
1

KanseiGenie: Software infrastructure for
resource management and programmability of

wireless sensor network fabrics
Mukundan Sridharan, Wenjie Zeng, William Leal, Xi Ju, Rajiv Ramnath, Hongwei Zhang, and Anish Arora

Fig. 1. Traditional network model and fabric model

Abstract—This chapter describes an architecture for slicing,
virtualizing, and federating wireless sensor network (WSN)
resources. The architecture, which we call KanseiGenie, allows
users—be they sensing/networking researchers or application
developers—to specify and acquire node and network resources
as well as sensor data resources within one or more facilities
for launching their programs. It also includes server side mea-
surement and management support for user programs, as well
as client side support for experiment composition and control.
We illustrate KanseiGenie architectural concepts in terms of a
current realization of KanseiGenie that serves WSN testbeds and
application-centric fabrics at The Ohio State University and at
Wayne State University.

I. INTRODUCTION

DEPLOYED wireless sensor networks (WSN) have typi-
cally been both small-scale and focused on a particular

application such as environmental monitoring or intrusion
detection. However, recent advances in platform and protocol
design now permit city scale WSNs that can be deployed in
such a way that new, unanticipated sensing applications can
be accommodated by the network. This lets developers focus
more on leveraging existing network resources and less on
individual nodes.

Network abstractions for WSN development include APIs
for scheduling tasks and monitoring system health as well as
for in-the-field programming of applications, network compo-
nents, and sensing components. As a result, WSN deployments
have in several cases morphed from application-specific cus-
tom solutions to “WSN fabrics that may be customized and
reused in the field. In some cases, these fabrics support and
manage the concurrent operation of multiple applications. Fig-
ure 1 compares the traditional WSN model with the emerging
fabric model of WSNs.

Why programmable WSN fabrics? A primary use case
of programmable WSN fabrics is that of testbeds. High-
fidelity validation of performance sensitive applications of-
ten mandates rigorous end-to-end regression testing at scale.
Application developers need to evaluate candidate sensing
logics and network protocols in the context of diverse realistic
field conditions. This can be done in the field, but in many
cases locating the testbed in the field is inconvenient, so
field conditions can be emulated by collecting data from
relevant field environments and injecting those data sets into
the testbed. Application developers also need to configure and
tune system performance to meet application requirements.
System developers, in contrast, can use testbeds to gain insight
and concept validation by examining phenomena such as link
asymmetry, interference, jamming behavior, node failure, and
the like.

Sensing platforms that focus on people and on communi-
ties are another important use case for WSN fabrics. It is
now economically feasible to deploy or technically feasible
to leverage a number of connected devices across campus,
community, and city spaces. In several cases, the cost of the
facility is shared by multiple organizations and individuals;
consider, for example, a community of handheld users who
are willing to share information sensed via their privately
owned devices. Assuming a programmable WSN fabric with
support for these devices, hitherto unanticipated applications,
missions, and campaigns can be launched upon demand. The
existence of multiple sensor modalities and the benefits of
fusion can be exploited, and programs can be refined based on
data obtained from the field. Not least at all, non-expert clients
and application developers can access and use fabric resources
and data, while the responsibility of managing and maintaining
the network will remain with expert domain owners.

GENI. The Global Environment for Network Innova-
tion project [1] concretely illustrates an architecture where a
WSN fabric is a key component. GENI is a next-generation
experimental network research infrastructure currently in its
prototyping phase. It includes support for control and pro-
gramming of resources spanning facilities with next-generation
fiber optics and switches, novel high-speed routers, city-wide
experimental urban radio networks, high-end computational
clusters, and sensor grids. It intends to support large numbers
of individuals and potentially large and simultaneous exper-
iments with extensive instrumentation designed to make it
easy to collect, analyze, and share real measurements and to
test load conditions that match those of current or projected



2

Fig. 2. GENI Federated Fabric overview

internet usage. To this end, it is characterized by the following
features:

∙ Programmability - researchers may download software
into GENI-compatible nodes to control how they behave

∙ Slice-based experimentation - each GENI experiment will
be on a designated slice that consists of an intercon-
nected set of reserved resources on platforms in diverse
locations. Researchers, represented by slices in the GENI
context, will remotely discover, reserve, configure, pro-
gram, debug, operate, manage, and teardown distributed
systems established across parts of the GENI suite.

∙ Virtualization - when feasible, researchers can run exper-
iments concurrently on the same set of resources as if
each experiment were running alone.

∙ Federation - different resources are owned and operated
by different organizations.

Figure 2 depicts the GENI architecture from a usage
perspective. In a nutshell, GENI consists of three entities:
researchers, clearinghouses and the resource aggregates. A
researcher queries the clearinghouse for the set of available
resources at one or more aggregates and requests reservations
for those that she requires.

Users and aggregates in GENI establish trust relationships
with GENI clearinghouses. Aggregates and users authenticate
themselves via the clearinghouse. The clearinghouse keeps
track of the authenticated users, resource aggregates, slices,
and reservations. Each resource provider may be associated
with its own clearinghouse but there are also central GENI
clearinghouses for federated discovery and management of
all resources owned by participating organizations. GENI also
relies on a standard for all entities to describe the underlying
resource. This resource description language serves as the glue
for the three entities because all interactions involve some
description of resource, be it a physical resource such as
routers and clusters or a logical resource such as CPU time or
wireless frequency.

KanseiGenie. KanseiGenie is a GENI-compatible archi-
tecture that focuses on WSN fabric resource aggegates. GENI
aggregates that are instances of this architecture include the
Kansei [3] and the PeopleNet [8] WSN fabrics at The Ohio
State University and NetEye [6] at Wayne State University.
Since the effort to create and deploy a WSN fabric can be high,
KanseiGenie installer packages are being developed to enable
rapid porting of GENI-compatible programmability to other
resource aggregates. The modular design of the KanseiGenie
software suite lets testbed and fabric developers to customize
the package for any combination of sensor arrays already

supported by KanseiGenie or new sensor arrays.
Goals of this chapter. In this chapter, we overview

requirements of next generation sensing infrastructures and
motivate the various elements of KanseiGenie architecture for
WSN fabrics. We then describe how the architecture can be
extended and how it supports integration more broadly with
other programmable networks.

II. FEATURES OF SENSING FABRICS

AFabric is an independent, decoupled, programmable net-
work, capable of sensing, storing, and communicating

some physical phenomena [14]. Examples include networks
of motion sensors, surveillance cameras, netted microphones,
and so on.

Depending on the policy or platform ability, a fabric need
not in general share state or cooperate with other fabrics.
A fabric provides different services depending on its policy
and hardware capability. Services are provided in the form
of application programming interfaces (APIs). We classify
the services as horizontal or vertical. Horizontal services are
generic services that act as building blocks for more complex
services. Vertical services are domain specific services that are
usually optimized for specific application goals. Standardizing
vertical services is desirable, so that applications can be
readily composed and ported across fabrics geared to support
a particular application domain. In general, a fabric need not
make guarantees about its quality of service, delivering its
results based only on a “best-effort”.

A. Generic Services

We identify four types of generic services that WSN fabrics
should provide:

∙ Resource management services: help researchers dis-
cover, reserve, and configure the resource for experimen-
tations.

∙ Experiment management services: provide basic data
communication and control between experiments.

∙ Operation and management services: enable administra-
tors to manage the resources.

∙ Instrumentation and measurement services: enable the
fabric to make measurements of physical phenomena,
store the measurements and make them securely avail-
able.

1) Resource Management: To run an experiment, a re-
searcher needs to discover, reserve, and configure the resource.
Resource are allocated to a slice consisting of some sliver(s) of
the fabric(s) that will serve as the infrastructure in which she
runs experiments. For consistency, we follow the definitions of
researcher, slice and sliver from GENI [1]. We distinguish the
experiment creators and the experiments participants by calling
the creators “researchers”. The participants can be end-users
or other researchers building their experiments on top of long
running experiments. A slice is an empty container into which
experiments can be instantiated and to which researchers and
resources may be bound. All resources, be it physical or
logical, are abstracted as components, such as Linux machines,
or a network switch, or the like. When possible, a component



3

should be able to share its resource among multiple slices.
A subset of the fabric occupied by a slice is called a sliver,
which is isolated from other slivers. Only researchers bound to
a slice are eligible to run experiments on it and a slice can only
utilize the resource (slivers) bound to it. Resource management
features include at least the following and possibly others.

∙ Resource publishing
∙ Resource discovery
∙ Resource reservation
∙ Resource configuration
For short-term experiments, resource discovery, reservation,

and configuration may be performed at the beginning of the
experiment in a one-shot fashion, assuming the underlying en-
vironment is relatively static in a short time window. However,
for long-term experiments, resource management has to be an
on-going process to adapt to network changes. For example,
nodes involved in the experiment could crash or more suitable
nodes might join the network.

Resource Publishing. A fabric shares its resources by
publishing information about some subset to a clearinghouse.
A clearinghouse may be held by some well-known site or
the fabric itself. To promote utilization, a fabric can publish
the same set of resources to multiple clearinghouses. This
could result in multiple reservation requests to the same
resource; in the end, the fabric decides which reservation(s)
to honor, if any. Note that uncoordinated clearinghouses could
make inconsistent resource allocations resulting in deadlock
or live-lock situations. Global clearinghouses hierarchy and
interaction architecture, as well as clearinghouse and resource
provider policy should explicitly address this problem.

Resource Discovery. Sensor fabrics provide heterogeneous
types of resources with diverse sensors, storage space, and
computing and communication capabilities. Resource discov-
ery is two-fold. First, resource providers must be able to
accurately describe the resource, the associated attributes and
the relationships between the resources. Second, researchers
need to search for the resource they need with descriptions
at different levels of details. Central to this discovery service
is a resource description language for both the provider and
the researcher. The resource request provided by the researcher
can be concrete, such as which physical node and router should
be selected, or abstract, such as a request for a 100 by 100
grid of fully connected wireless sensor nodes. In this case the
discovery service has to map the request onto a set of physical
resources by finding out the most suitable set of resources to
fulfill the request.

Resource Reservation. Once a researcher discovers the
desired resource, she will request the resource directly from
the resource provider or from a third party clearinghouse to
which the resource is delegated by the provider. Both the
set of available resources and the permitted operations on
it will vary according to the researcher’s privileges. Note
that if a researcher reserve the resource from a third party
clearinghouse instead of directly from the provider, what the
researcher has is a promise of the resource rather than a set of
allocated resource. The reserved resource is allocated to the
researcher’s slice only after the researcher claims it from the
provider. The success of the resource claim depends on the

resource availability at the instant when the claim is issued as
well as the provider’s local policy.

Resource Configuration. The reserved resource slice
needs to be configured in the beginning to meet the appli-
cation’s specification. Configurations range from software and
run-time environment setups to setting transmission power or
network topology. The resource configuration service needs to
expose for each device the set of configurable parameters and
the values these parameters can take on. Eliminating redun-
dancy and performing other optimizations could be important.
For example, if different experiments running on the same
device require the same software library, this would result in
wasted storage if duplicates of the library are installed.

2) Experiment Interaction: Experiments in wireless sensor
networks take on many forms. Some run without human
intervention whereas some adapt to human inputs and new
sensing needs. Some run for months while some are short.
We identify a set of features for experiment interaction as a
basis for standardizing a common set of ways that researchers
interact with their deployed experiments.

Debugging and Logging. In some cases, a network is so
resource poor (in terms of memory, bandwidth and reliability)
that is difficult or impossible to exfiltrate debugging data. But
when it is possible to do so, standard services that permit the
experimenter to pause part of the experiment, inspect state,
and single-step the code should be provided. Logging is a
related capability, which, when the resources permit, provides
output of the experiment and can give after-the-fact debugging
information. Typically a WSN application involves tens to
hundreds of nodes, so the logging service should provide a
central point of access to all the logging data.

Exfiltration and Visualization. Exfiltration, either in push
or pull mode, allows researchers to collect the application
output, possibly aggregated or transformed as instructed by
users. Advanced exfiltration patterns such as publish-subscribe
should supported. Standard visualizations of data exfiltrated
by an experiment, such as a node map with connectivity
information, should be provided, along with the option for
the researcher to provide application-specific visualizations.

Data Injection. Data injection takes on two forms.
Compile-time injection is derived from some injection file
provided by the researcher that specifies when to inject what
into which device, so the content of the injection is already
determined at compile-time. Run-time injection is a part of
client-side software that provides a way for the researcher to
generate the data and inject it into the desired devices at run-
time.

Key and Frequency Change. Long-running experiments
evolve over time. To ensure security and reduce interference,
a researcher may change the shared or public key or the
communication frequency of the experiment every now and
then.

Pause and Resume. As intuitive as it sounds, the difficulty
to provide pause and resume services varies dramatically de-
pending on the semantics of an experiment. The service boils
down to the problem of taking a snapshot of the global system
state and then reestablishing it later. Ensuring consistency of
the system state after a pause just before a resume is a matter



4

of research interest.
Move. The move service is an extension on top of the

“pause and resume” service. It enables the researcher to
continue the experiment even when the resource allocated
to experiment’s slice becomes unavailable. A researcher can
pause her experiment, remove it from the current resource,
acquire and configure other available resource for the slice,
and finally migrate and resume the experiment.

Experiment Composition. Sometimes the fabric owner
might not want to directly run User executables on the fabric
for security or other reasons. Experiments on such fabrics can
be viewed as black boxes that take certain end-user input,
such as sensor parameters, to compute certain outputs. On
such fabric the designer might want to provide experiment
composition libraries, which can be statically or dynamically
recomposed to satisfy the Users needs.Also to promote the
reuse of existing WSN applications, fabrics should provide a
way to redirect the output from existing fabric applications to
the input of another experiment, possibly the User application
on another fabric. The redirected output can be viewed as
a data-stream resource. In other words, the User rather than
utilizing the physical resource of the fabric, uses configurable
virtual (data) resources for experimentation.

Batching. This service enables a researcher to schedule a
series of experiments, possibly with a number of controlled
parameters. Instead of scheduling and configuring these exper-
iments individually, the researcher simply give the ranges that
each parameter will iterate through and the step size between
consecutive iterations. Such batching service is especially
useful when a researcher is trying to find out the set of optimal
parameter for her protocol or to study different parameters’
impacts on protocol performance.

3) Management and Operations Services: Operational
Global View. In many cases, managing the fabrics requires a
global operational view of the fabric or multiple federated fab-
rics. This service provides a portal through which researchers
can find operational information such as node health and re-
source usage statistics. Since sensor nodes are much less robust
than PC class computing devices, a user must know which
set of sensor nodes worked correctly during the experiment
in order to interpret the results. Thus generic node health
information such as whether a node and its communicating
interfaces function correctly during an experiment should be
made available by this service. Resource usage auditing is
necessary to check whether the user abides by policies and
does not abuse privileges. The auditing includes such things
as CPU, network and storage consumption. However, for mote
class devices, detailed usage information on a per node basis
may be unavailable due to resource limitations.

Emergency Stop. When a misbehaving experiment is iden-
tified, the administrator must be able to either isolate or stop
the experiment so that its negative impact on the network is
minimized.

Resource Usage Policy. It must be possible to limit the
privileged operations that an experiment may invoke over
the underlying fabric. Example privileges include the right
to access certain sensors and the right of read and write
fabric states. Both compile-time and run-time support should

be provided for enforcing resource usage policies. For the run-
time case, a administrator should be able to grant or revoke a
slice’s privileges the set of reserved resource.

Reliable Configuration. The fidelity of the experiment
results depends on how well the actual run-time configuration
of the experiment satisfies the researcher’s specification. If
they are different, it will help to filter out such abnormalities
by providing a service that specifies the set of resource that
are correctly configured. The complexity of providing this
service can be increased if the configuration of the resource
is performed in a wireless environment where the process is
subject to more interference and thus has a higher failure rate.
For example, wireless sensor nodes need to be programmed
before the experiment can be run on them. In many cases, the
sensing program is transferred to the sensor nodes in wireless
channels. The fabric should provide some service to make sure
that every sensor node is programmed correctly.

4) Instrumentation and Measurement Services: These ser-
vices will support multiple, concurrent, diverse experiments
from physical to application layer that require measurements.
Inexperienced researchers can build their sensing applications
by writing simple scripts on top of these services instead of
learning a complex programming language, such as nesC, to
write her sensing programs. Ideally, each measurement should
carry the time and space information for future analysis.
Also, given the nature of sensor network, each experiment
can potentially generate huge amount of measurements. As
a result, services for measurement storage, aggregation, and
query are also required. Another critical requirement is that the
instrumentation and measurements should be isolated from the
execution of the experiments so that results of the experiments
are not affected.

Traffic Monitoring. Traffic monitoring in the context of
WSN includes both application traffic and interfering traf-
fic. One unique property of wireless sensing fabrics is the
complex interference phenomenon in their communications.
Noise and interference can have a substantial impact on the
experiment result. Therefore, collecting noise and interference
data is necessary for the researchers to correctly interpret their
experiment results.

Sensing. Wireless sensor nodes are equipped with multiple
sensors, each of which capable of measuring different physical
phenomenons with different accuracies. The sensing service
should allow for controlling existing senors as well as adding
new ones. Usually, wireless sensor nodes have very limited
local storage. Thus, storage of sensing data should be explicitly
addressed by the sensing service.

B. Domain specific services
In the previous section we described four classes of generic

(horizontal) services that consist of basic building blocks for
most wireless sensing fabrics. In this section, we shift our
attention to domain specific or vertical services, which are
tailored to the specific requirements of a given application. In
the following section, we give two examples of vertical API,
one of a search service designed in the security context and the
other a rapid program development API for the KanseiGenie
testbed.



5

1) Search API for security networks: In security networks
(such as a intrusion detection network), the designer might
want to provide the end-user with a flexible Search interface
[14] that can search for objects of interest and can re-task
the network as necessary. These objects can be various types
of targets (such as humans, animals, cars, security agents)
or sensor and network data objects (such as nodes that have
failed or have low remaining battery life). These searches can
be temporary (one-shot) or persistent (returns data at periodic
intervals). While such an interface would be useful, it would
be specific only to a this kind of network and hence we
call it a vertical API. The key to providing such a search
API is to design the sensor fabric with the service, which
will interpret the user queries and re-task the network with
appropriate programs or parameters

2) DESAL for KanseiGenie: DESAL [13] is a state based
programming language developed specifically for sensor net-
works that is convenient for rapid prototyping of applications
for sensor networks. While DESAL is primarily a program-
ming language, a platform-specific DESAL compiler can be
viewed as a domain specific service. Current DESAL compil-
ers produce programs in nesC [5], which can be complied and
run on testbeds like KanseiGenie. Thus DESAL is a vertical
API for KanseiGenie, which allows users to write in high-level
DESAL code than in more laborious TinyOS/nesC.

III. KANSEIGENIE ARCHITECTURE

A. The Fabric Model

AS we have noted, the architecture for KanseiGenie is
based on a the idea of a fabric, a general networking

model that takes the view that the network designer is not
responsible for writing applications but for providing a core
set of services that can be used by the application developer to
create applications. The fabric model is agnostic about whether
the application actually runs inside or outside of the fabric.
In fact, depending on the capabilities of the fabric, it can be
a combination of both. The generic services exposed by the
fabric are analogous to those of a modern operating system
on a PC. The user interacts through well defined APIs and
commands to develop sophisticated applications, while leaving
the low level management functions to the OS.

The fabric model clearly separates the responsibilities of the
network designer from that of application developer (who is
less likely to be a sensor network expert). A fabric manager,
called the Site Authority(SA), takes care of implementing the
services and exposing the APIs to the User, who might access
the fabric APIs through any of the available communication
networks (even possibly through another fabric leased to the
User). Figure 3 shows the fabric model interaction between
the User, Site Authority and Clearinghouse. Users could
access the fabric through a specially designed user portal
that implements and automates a number of user functions
like resource discovery, reservation, configuration and visu-
alization. A Clearinghouse(CH) arbitrates the user access to
the fabric and users might be able discover the User APIs
and fabric resources from the CH. The CH could potentially
reside anywhere (even on the same machine as that of the

Fig. 3. Fabric Model

SA) so long as it can securely communicate with the Site
Authority. A single CH could manage access to multiple sensor
fabrics and a User could seamlessly compose an application
using one or multiple sensor fabrics. This aspect of the fabric
model is especially suitable for the emerging layered-sensing
applications [4].

Depending on the policy or of platform ability, a fabric need
not in general share state or cooperate with other fabrics. A
fabric designer must attend to two key aspects; Isolation. The
designer must make sure that, programs, queries and applica-
tions from one user do not interference with the applications
of other users using the same fabric. Depending on the nature
of the fabric this task might be hard, as in the case of
sensor networks. Nevertheless, co-existence of multiple user
applications is especially important in fabrics, which are full-
fledged deployments where a production application is likely
to be running at all times. While it is important not to disrupt
the data from the production application, it is also important
to let users test newer versions of the production application,
short high value applications, and other applications

Sharing. In some fabrics, the designer might want to
allow user applications to interact, while providing isolation if
necessary. A classic example is the urban security networks,
where a federal agency might want to access data generated by
a state agency. But some times the trust relationships between
two users is not straight forward when users who do not
trust each other might want to interact for achieving mutually
beneficial goal like that of a peer-to-peer file sharing service
in the internet. The challenge of fabric designers is to evolve
dynamic trust relationships which will enable such interaction,
without compromising the security of user applications or the
fabric itself.

B. KanseiGenie Architecture

The KanseiGenie is designed for a multi-substrate sensor
testbed. Each of these substrates (also called arrays) can
contain a number of sensor motes of the same type. This
physical architecture is abstracted by a software architecture
comprised of components and aggregates. Each sensor device
is represented as a component that defines a uniform set of



6

interfaces for managing that sensor device. An aggregate con-
tains a set of components of the same type and provides control
over the set. It should provide at least the set of interfaces
provided by the contained components and possibly other
internal APIs needed for inter-component interactions. Given
the collaborative nature of WSN applications, we believe that
most users will interact with a sensor fabric through the ag-
gregate interface rather than individual component interfaces.
We hence forth denote the component and aggregate interface
as Component Manager (CM) and Aggregate Manager (AM)
respectively.

Three major entities exist in the KanseiGenie system (anal-
ogous to the fabric model), namely Site Authority (SA),
Resource Broker (RB) (Clearinghouse in fabric model), and
Reseacher Portal (RP) (User in the fabric model). RP is the
software component representing the researchers in the Kan-
seiGenie context. All entities interact with one another through
well-defined APIS, divided into four logical planes, namely the
resource plane, the experiment plane, the measurement plane,
and the operation and management plane.

Resource brokers allocate resource from one or more site
authorities and process requests from the resource users. A
broker can also delegate a subset of its resource to some other
broker(s).

Given that each sensor array is an aggregate, the KanseiGe-
nie SA is conceptually an aggregate of Aggregates Managers
(AAM) that provides access to all the arrays. The AAM
provides an AM interface for each sensor array through
parameterization. Externally, the AAM (i) administrates the
usage of the resource provided by the site according to
local resource management policies, (ii) provides the interface
through which the SA advertises its shared resource to one or
more authenticated brokers and, (iii) provides a programming
interface through which researcher (using RP) can schedule,
configure, deploy, monitor and analyze their experiments.
Internally, the AAM provides mechanisms for inter-aggregate
communications and coordination.

The RP is the software that interacts with the SA to
run experiments on behalf of the researcher. It contains a
suite of tools that simplifies the life cycle of an experiment
from resource reservation to experiment cleanup. The RP
could provide a GUI, command line or a raw programming
interface depending on the targeted user. A GUI user interface
should be the most user-friendly and and the easiest to use,
though the kinds of interaction might be limited because of
its graphical representation. Command line and programming
interface would be for more experienced users that need
more control and feasibility than the GUI can offer. For
example, a researcher can write scripts and programs to run
a batch of experiments with the provided command-line and
programming interface that a GUI may not provide.

All these operations are based on trust relationships, and
all entities must implement appropriate authentication and
authorization mechanisms to support the trust establishments.
For example, the SA may either directly authorize and au-
thenticate resource users, or delegate such authorization and
authentication to other trusted third party brokers. To invoke
the AAM functions, a user will need to present forms of

authentication and authorization during her interaction with the
AAM. The Since all AM interfaces in the AAM are the same
except for the parameter used to instantiate the AM interface
for a specific array, it thus suffices to implement these APIs
for a new sensor array to be supported by KanseiGenie.

C. GENI Extension to KanseiGenie

Figure 4 illustrates the KanseiGenie architecture in the
GENI context. The KanseiGenie SA implements the interface
for the aggregates. The SA interacts with the clearinghouse for
resource publishing while the researcher interacts with clear-
inghouse to reserve resources. The researcher also interacts
with SA to redeem their reservations and run experiments. The
SA’s interface is implemented as web-service for extensibility
and compatibility reasons.

Fig. 4. KanseiGenie Architecture

KanseiGenie provides a web-based Researcher Portal im-
plementation for easy access to its resource. A downloadable
IDE-software (much like Ecllipse) version of the RP is under
development and will be available for future users. The re-
searcher portal provides the most common interaction patterns
with the KanseiGenie substrate so that most researchers do
not need to implement their client side software to schedule
experiments in KanseiGenie.

KanseiGenie implements the Clearinghouse utilizing the
ORCA resource management framework [7]. Utilizing a third
party framework is motivated by the need of federated ex-
perimentation in the GENI. Although the interface for each
entity is well-defined, using a common and stable resource
management framework helps resolve many incompatibility
issues and helps to decouple the concurrent evolutions of the
SA and the broker.

D. Implementation of KanseiGenie

The KanseiGenie software suite consist of the three enti-
ties: the Researcher Portal software, the Orca-based resource
management system and the KanseiGenie Site Authority.



7

1) Researcher Portal (RP): The Researcher Portal is imple-
mented using the PHP programming language. The PHP web
front-end interacts with the AAM through the web service
layer. Such decoupling enables concurrent developments and
evolvement of the RP and SA. The web-based RP abstracts
the most common interactions with the testbed, that of one-
time, short experiments. To conduct experiments that are long-
running or repeating, the researcher can gain more fine-grained
control by writing her own programs based on our web service
API. The current RP portal allows users to interact with only
one Site Authority. We are in the process of extending the
RP to work with multiple Site Authorities in a federated
environment.

2) Orca-based resource manangement system: The ORCA
system consist of 3 Actors;

1) Service Manager. The Service Manager interacts with
the user and gets the resource request, forwards it to the
Broker and gets the lease for the resources. Once a lease
is received, the Service Manager, forwards it to the Site
Authority to redeem the lease.

2) Site Authority. The ORCA Site Authority keeps a
inventory of all the resources that need to managed. It
delegates these resources to one or more Brokers, which
in turn lease the resources to users through the Service
Manager.

3) Broker: The Broker keeps track of the resources dele-
gated by various SA. It receives resource request from
SM and if the resource is free, it leases the resource to
the SM. A number of different allocation policies can
be implemented using a policy plug-in.

Fig. 5. KanseiGenie Integration with ORCA

To integrate ORCA for resource management, we modified
the ORCA Service Manager to include an XML-RPC server
that receives the resource requests from the RP. Similarly the
ORCA SA was suitably modified to make web service calls
to the KG AAM for experiment setup and tear down. Figure
5 shows this integration architecture.

Shared resource and trust relationships among the ORCA
broker, SA, and RP are configured beforehand within ORCA.

3) KanseiGenie Site Authority: The KanseiGenie Site Au-
thority in turn has three components, the Web Service Layer
(WSL), the KG Aggregate of Aggregate Manager (KG AAM)

and the individual Component Managers (CM) for each device
type supported by KanseiGenie.

Web Service Layer. The WSL acts as a single point
external interface for the KG Site Authority. The WSL layer
provides a programmatic, standards-based interface for all
the KG AAM APIs. We utilize the Enterprise Java Bean
framework to wrap the four functional GENI planes. Each
of the manager APIs are implemented as a SessionBean. We
utilize the JBoss application server as the container for the
EJBs partly because JBoss provides mechanisms for users to
conveniently expose the interface of Session Beans as web
services. Other reasons that motivated us to choose JBoss
include the good support from the community, wide adoption,
open-source licence, and stability.

KanseiGenie Aggregate of Aggregate Manager. The KG
AAM implements the APIs for Kansei substrates. It keeps
track of the overall resources available at a site, monitoring
their health and their allocation to users. It also keeps track
of individual experiments, their status, deployment and clean
up. The status of the resources and experiments are stored in
a MySQL database. A Schedular daemon (written in the Perl
language) accomplishes experiment deployment, clean up and,
after an experiment is complete, log files retrieval using the
Substrate Manager of the individual substrates. The currently
most of the generic APIs discussed in Section II are supported
by the KanseiGenie AAM.

Component Manager. Each of the devices in Kansei has
its own Manager (but for some primitive devices the Manager
might be implemented on other more capable devices). The
Component Manager implements the same APIs as that of the
KG AAM and is responsible for executing the APIs on the
individual devices. The logical collection of all the Managers
of devices belonging to the same substrate form the Aggregate
Manager of that substrate. Currently KG supports Stargates
[9], TelosB [11], and XSMs [12]. The AMs for Imote2 [2]
and SunSpots [10] are under development. The TelosBs and
XSMs being primitive devices without a presistent operating
system, their Managers are implemented on the Stargates. The
CMs are implemented using Perl. A number of tools for user
programming the motes and interaction with them are written
in the Python and C programming languages.

E. KanseiGenie federation

The KanseiGenie software architecture is designed for sen-
sor network federation. We discuss below the use cases and
key issues in KanseiGenie federation.

1) Use cases: Although there are many use cases, key
among them ore regression testing, multi-array experimenta-
tion, and resource sharing that is enabled by federation.

Regression testing. WSNs introduce complex dynamics
and uncertainties in aspects such as wireless communication,
sensing, and system reliability. Yet it is desirable to have
predictable system behavior especially when WSNs are used
to support mission-critical tasks such as safety control in
alternative energy power grids. That is, it is desirable for
system services and applications to behave according to certain



8

specifications in a wide range of systems and environmental
settings.

Existing measurement studies in WSNs are mostly based
on a single fabric such as Kansei and NetEye, which usually
only represents a single system and environmental setting.
To understand the predictability and sensitivity of WSN sys-
tem services and applications, however, we need to evaluate
their behavior in different systems and environmental settings.
Seamlessly integrating different WSN fabrics together to pro-
vide a federated measurement infrastructure will enable us
to experimentally evaluate system and application behavior
in a wide range of systems and environmental settings, thus
providing an essential tool for evaluating the predictability and
sensitivity of WSN solutions.

Multi-array experimentation. Next-generation WSN ap-
plications are expected to involve different WSN substrates.
These include the traditional, resource-constrained WSN plat-
forms as well as the emerging, resource-rich WSN platforms
such as the Imote2 and Stargate. Federation also enables exper-
imentation with multiple WSN fabrics at the same time, thus
enabling evaluation of WSN system services and applications
that involve multiple WSN substrates.

Resource sharing. Federating different WSN fabrics together
also enables sharing resources between different organizations.
Resource sharing can enable system-wide optimization of
resource usage, which will improve both resource utilization
and user experience. Resource sharing also helps enable ex-
periment predictability, predicting the behavior of a protocol
or application in a target network based on its behavior in
testbed. This is because federated WSN fabrics improve the
probability of finding a network similar to the target network
of a field deployment. Resource sharing is also expected to
expedite the evolution of WSN applications by enabling more
users to access the heterogeneous WSN fabrics at different
organizations.

2) Key issues: To enable secure, effective WSN federation,
we need to address issues in clearinghouse architecture, access
control, resource discovery and allocation, as well as network
stitching.

Fig. 6. Clearinghouse architecture in KanseiGenie federation

Clearinghouse architecture. For effective resource manage-
ment among federated but autonomous WSN fabrics, we
expect that the clearinghouses be organized in a hierarchical

manner. As shown in Figure 6, for instance, several WSNs in
the US may form one cluster, and this cluster interacts with
a cluster of European WSNs. The exact form of the clearing-
house hierarchy depends on factors such as trust relations,
resource management policies, and information consistency
requirements. We are currently working with our domestic and
international partners, including Los Alamos National Lab and
India Institute of Science, to develop the conceptual framework
for the federation hierarchy as well as the implementation
mechanisms for supporting flexible adaptation of federation
hierarchy as policy and technology evolve. This hierarchical
federation architecture will be reflected by a hierarchy of
clearinghouses in charge of the resource management within
certain scope of the hierarchy.

Within the hierarchy of federated WSN fabrics, we also
expect peer-to-peer interaction between different fabrics. For
instance, the WSNs from the US academia may form a
sub-cluster of the US-cluster, and these fabrics may share
resources in a peer-to-peer manner without involving the top-
level clearinghouse of the US cluster.

Access control. One basic security requirement of GENI
is to only allow legitimate users to access their authorized
resources. Therefore, one basic element of federated WSN
fabrics is the infrastructure for authentication, authorization,
and access control. For authentication, we can use the cryp-
tographic authentication method via public key cryptography,
and, in this context, adopt the hybrid trust model where the
monopoly and anarchy models are tightly integrated. In this
hybrid trust model, each fabric maintains its own certificate
authority (CA) which manages the public keys for users
directly associated with the fabric, and the distributed, PGP-
style, anarchy trust model is used among different fabrics to
facilitate flexible policies on federation and trust management.
(Note that a fabric may also maintain an internal hierarchy
of CAs depending on its local structure and policy.) Using
this PKI, a fabric CA can vouch for the public key of every
entity (e.g., a user or a software service such as a component
manager) within its fabric, and every entity can verify the
identity of every other entity through the public key certified
by the local fabric-CA. The chain of trust formed across
fabrics will enable authentication across fabrics. For instance,
an entity B can trust the public key Key-A certified by a CA
CA-A for another entity A in a different fabric Fabric-A, if
the local CA CA-B of B trusts certificates issued by CA-A.
The PKI will also be used in secure resource discovery and
allocation.

For each legitimate user, the slice authority (SA) at her as-
sociated clearinghouse generates the necessary slice credential
through which the user can request tickets to access resources
of different fabrics. Based on their access control policies, the
component managers (CMs) of the involved fabrics interact
with the user to issue the ticket and later to allocate the related
resources according to the authorized rights carried in the
ticket.

Network stitching. After an experiment has acquired the re-
sources from the federated KanseiGenie fabrics, one important
task is to stitch together slices from different WSN fabrics. To



9

this end, the KanseiGenie research portal will coordinate with
one or multiple clearinghouses to get tickets for accessing the
allocated resources. Then the research portal will coordinate
with the involved site authorities to set up the communication
channels between slices in different fabrics, after which the
experiment will have access to the connected slices within the
KanseiGenie federation.

IV. KANSEIGENIE CUSTOMIZATION AND USAGE

A. How to Customize KanseiGenie

KANSEIGENIE SA software uses a distributed architec-
ture with hierarchical design. The KanseiGenie AAM

implements the APIs of the four functional planes. The AAM
redelegates the API calls to a specific Aggregate Manager
depending on what substrate is being used for an experiemnt.
The APIs of the Aggregate Manager are well defined and can
be implemented on any platform/technology.

KanseiGenie currently supports the Stargate, XSM and
TelosB sensor platforms. The AMs for Imote2 and SunSpots
are under development. The architecture of KanseiGenie sup-
ports both a flat or a hierarchical arrangement of substrates and
using platform neutral language like perl makes it customiza-
tion quite easy. To use KanseiGenie to manage sensor subtrates
already supported, an administrator only need to populated
the MySQL database tables regarding the number and the
physical topology of substrates. Also a testbed administrator
can configure KanseiGenie for any combination of the already
supported sensor platforms.

Customization of the KanseiGenie to a new sensor substrate
involves three steps, one implementing the AM APIs for that
substrate (either on those devices directly or another substrate,
which can in turn control the new one being added). Two,
updating the AAM resource and policy database about the new
substrates topology and resources. Three, modifying and/or
adding new GUI interfaces to the Researcher Portal to support
the configuration parameters for the new platform.

B. Vertical APIs and Their Role in Customization

The KanseiGenie architecture supports additional APIs
apart from the standardized (generic) APIs of the four func-
tional planes. Basing the architecture on a Service Oriented
Architecture (SOA) and dividing them into vertical (domain
specific) and horizontal (generic) APIs provides a basis for
customizing for different substrates. The vertical APIs provide
a convenient way of providing APIs for specific application
domains, while at the same time standardizing the APIs for a
particular application domain.

Two of the customizations of the KanseiGenie architecture
are the Peoplenet and the Search API for intrusion detection
system, which we describe below.
PeopleNet. PeopleNet [8] is a mobility testbed at Ohio State
university composed of about 35 cell phones and the Dreese
building fabric. The Dreese building fabric provides services
like the elevator localization, building temperature and light
monitoring, along with a fabric for generic experimentation.
The PeopleNet cell phone fabric supports APIs for instant
messaging and buddy services (searching for buddies).

Search API. Search API [14] is a single API that provides the
interface for an intrusion detection network. The single API
lets the user to query the network for target objects as single
shot queries or persistent queries. More over, the queries can
be about real physical targets or logical data objects in the
network and they can be confined to a geographical area in
the network or the user can query the entire network.

The above two examples provides insight into the cus-
tomization of the fabric architecture and how it can support
multiple dissimilar fabrics. The flexibility of the architecture
is because, we separate the horizontal APIs from the vertical
APIs and because we leave the implementation of APIs to
the specific Aggregate Managers, so the same API can be
implemented differently by different substrates.

C. KanseiGenie Usage Step-by-step Run Through

The KanseiGenie Researcher Portal is designed to be an
intuitive and easy way for a user to access the testbed
resources. Here we give a short step-by-step run through of a
typical usage scenario.

1) Get access. The first thing a user needs to do is to get
access to the testbed resources. A user can do this by
contacting the KanseiGenie administrator (say by email)
or by getting a login from the GENI clearinghouse.

2) Create a slice. A user will first create one or more
Slices(if a user wants to run more than one experiment
concurrently she will need more than one Slice). A
Slice represents the user inside the fabric. It is a logical
container for the resources of the user.

3) Choose the substrate. The Portal displays all the dif-
ferent substrates available in the KanseiGenie federation.
The user needs to decide which substrate she is going
for this experiment.

4) Upload the executable. The user will next prepare the
executable and/or scripts that needs to be tested for the
particular substrate

5) Create the resource list. A user might want to test her
program on a particular topology. The Portal provides a
service that lets the user create any topology they want
from the available nodes from a particular substrate.

6) Get lease. The user will next have to get a lease for the
resources she wants to use. The Portal interacts with the
Orca resource management system and gets the lease for
the resources.

7) Configure experiment. Once the user has the lease, she
needs to configure the experiment she wants to run on
these resources. She will choose parameters such as the
length of the experiment should run, which executable
should be run, what logging and exfiltration service to
use, what injection is required, etc.

8) Run experiment. Finally, once the configuration is
done, the user can start the experiment from experiment
Dashboard.

9) Interact with experiment. The Portal also provides
services through which a user can interact with the
experiment, while it is running. A user can inject pre-
recorded sensor data into the Slice, view logs in real



10

time, visualize the network in realtime, view health data
of resources. To enable most of these services, the user
should specify/select the services in the configuration
step.

10) Download results. Once an experiment is complete, the
results and logs from the experiment are available for
download from the Portal.

V. EVOLVING RESEARCH ISSUES IN NEXT-GENERATION
NETWORKS

IN this section we will look at some of the emerging
research issues in the fabric model.

A. Sensor fabric resource specifications

The sensor fabric resource specifications act as the language
that all the entities in the architecture understand. It is impor-
tant for the designers to come up with an ontology that is
detailed enough for the users of the domain to take advantage
of the fabric services and features, but should also be broad
enough to enable interaction and joint experimentation with
other programmable fabrics (such as other wireless networks
and core networks).

Much of the complexity of sensor networks need to be
embedded in resource specifications (RSpecs). Resource spec-
ifications will also be an extensible part of the federated
KanseiGenie interface. As new resources and capabilities
are added, these specifications will inevitably need to be
extended. We expect the extensions to leverage a hierarchical
name space. This will allow new communities that federate
with KanseiGenie to extend the resource specification within
their own partition of the name space, and components that
offer specialized resources will similarly extend the resource
specification in their own name space. Additionally, we need
to consider the granularity of resource specification, which
decides the level of details in resource description. In federated
resource management, there is no unique solution and the
implementation strategy is subject to both technical and ad-
ministrative constraints. For instance, whether and how much
information about resource properties should be maintained
by clearinghouses will depend on the trust relations among
the entities involved and may be encoded in resource specifi-
cations at different levels of granularity.

To enable reliability and predictability in experimentation,
resource specification also needs to characterize precisely the
reliability and predictability properties of sensornet testbeds,
including the external interference from 802.11 networks, the
stability of link properties, and nodes’ failure characteristics in
a testbed. Accordingly, an experiment will also use reliability-
and predictability-oriented specification to specify its require-
ments on the allocated resources.

For the same experiment there may be different ways of
specifying the actual resources needed. For an experiment
requiring two TelosB motes and a link of 90% reliability
connecting these two motes, for instance, we may define
the resource specification to request two motes six meters
away with the necessary power level for ensuring a 90% link
reliability between these two motes, or we may define the

resource specification to request any two motes connected by
a link of 90% reliability. Both methods will give the user the
desired resources, but the second method will allow for more
flexibility in resource allocation and thus can improve overall
system performance.

B. Resource discovery

For federated resource management, different clearing-
houses need to share resource information with one another
according to their local resource sharing policies. Two basic
models of resource discovery are the push and pull models.
In the push model, a clearinghouse periodically announces
to its peering or upper-level clearinghouses the available
resources at its associated fabrics that can be shared. In the pull
model, a clearinghouse requests from its peers or upper-level
clearinghouses their latest resource availability. We expect the
pull model to be mainly used in an on-demand manner when
a clearinghouse cannot find enough resources to satisfy a user
request. The interaction between clearinghouses needs to be
authenticated using, for instance, the PKI discussed earlier.

C. Resource allocation

We expect that federated WSN infrastructures will support a
large number of users. Hence effective experiment scheduling
will be critical in ensuring high system utilization and in
improving user experience. Unlike scheduling computational
tasks (e.g., in grid computing), scheduling wireless exper-
iments introduces unique challenges due to the nature of
wireless networking. For instance, the need for considering
physical spatial distributions of resources such as sensor nodes
affects how we should schedule experiments. To give an
example, let’s consider two fabrics S1 and S2 where both
fabrics have 100 TelosB motes, but the motes are deployed
as a 10 x 10 grid in S1 whereas the motes are deployed as
a 5 x 20 grid in S2. Now suppose that we have two jobs J1
and J2 where J1 arrives earlier than J2, and J1 and J2 request
a 5 x 10 and 5 x 12 grid respectively. If we only care for the
number but not the spatial distribution of the requested motes,
whether J1 is scheduled to run on S1 and S2 does not affect the
schedulability of J2 while J1 is running. But spatial distribution
of nodes do matter in wireless networks, and allocating J1
to S2 will prevent J2 from running concurrently, whereas
allocating J1 to S1 will allow the concurrent execution of J2 by
allocating it to S2, improving system utilization and reducing
waiting time.

Wireless experiments in federated GENI may well use
resources from multiple fabrics in a concurrent and/or evo-
lutional manner. Scheduling concurrently-used resources from
multiple fabrics is similar to scheduling resources within a
single fabric even though we may need to consider the inter-
connections between fabrics. For experiments that use multi-
ple fabrics in an evolutional manner, we can schedule their
resource usage based on techniques such as “task clustering”,
where sequentially requested resources are clustered together
and each cluster of requests is assigned to the same fabric
to reduce coordination overhead and to maximize resource
utilization. To reduce deadlock and contention, we need to



11

develop mechanisms so that an experiment can choose to
inform the clearinghouse scheduler of its temporal resource
requirement so that subsequent experiments do not use re-
sources that may block previously scheduled experiments.

D. Data as Resource

One consequence of the fabric model is that the network
is hidden behind a collection of user APIs and as long as
the APIs are the same, a user can programmatically access
it. In other words, it does not matter if APIs are provided
by a huge sensor network or by a single PC: the user won’t
know the difference. Thus, a data base that can annotate and
store results of experiments (or queries) and replay the data for
similar future queries can now be viewed as a sensor resource.
Alternately, a sensor network can be viewed as a source for
a data stream and the user as a data transformation program.
Under this unified view, a DataHub which can interpret quires
and transform the stored data accordingly can fake a sensor
fabric. Thus the fabric model provides a new unified model
under which data (properly annotate and qualified) and sensing
resources are inter-changeable and provides for inter-esting
hybrid experimentation scenarios.

The architecture provides much research opportunities and
challenges, as a number of questions need to answered before
the architecture can be used beyond the most simplistic
scenarios. Challenges include the following.

∙ How to automatically annotate and tag data coming from
sensor networks to create a credible DataHub?

∙ It is common for the same experiment to produce multiple
similar data sets in wireless networks. How does a user
decide which dataset to use as representative of an
experiment?

∙ Does the RSpec ontology need to be extended to represent
data ?

∙ What range of queries can be answered with the current
data? Should data be pre-processed to decided acceptable
querries?

E. Network Virtualization

The fundamental aim of the fabric architecture is to virtual-
ize and globalize the resources in a sensor network, so that in
principle user anywhere in the world can request, reserve and
use the resources. However, the more resource is virtualized,
the less control the user has over it. Thus there is a trade-off
between the level of access and virtualization. The challenge
for modern network designers is to as much control (i.e., as
low in the stack as possible) to the users, while retaining the
ability to safely recover the resource and also making sure the
resource might be shareable.

In a fabric multiple researchers will run their experiments
concurrently on different subsets of an array of sensors of
the same type. Usually, sensors are densely deployed over
space. Such density provides the means for different experi-
menters to share the same geographical space and sensor array
to conduct concurrent experiments that are subject to very
similar, if not statistically identical, physical phenomenon. In
such environments, interference is inherent between users due

to the broadcast nature of the wireless communications; its
effect is more prominent when the communicating devices are
close to one another. The virtualization of wireless networks
imposes a further challenge for the sensor fabric providers
to ensure isolation between concurrently running experiments.
Such interference isolation is usually achieved by careful
frequency or time slot allocations. However, these solutions
are quite primitive in nature and do not provide optimum
network utilization. Even more important, these solutions
are not suitable for sensing infrastructures where multiple
applications from different users need to be run concurrently
in a production mode.

Our recent research in this area using statistical multiplexing
as the basis of virtualization is promising to provide better so-
lutions, enabling much better network utilization and external
noise isolation.

VI. CONCLUSION

IN this chapter, we described the KanseiGenie software
architecture for wireless sensor network fabrics. It en-

ables slicing, virtualizaton, and federation in wireless sensor
networks. We listed the features of next generation sensing
infrastructures and illustrated how the KanseiGenie architec-
ture meets the needs of such networks while also enabling
collaboration with not only other sensor networks, but also
with any programmable network in general, for example under
the GENI framework.

We also described the benifits of basing the architecture on
a network centric fabric model rather than on a node centric
model. We gave a step-by-step run through of a typical usage
scenario in KanseiGenie and illustrated how the software suite
can be customized for domain specific applications using the
Vertical APIs. Finally, we gave a brief overview of emerging
research issues and opportunities in the area and outlined some
preliminary solutions.

REFERENCES

[1] Global environment for network innovation. http://www.
geni.net.

[2] Intelmote2: High-performance wireless sensor network
node. http://docs.tinyos.net/index.php/Imote2.

[3] Kansei wireless sensor testbed. http://kansei.cse.
ohio-state.edu.

[4] Layered sensing. http://www.wpafb.af.mil/shared/media/
document/AFD-080820-005.pdf.

[5] Nested c: A language for embedded sensors. http://www.
tinyos.net.

[6] Neteye wireless sensor testbed. http://neteye.cs.wayne.
edu.

[7] Open resource control architecture. https://geni-orca.
renci.org/trac/wiki/.

[8] Peoplenet mobility testbed. http://peoplenet.cse.
ohio-state.edu.

[9] Stargate gateway devices. http://blog.xbow.com/xblog/
stargate xscale platform/.

[10] Sunspots: A java based sensor mote. http://www.
sunspotworld.com/.



12

[11] Telosb sensor motes. http://blog.xbow.com/xblog/telosb/.
[12] Xsm: Xscale sensor motes. http://www.xbow.com/

Products/Product pdf files/Wireless pdf/MSP410CA
Datasheet.pdf.

[13] Anish Arora, Mohamed Gouda, Jason O. Hallstrom,
Ted Herman, William M. Leal, and Nigamanth Sridhar.
A state-based language for sensor-actuator networks.
SIGBED Rev., 4(3):25–30, 2007.

[14] Vinodkrishnan Kulathamani, Mukundan Sridharan, An-
ish Arora, and Rajiv Ramnath. Weave: An architecture
for tailoring urban sensing applications across multiple
sensor fabrics. MODUS, International Workshop on
Mobile Devices and Urban Sensing, 2008.


