the base station
and Table Il shows the detailed information about the prioger

Metric L-NT | L-WNT | L-ETX | L-NADV
Average per-hop 2.89 251 4.17 4.37
geo-distance (meter)
Average per-hop 56.3 51.08 68.43 66.77

physical tx reliability (%)
Average per-hop 87.62| 87.02 93.10 89.21
unicast reliability (%)
Per-hop ETX 2.56 2.65 1.94 2.18

TABLE Il
PER-HOP PROPERTIES IN DIFFERENT ROUTING PROTOCOLS

of the links used in different protocols.

L-NT vs. L-ETX. From Figure 6, we see that L-ETX achieves
a significantly higher event reliability than L-NT. For iasice,
the median event reliability in L-ETX is 90.63%, which is
25.18% higher than that in L-NT. The higher event reliapilit
in L-ETX is due to the facts that the routes used in L-ETX are
shorter than those in L-NT and the reliability of the linkseds

in L-ETX is higher than that in L-NT, as shown in Figure 8
and Table Il respectively. Due to the same reason, L-ETX
achieves significantly higher energy efficiency than L-N$, a
shown in Figure 7. For instance, the average number of packet
transmissions required in delivering a packet to the basest

9 show the average route hop length and route transmissiBr--ETX is 2.82, which is 3.75 times less than that in L-NT.
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From Table I, we see that the links used in L-ETX are longer
yet more reliable than those in L-NT. This implies that L-ETX
enables nodes to choose better routes in forwarding data and
thus leads to significantly better performance in data dgfiv

The facts that L-ETX uses shorter-hop-length routes and tha
the links used in L-ETX are longer yet more reliable than éhos
in L-NT also suggest that, for the same requirement on end-
to-end data delivery reliability, the latency and latendyej
in data delivery are smaller in L-ETX than in L-NT. Higher
reliability also implies less variability and better pretibility
in data delivery performance (e.g., latency), becauseengw
link reliability p, the variability (more precisely, coefficient-of-
variation) of packet transmission status (i.e., succefalare) is
;/1%? and it decreases asincreases. For instance, the standard

eviation of the route transmission counts (and thus thieatg!
latency) for successfully delivered packets in L-ETX tertds
be less than that in L-NT as shown in Figure 10. Therefore,
compared with L-NT, L-ETX achieves a higher degree of
predictability in routing performance, which is importafuor
mission-critical networked sensing and control.

Variants of L-NT and L-ETX.  Counterintuitively, Figures 6
and 7 show that L-WNT performs worse than L-NT, and
Table Il shows that L-WNT chooses worse routes than L-NT
does. Through careful analysis, we find out that the cause for
the worse performance of L-WNT is that, even though L-WNT
is a more stable estimator than L-NT, it is slower (i.e., kgie)

in adapting to link property changes. The slow convergence i
L-WNT further exacerbates the error in NT-based estimadiah

count respectively for successfully delivered packets ingm leads to larger estimation error compared with L-NT, esgci



Two consecutive route$ L-NT | L-WNT | L-ETX | L-NADV

=
N

+L-NT ‘ ‘ ‘ ‘ (%)
= 1072 L-WNT Same 36.55 42 99.94 99.97
S oLt Diff. routes but | 17.08| 11.18 | 0.03 0.03
S same hop length
o 6 Increased hop length| 23.96 | 24.19 0.03 0
! Decreased hop length 22.41 | 22.63 0 0
e}
(%)

TABLE Il
ROUTE STABILITY MEASURED BY COMPARING THE ROUTES TAKEN BY
EVERY TWO CONSECUTIVE PACKETS

4 6 8
Grid hop

Fig. 10. Standard deviation of the route transmission céamhodes different
grid-hops away from the base station

The fact that nodes seldom change routes in L-ETX also shows
that initial link sampling is able to identify the best forwiars

in the presence of dynamics. This can be seen from Figure fPf mostnodes in L-ETX. High stability in routing not only lps

which shows the time series of the estimated ETX values in [acilitate other control logics such as QoS-oriented strieg
and scheduling, it also improves the predictability of nogt

performance, which is important for mission-critical netked

® sensing and control. Detailed study of these is a part of our

2 9 e future work

4] iy .

s 0 IV. RELATED WORK

§ 5 —{\rlLTeETX Differences between broadcast and unicast and their impact

E -x-L-WNT on the performance of AODV were first discussed in [7] and [8],

Z 10/ “L-NT and the authors discussed reliability-based mechanisngs, (e
1260 1280 1300 1320 those based on RSSI or SNR) for blacklisting bad links. The

Time series X A
authors also proposed mechanisms, such as enforcing SNR

Fig. 11. Time series of estimated L-WNT and L-NT for a link ehgth 9.15 threshold on control packets, to ameliorate the negatiyeagn
meters (i.e., 30 feet) of the differences, and the authors of [7] studied the impact
of packet size, packet rate, and link reliability threshoidthe

WNT and L-NT for a link of length 9.15 meters (i.e., 30 feet)?nd'to'end delivery rate in AODV. Nonetheless, the progose
As expected, L-NADV performs slightly worse than L-ETX solutions were still based on beacon exchanges among neigh-

as shown in Figure 6, Figure 7, and Table II. This is due to th9'S: _ _ _

larger estimation errors in L-NADV, especially in the prese Zhanget al. systematically studied the inherent drawbacks of

of transmission failures. This can be seen from Figure 1ZwhiP€acon-based link estimation and proposed to use unicagl MA
feedback as the basis of link estimation in IEEE 802.11b and

mote networks [10], [18]. Methods of using both MAC feedback

ey
o

o xCount and beacon packets in link estimation were also proposed in
% 300 : Y MintRoute [6], EAR [13], and four-bit-estimation [11]; SED

£ Ll x < L-ETX [12], NADV [15], and CARP [14] also used MAC feedback
8 ; in link estimation and route selection. Nonetheless, there

5 10 *ﬁ’f "x - been no systematic study on the impact that the differensway
é o s 900c] %0 Worlis, s 0 of using MAC feedback have on routing behaviors, and our
2 study in this paper fills this vacuum and provides insight it

950 e0 1370 1380 1390 1300 principles of using MAC feedback in data-driven link esttioa
Time series and routing.
. . . . _ Other routing metrics and protocols [25], [26], [27], [28],
Sf%'s ﬁéte;'??efe?fge?eggesnmawd L-NADV and L-ETX for a ink langth [29], [30], [31] have also been proposed for various optatian
objectives (e.g., energy efficiency). The findings of thipgra
) ) ) ) can be applied to these schemes to help improve the accuracy

presents the time series of the estimated ETX values in L-WAD,; estimating link and path properties. Directed diffusi@2]
and L-ETX for a link of length 9.15 meters (i.e., 30 feet).  royides a framework for routing in sensor networks, and the
Route stability. Table Il shows the route stability measuredindings of this paper can also be applied to this framework to
by comparing the routes taken by every two consecutive psckdielp select high-performance routes in data forwarding.
We see that L-ETX (and its variant L-NADV) is very stable and Rather than selecting the next-hop forwarder before data
seldom changes route (only at a probability 00.03%), yet transmission, opportunistic routing protocols that tattesmtage
L-NT (and its variant L-WNT) tends to be much more unstablef spatial diversity in wireless transmission have beemppsed



[33], [34], [35], [36]. In these protocols, the forwarder ig10]
selected, through coordination among receivers, in a ix@act
manner after data transmission. Link estimation can sell B,
helpful in these protocols since it can help effectivelyesel
the best set of listeners [33]. Therefore, findings of thipgra [12]
can be useful in opportunistic routing too.

Draveset al. comparatively studied several routing metricgL3]
in the context of beacon-based link estimation and routd¥j, [
and they have found out that ETX is an effective metric fc#‘l]
routing in mostly static wireless networks. Our work in this
paper focuses on the different methods of using unicast MAE!
feedback to estimate the metric ETX, and we have demondtragg;
the importance of choosing the right method among seemingly
similar approaches.

V. CONCLUDING REMARKS 7]

Through mathematical analysis and measurement based stﬁtﬂ/
we have examined the impacts that different data-drivek lin
estimation methods have on routing behaviors. We have shown
that the variability of parameters being estimated sigaiftty 19]
affects the reliability, latency, energy efficiency, anédictabil-
ity of data-driven link estimation and routing, and it shabide
an important criterion to consider when choosing the daitzed
link estimation method. We have shown that L-ETX is a precispi
stable method of estimating the ETX of data transmissiomd, al22]
that a seemingly similar method L-NT performs much worse ES]
terms of packet delivery reliability, energy efficiencydaouting
stability. These findings elucidate the subtleties of diteen
link estimation and provide guidelines on how to effectjvete
MAC feedback in link estimation. [25]

The experimental analysis of this paper is based on networks
of CC1000 radios. Even though we expect the findings sze
this paper to be valid for networks of IEEE 802.15.4 radios,
systematic evaluation of this conjecture is a part of ounrit [27]
work. We have focused on accurate estimation of the ETX,
routing metric in this paper, identifying accurate estiomt
methods for other routing metrics such as mETX [27] and CTT
[31] is also an important task to pursue for supporting défe
optimization objectives in routing.
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