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Learning Facial Expressions with 3D Mesh Convolutional

Neural Network

HAI JIN, YUANFENG LIAN, and JING HUA, Wayne State University

Making machines understand human expressions enables various useful applications in human-machine in-

teraction. In this article, we present a novel facial expression recognition approach with 3D Mesh Convolu-

tional Neural Networks (3DMCNN) and a visual analytics-guided 3DMCNN design and optimization scheme.

From an RGBD camera, we first reconstruct a 3D face model of a subject with facial expressions and then com-

pute the geometric properties of the surface. Instead of using regular Convolutional Neural Networks (CNNs)

to learn intensities of the facial images, we convolve the geometric properties on the surface of the 3D model

using 3DMCNN. We design a geodesic distance-based convolution method to overcome the difficulties raised

from the irregular sampling of the face surface mesh. We further present interactive visual analytics for the

purpose of designing and modifying the networks to analyze the learned features and cluster similar nodes

in 3DMCNN. By removing low-activity nodes in the network, the performance of the network is greatly im-

proved. We compare our method with the regular CNN-based method by interactively visualizing each layer

of the networks and analyze the effectiveness of our method by studying representative cases. Testing on

public datasets, our method achieves a higher recognition accuracy than traditional image-based CNN and

other 3D CNNs. The proposed framework, including 3DMCNN and interactive visual analytics of the CNN,

can be extended to other applications.
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1 INTRODUCTION

Facial expressions play an important role in understanding human emotion status and have
been widely studied since the 17th century [11]. Automatic facial expression recognition (AFER)
requires interdisciplinary knowledge including behavioral science, machine learning, and artificial
intelligence.
Exploring facial information through 2D images has been actively studied in the areas of emo-

tion visualization [17], face recognition [41], age estimation [15], and facial expression recognition
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(FER) [2]. These techniques mainly rely on the features extracted from the 2D images and train
statistic models to complete the classification tasks. The Active AppearanceModel (AAM) [28], Ac-
tive Shape Model (ASM) [1], and Constrained Local Model (CLM) [12] are three typical 2D-based
methods for face tracking and recognition. Although these 2Dmethods have been proved effective
in many constrained and unconstrained environments, their classification accuracy varies under
different illuminations and orientations.
To avoid adverse effects caused by the external factors, one possible solution of the problem is

to obtain more features directly from 3D space. Cohen et al. [9] proposed a 3D data-based facial
expression recognition method for Human-Computer Interactions (HCI) using 3D laser scanners.
Blanz et al. [5] presented a 3D face recognition approach based on Principal Component Analysis
(PCA) decompositions of a 3D face database. Recent development of RGBD cameras has made 3D
scanning easier, cheaper, and more accurate. A 3D object reconstruction method using an RGBD
camera was presented by Newcombe et al. [31], which can be also used for face modeling. Chen
et al. [8] showed a facial performance capturing method, and Thies et al. [40] presented a real-time
expression transfer method for facial re-enactment. Since a depth camera provides 3D information
in addition to the regular 2D images, it improves the accuracy of the detection and recognition and
therefore enables more advanced applications.
The 3D information can also be provided to the 3D deep learning methods. Sinha et al. [37]

presented a 3D model surface learning method based on CNN by creating a geometry image from
the input 3D shapes. Su et al. [38] rendered 3D models to several 2D images using multiview
methods and used them to train a Multiview CNN for shape learning. In a nutshell, these methods
still transfer 3D shapes into 2D images as the input of the CNN framework. Instead of performing
2D operations in CNN, Wu et al. [43] used 3D voxel filters to process the voxelized depth data.
Their model significantly outperformed existing approaches for shape recognition tasks.
To take advantage of the high-performance CNN and richer information in 3D-based methods,

we propose a 3DMesh Convolutional Neural Network, which performs general operations directly
on the surface of the 3D mesh. In the facial expression recognition task case, these operations can
be performed on the surface of the reconstructed 3D face model. To obtain a consistent sampling
grid across the 3D faces, 3D face models are reconstructed by fitting a deformable face model
to the scanned surfaces, in which a dense vertex correspondence can be roughly obtained. This
property ensures that the processing operations including convolution and pooling are performed
uniformly on the 3D surface.
More importantly, we propose a visual analytics approach to the learned features and networks,

which is important for modification and optimization toward better performance of the network.
Through an interactive visualization of the learned features and high-activation feature areas,
our system can demonstrate clustered nodes based on their activation behaviors, which provides
users intuitive visual analytics on the trained networks and allows them to interactively modify
the networks. Based on the visualization result and through the interactions, users can better
understand expected and discover unexpected features, network node performance, and so forth,
and hence better fine-tune the trained network and optimize its performance as well as reduce
the overfitting problems.

1.1 Related Work

Facial expression is the most direct reflection of emotion and shares common meanings across
different races and cultures. Ekman and Friesen’s (1975) study summarized six universal human
facial expressions, including happiness, anger, sadness, fear, surprise, and disgust. These are also
the most representative expressions for emotions and well utilized for emotion estimation and
visualization purposes. A Facial Action Coding System (FACS) was proposed by Ekman and Friesen
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to describe facial expressions in a standard measurement. FACS is widely used in image-based
facial expression recognition methods [13].
Extracting 2D features, such as displacement of feature points and intensity change from

images, for facial expression recognition is the most popular method. Kobayashi et al. [23]
presented an emotion classification method using 20 feature points on the face. Later studies,
including ASM, AAM, and CLM, are also effective expression classification approaches based on
2D features. Kwang-Eun Ko et al. [22] presented a method using ASM to extract facial geometry
features to estimate human emotions. Derived from ASM, AAM [10] both fits the facial image
with geometric feature points and computes the intensities around the feature points. Lucey et al.
[28] showed the capability of the AAM-based emotion estimation method using the Cohn-Kanade
Dataset. Kapoor et al. [20] only used the pixel intensity difference to classify the expressions of
human faces. One of the major limitations of these methods is that their estimation accuracy
heavily depends on the image quality.
Even though 2D features are relatively easy to extract, they are not stable under various circum-

stances. Since the images are the rendered results under various extrinsic factors—lighting, camera
location and angle, and so on—even the same object can be rendered significantly varyingly under
different conditions. Sandbach et al. [33] presented that the illumination and the head pose were
two significant factors affecting the recognition accuracy. Therefore, in order to alleviate the in-
fluence of these factors, 3D geometric features, like curvature, volume, displacement, conformal
factor, heat kernel signature, and shape spectrum, were often used in recent 3D-based approaches.
Since the 3D features are pose and illumination invariant, they are more stable and consistent than
the 2D features in different circumstances. Huang et al. [35] extracted the Bézier volume change as
the features of the emotions, and Fanelli et al. [14] used the depth information of pixels to classify
emotions. These studies successfully embedded 3D features in the facial expression recognition
task and demonstrated their effectiveness. Therefore, to extract accurate 3D geometric features,
high-quality 3D face capturing with arbitrary facial expressions is essential.
Recently, there have been several remarkable achievements in 3D face reconstruction. Lei et al.

[25] presented a face shape recovery method using a single reference 3D face model. Prior knowl-
edge of face is required for these methods to recover the missing depth information from a 2D
image. Learning through a face database is another effective approach for tackling this problem.
Along this direction, statistical face models based on PCA were proposed and constructed [4].
As these approaches achieved plausible 3D face reconstruction results based on 2D images, Blanz
et al. [5] applied the 3D face reconstruction method to the facial recognition problem. However,
these methods are still limited to the neutral expression and produce poor reconstruction results
on faces with expressions. Therefore, incorporating the RGBD camera with a deformable 3D face
model can provide a fast and accurate 3D face model for geometric feature extraction.
In terms of the classification models, the traditional facial expression classification method

mainly uses texture features, such as Haar [42] and Local Binary Pattern (LBP) [48], to train a
statistical classifier such as Linear Discriminant Analysis (LDA) [3], PCA [44], and Support Vector
Machine (SVM) [36]. With the recent development of high-performance deep learning techniques,
such as Convolutional Neural Networks (CNNs), image recognition accuracy has been greatly im-
proved [24, 34]. Applying CNNs to the facial expression recognition problem, Kim et al. [21] em-
ployed multiple CNNs to obtain a group of diverse models with various properties. Mollahosseini
et al. [30] trained a single CNNbased onmultiple naturalistic datasets to obtain a high-performance
model across datasets. Zhang et al. [47] presented a method for inferring social relations from face
images using CNNs. They presented a pairwise-face reasoning for relation prediction based on the
subjects’ age, gender, expression, and head pose. Lopes et al. [27] proposed amethod that combines
CNNs and preprocessing techniques to reduce the data required for CNN training.
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To extend the high-performance CNN framework to the 3Dmodel classification task, Sinha et al.
[37] proposed a 3D shape learning method using geometric images. Su et al. [38] used a multiview
rendering method to render a 3D shape to a number of rendered image series from different angles.
Multiview image-based CNNmay work well on 3D models with large variations in different views
as shown in [38]. However, in the classification of facial expressions, views from significantly dif-
ferent angles do not provide extra expressional information as most features are often distributed
on the frontal surface. Wu et al. [43] worked on the volumetric shapes for deep learning. To sim-
plify the deep learning framework, these methods transfer 3D shape to a uniform square domain
or cubic domain instead of computing directly on the shape surface. This is a straightforward solu-
tion for 3D shape classification with CNNs, especially learning various different shapes. However,
the 3D shapes in the facial expression recognition task are all 3D facial models, which provide
the possibility of normalizing them to a standard facial area domain. Utilizing this property, we
propose a 3DMesh Convolutional Neural Network for facial expressions on the 3D facial surfaces.
To better understand the learned features of the network, Zeiler et al. [46] proposed a CNN

visualization method for diagnostic purposes, and Liu et al. [26] presented a directed acyclic
graph-based CNN visualization method to obtain an overview of the CNNs. More recently,
Pezzotti et al. [32] presented a progressive visual analytics approach for designing CNNs and
successfully optimized the public large-scale CNNs using the insights obtained from their system.
Kahng et al. [19] presented a method to visually explore industry-scale Deep Neural Networks.
Inspired by these CNN visualization methods, we develop a 3D Mesh CNN visualization frame-
work, which focuses on the learned 3D features and network optimization as well as their
relations.
In this article, we present a novel robust approach for facial expression recognition based on

3DMCNN that learns 3D features of the reconstructed face models. We use a 3D facial expression
database to fit the scanned depth image of the face to generate a high-quality 3D face model with
expressions. Then, we compute the geometry signatures, i.e., mean curvature, conformal, factor,
and heat kernel signature, as the features for learning. We perform the learning processes, such as
convolution, pooling, rectified linear unit (ReLU), and so forth, directly on the 3D surface domain
for training the 3DMCNN. Through visual analytics, we can modify and optimize the networks for
better performance. Finally, we compare the performance of our method with conventional image-
based CNN methods and analyze the advantages of our method by using interactive visualization
techniques. Figure 1 illustrates the entire process.
Our contributions in this article are summarized as follows:

• We propose a 3D Mesh Convolutional Neural Network for learning facial expressions on
3D face models. Our method convolves 3D signatures directly over an irregular sampled
surface based on the geodesic distance.

• We present a visual analytics framework for deeper understanding of the automatic feature
selection and node activation procedure, and provide interactive node selection and removal
operations for network modification and optimization.

• Our method is robust on the rotation of the face and environmental illumination variance
since it focuses on the surface geometry descriptors as learning features instead of the in-
tensities of the regular images.

The rest of the article is organized as follows: Section 2 introduces themethod for reconstructing
the 3D face with expressions using the RGBD camera and deformable face model. In Section 3, we
explain our 3DMCNN and its geodesic distance-based convolution and pooling framework. Then,
the employed geometric descriptors of the 3D face are described. Section 4 introduces the learned
feature maps and the clusters of different nodes in our 3DMCNN, which facilitates further editing
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Fig. 1. The pipeline of our 3D face model-based facial expression recognition framework with 3D Mesh

Convlutional Neural Networks. Based on the captured depth image and facial landmarks on the color image,

a 3D facial expression model is generated by fitting a morphable face model. The geometric signatures of the

3D facial model are computed and used for training a 3DMCNN for classifying facial expressions.

of the networks based on an interactive visual analytics approach. In Section 5, we first show the
public database for the experiment and then explain the training and testing details. Finally, we
show the results of our method and compare it to state-of-the-art 2D image-based CNN methods
and other CNN methods for 3D shapes.

2 3D FACE RECONSTRUCTION FROM RGBD SENSOR

We employ a Kinect v2 system that captures 1920x1080 2D images and 512x424 depth maps at 30
frames per second. A raw depth image of the subject’s face along with RGB color information is
acquired. To improve the quality of the raw 3D facial data and normalize it to a uniform face data
space, we use a multidimensional 3D face database, Facewarehouse, as a refinement template.
Cao et al. [7] presented a 3D facial expression database, which includes 150 subjects with 47
different expressions. The database is decomposed in a bilinear face model and each face model
can be computed by

S = C ×2 wT
i ×3 wT

e , (1)

where C is the decomposed core tensor,wi is the identity weight vector, andwe is the expression
weight vector, respectively. Then, the identity weightwi and the expression weightwe can be ob-

tained by minimizing the surface distance between the scanned raw face Ŝ and the reconstructed
bilinear model S as follows:

wi ,we = argmin‖Ŝ − (R (S ) +T )‖2, (2)

where R is the rotation matrix and T is the translation matrix. In practice, we first estimate the
rotation angle and translation using the method [18], and then we optimize identity weight wi ,
followed by optimizing expression weightwe . To fine-tune the expression of the generated 3D face
model, we utilize the RGB color image that is captured simultaneously with the depth map. We
use the Constrained Local Model (CLM) [12] to find 74 landmarks on the color image. These points
include the face contour, eye contour, and eyebrow, nose, and mouth contour, which are used for
the following two purposes. One is that these landmark points can be used for locating the face
position in the image and estimating the head rotations. Estimating head rotation is important to
initialize the template face model to start the fitting process. The second is that the points can be
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used to fine-tune the reconstructed expressions to improve the reconstruction accuracy of certain
extreme expressions. The left block in Figure 1 illustrates the reconstruction process.

There are two advantages of using the face decomposition approach to reconstruct the 3D
faces. First, it provides an easy and low-cost solution to obtain higher-resolution 3D face models
for expression analysis. Traditional high-resolution 3D scanners are expensive, and the scanning
usually takes a long time. Therefore, capturing a facial expression is a difficult task for this
equipment. Meanwhile, although the commercial depth camera can provide a cheap and fast way
to scan faces, the reconstructed 3D meshes often have low resolution for computing meaningful
geometric features for learning facial expressions. The face decomposition approach can use
a prescanned database as a prior knowledge to generate 3D high-resolution facial expression
models from low-resolution depth scans. Second, it provides a consistent sampling domain across
the generated 3D faces. Since the optimized 3D face model is obtained by computing the weight
vectors, it is actually a linear combination of the decomposed basis faces. The generated 3D face
always has one-to-one correspondence in terms of vertex to the average 3D face of the database
S̄ . Therefore, the sampling points on the 3D faces across the subject and the expressions are
consistent. We use the consistent sampling points as the grids to perform CNN computations,
which will be explained in detail in Section 3.

3 3D MESH CONVOLUTIONAL NEURAL NETWORKS

In this section, we present a 3DMesh Convolutional Neural Network (3DMCNN) for facial expres-
sion recognition by learning facial geometric features. Our method conducts operations including
convolution and pooling by utilizing the mesh grid on a template face model as shown in Fig-
ure 2(a). The red points are the sampling grid for computation, equivalent to the pixels in 2D
CNN. Instead of using a regular uniform grid in 2D image CNN, we have denser grids around
high-activity and -curvature regions including the eyes, mouth, and wrinkles near the mouth for
a higher sampling rate.

3.1 Geodesic Distance-Based Convolution and Pooling

Convolution: Traditional CNN uses a uniform grid for convolution and pooling, which is efficient
for processing images. Instead of transforming 3D surfaces to 2D planes for learning, our method
directly learns the geometric features on the 3D surface. Since the reconstructed 3D face is a linear
combination of the decomposed basis faces, there is one-to-one correspondence in terms of vertices
across the face models by nature. These vertices serve as the consistent sampling points on the
face domain for CNN computation, which is shown in Figure 2(a). The red points are sampling
points on the face surface and we compute the convolution on each point.
Similar to the convolution on an image, we use a weighted filter to convolve the geometric sig-

nature values. Convolution on images is done by sliding a square filter over the images; however,
defining a square filter on the 3D surface is difficult. To solve this problem, we propose a geodesic
distance-based convolution, where the weights are defined by the geodesic distances. In a con-
tinuous form of geodesic distance-based convolution, the weight values are continuous functions
to the geodesic distance from the center point. To reduce the computational cost on the discrete
meshes, we define limited directions for convolution. On each vertex, we search eight directions,
which are east, northeast, north, northwest, west, southwest, south, and southeast, as shown in
Figure 2(b). Together with the center point, we denote these directions as D, which is illustrated in
Figure 2(c). We define the east direction as the �x-axis increasing direction and similarly define the
north direction as the �y-axis increasing direction based on a standard world coordinate system.
Newly reconstructed 3D face models are first scaled and rotated to the front-facing position (i.e.,
the standard coordinate system), so that the directions can be consistently defined across all the
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Fig. 2. (a) Illustrates the sampling points on the face surface. (b) Illustrates the continuous geodesic distance

rings around the center points. (c) Illustrates the discrete eight directions for geodesic distance-based con-

volution. (d) Shows the normal vector of the sample point for tangent plane computation and the defined

directions.

models. To search for the east direction, we start from the center point and search over the surface
until it reaches the defined geodesic distance. The normal vector of the center vertex is needed to
compute the tangent plane, and the initial searching directions are defined on the tangent plane.
Similarly, we search for the other seven directions and compute the weighted sum around the
center point as follows:

дn+1 =
∑

d ∈D
(w (d, l )д(d, l )n ), (3)

wherew (d, l ) is the weights defined by the distance l and direction d , д(d, l )n is the geometric sig-
nature value at the destination location, and n indicates the layer of the network. As the geometric
signature values are only defined at the sampling points, it is not guaranteed that we can find a
value at the destination location. By using the barycentric interpolation of the nearby triangle, we
can compute the value д(д, l )n at any location of the surface.
The geodesic distance-based convolution has the advantages of preserving and identifying true

features as well as preventing dislocated false features in the convolution space when taking the
actual geodesic distance as a priori information. Figure 3 shows an illustrative one-dimensional
example, where the curve is the shape and the line segment indicates the pixels of the 1D “image”
of the curve shape. The sampling verticesV1,V2,V3, andV4 on the curve are rendered to the pixels
P1, P3, and P4 on the 1D “image.” As shown in figure, although V2 has a high curvature value on
the curve, it is not rendered on the “image” due to the sampling interval. When the convolution
is done on the image plane without considering the geodesic distance, a low curvature value atV3
will be used for convolution instead of V2’s curvature value. Therefore, the important geometric
feature of vertex P2 will be lost in the image convolution framework, which is not desired. On
the other hand, the image convolution framework will result in an uneven convolution on the 3D
surface domain. For example, the surface patches that are perpendicular to the image plane will be
coarsely sampled and the parallel surface will be densely sampled. So using geodesic distance for
convolution avoids these problems caused by simply applying the image convolution framework
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Fig. 3. Illustration of the difference of pixel-based convolution and the geodesic distance-based convolution.

Color shows two rendered pixels P1 and P2 from the mesh patch around vertexV1 andV3.V2 is not rendered
individually due to the resolution.

to the 3D surfaces and provides more uniform convolution results. This is also evidenced by our
later experiments in Section 5.
Pooling: Similar to the convolution, we also perform a pooling operation based on geodesic

distance. Based on the selected geodesic distance, we compute the mean (or max) value of the
feature values over a region within a certain geodesic distance around the sampling point. Since
the sampling points become sparse after each pooling operation, we retriangulate the remaining
sampling points to reconstruct a new mesh surface and double the geodesic unit for the next layer
computation. Once the 3DMCNN architecture is established, the resampling of the 3D faces can
be precomputed before the training process. We generate a cascaded face series with the reference
face and map to each individual model. The geodesic unit is determined by the average geodesic
distance between two sampling points on the shape surface. As we mentioned above, we increase
the geodesic unit based on the stride of the pooling operation.

3.2 Architecture of 3D Mesh Convolutional Neural Networks

The layers of the 3DMCNN are determined by the complexity of the 3D models and the size of
the database. Our 3D face model approximately consists of 5,000 vertices and has about 60 × 80
sampling points on the surface. For each expression, there are 800 models with different identities.
Therefore, we only need a relatively shallow architecture for the networks. Our CNN model has
three convolution (C1, C2, C3) and pooling layers (P1, P2, P3) and two fully connected layers (FC1,
FC2). Specifically, C1 is a convolutional layer with feature maps connected to a neighboring area
within the 2 geodesic units in the input.
The values in C1 are initialized by a uniform distribution with the range depending on the

incoming nodes. P1 is a pooling layer with feature maps connected to corresponding feature maps
in C1. In our case, we use the max pooling to amplify the most responsive vertex in the feature
maps. C3 uses a partial connection scheme for keeping the number of connections within proper
bounds and breaking symmetry in the network. In this way, we can expect the kernels to update
diversely to generate different feature maps.

ACM Transactions on Intelligent Systems and Technology, Vol. 10, No. 1, Article 7. Publication date: November 2018.



Learning Facial Expressions with 3D Mesh Convolutional Neural Network 7:9

Fig. 4. α and β are the opposite angles to the edge �pq. Yellow area shows the Voronoi area associated to the

vertex p.

3.3 3D Descriptors for Deep Learning

In this section, we discuss the 3D descriptors that are used for the mesh CNN training. Generally,
3D properties including principal curvatures, mean curvatures, Gaussian curvatures, conformal
factors [16], and heat kernels [39], can be used to describe the 3D shapes. As Hua et al. [16] indi-
cated that a 3D shape can be uniquely defined if the mean curvatures and the conformal factors
are given, in this article, we use mean curvature, conformal factor, and heat kernel as the geomet-
ric descriptors of the 3D face model. These features are normalized to the range between 0 and 1
before training.

3.3.1 Mean Curvature. Mean curvature measures the average curvature at a given point of a
surface S , and it is also equal to the average of the principal curvatures. On a discrete triangular
mesh, we compute the mean curvature at point p by

H (p) =
1

4A

�
�
�
�
�
�
�

∑

q∈N (p )

(cotα + cotβ ) �pq

�
�
�
�
�
�
�

2

, (4)

where α and β are two opposite angles of the shared edge �pq in two triangles, and N (p) is the set of
1-ring neighbor vertices of vertex p. A is the Voronoi area of the vertex p, which can be computed
by

A(p) =
1

8

∑

q∈N (p )

(cotα + cotβ )‖ �pq‖2 (5)

if the triangles in the 1-ring neighborhood are nonobtuse. Meyer et al. [29] presented the solution
for the obtuse case. Figure 4 illustrates the angles and the area of the vertex p.
Figure 5 shows the mean curvature on 3D meshes of three examples: an armadillo, a human

brain, and a scanned human face. The mean curvature values are normalized to the range from
0 to 1 and mapped to RGB colors for visualization. Regions such as fingertips, brain sulci, eye
contour, and mouth show red, which have high curvatures. Mean curvature provides the face
mesh deformation information for learning the expressions. Mean curvature is a local property
that can be computed at each vertex in discrete mesh forms; therefore, the computation can be
easily parallelized using GPU.

3.3.2 Conformal Factor. Conformal factor measures the vertex area change of the deformed
shape. The discrete conformal factor can be defined as

λ(p) =
Ae (p)

An (p)
, (6)

where the Ae (p) and An (p) are the averaging areas of the vertex p on surface �e and �n.
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Fig. 5. Illustration of mean curvature on three different shapes. The mean curvature values are normalized

to [0, 1], and the color map is shown on the right.

Fig. 6. Illustration of the conformal factor on a facial expression model. (a) Nonneutral facial expression

model. (b) Estimated neutral expression model after the identity vectorWi is obtained. (c) Conformal factor

map. The two highlighted areas show the area change of the surface.

The conformal factor function λ(u,v ) and the mean curvature function H (u,v ), defined on D,
satisfy the Gauss and Codazzi equation, as a conformal surface S (u,v ) is parameterized on a do-
main D. Therefore, if λ(u,v ) and H (u,v ) are given with boundary conditions, the surface S (u,v )
can be reconstructed uniquely. The mean curvature and the conformal factor are two important
signatures that carry fundamental information of a surface. These two signatures can be used for
training 3DMCNN. In our case, �e is the surface of the 3D face with an expression and �n is the
surface of the 3D face with a neutral expression, which can be obtained once the identity weight
vectorwi is estimated.
Figure 6 shows an example of the conformal factors on the 3D facial model. Figure 6(a) is a

nonneutral expression. Figure 6(b) is a neutral expression face, which is reconstructed once the
identity vectorWi is estimated. Based on the computed Voronoi area using Equation (5), the con-
formal factor λ(p) is computed based on least square conformal mapping. The conformal factors
are normalized and visualized with color map as shown in Figure 6(c). The highlighted areas in
Figure 6(c) show the significant changes around themouth, where themain deformations occurred.

3.3.3 Heat Kernel Signature. A heat kernel signature (HKS) is a feature descriptor of a spectral
property of a 3D shape and is widely used in deformable shape analysis [39]. HKS defines local
and global geometric properties of each vertex in the shape by a feature vector, which is used for
segmentation, classification, structure discovery, shape matching, and shape retrieval. The HKS k
is a function of time t , which can be solved by the differential equation δh

δt
= −Δh. The HKS at a
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Fig. 7. Heat kernel signature on two different facial expression models. Left to right shows T = 10, 20, 30,

40. Upper row shows a sample face with surprised expression and the lower row shows a sample face with

neutral expression.

point p is the amount of remaining heat after time T , which is

k (p) =
∞∑

i=0

e−T λiΦ2
i (p), (7)

where λi and Φi are the i
th eigenvalue and eigenfunction of the Laplacian-Beltrami operator. The

HKS is an intrinsic property of a given mesh; thus, it is stable to noises and articular transforma-
tions or even some topological changes. The HKS is also a multiscale signature of the shape, which
means changing the time parameterT can control the scale of the signature. For example, a larger
T represents a more global feature and a smaller T represents a more local feature of the shape.
Figure 7 illustrates the heat kernel signatures of two expressions. The time variable T increases
from left to right, showing the continued change of HKS on the face surfaces. Since HKS is a global
feature of the shapes, it is widely used for shape analysis and shape retrieval tasks due to its signif-
icant differences between different shapes [6]. Although the HKS is relatively stable on the human
face models, we found it also changes with the different expressions, especially with the smaller
time parameters. To use more significant local differences as the feature while keeping a certain
level of the global feature, we experimentally select a smallT = 10 in our method. Therefore, HKS
performs as a supportive feature to the more sensitive mean curvature and conformal factor in the
3DMCNN framework.

4 VISUAL ANALYTICS OF NETWORKS FOR MODIFICATION AND OPTIMIZATION

In this section, we present an interactive visual analytics method of the 3DMCNN for the purpose
of network performance. First, to better understand the 3DMCNN, visualizing the learned features
of neurons is an effective approach. Liu et al. [26] presented a directed acyclic graph-based CNN
visualization method, which explores features and network structures by clustering similar neu-
rons and visualizing them in a properly ordered layout. Their method focuses on visualization of
the deep CNNs without interactive modification of the network.
Inspired by their method, we present an interactive neuron visualization and modification

framework, which provides intuitive and detailed information for understanding and optimizing
the network. Our visualization framework enables three abilities: first, find salient features of geo-
metric signatures that affect the expression recognition result; second, find expression-specific fea-
tures for each expression; third, modify the networks by removing unnecessary neurons with low
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Fig. 8. Illustration of the network visualization approach. The selected neuron in layer 2 is highlighted in

yellow and its feature map is shown. The connection with the neurons in layer 1 is shown and the associated

filters are displayed accordingly.

activation values for network simplification. As we cannot accurately know how many neurons
and layers are needed for training the 3DMCNN at the beginning, we usually provide a sufficient
number of neurons and layers as an initial setup. Then, the neurons with high activations for
certain expressions are clustered and the layouts of the network are rearranged accordingly. By
analyzing these different clusters of neurons, we can understand important features and the neu-
rons that are sensitive to them. By selecting the significant features and high-activation neurons
as the initial state of the retraining, the network structure can be simplified and the performance
can be optimized.
Figure 8 shows an example for the visual analytics interface of the trained 3DMCNN. The net-

work shows the first two layers, and each layer is composed by a convolution layer, a Rectified
Linear Unit (ReLU) layer, and a pooling layer. A three-channel input data is passed to the 3DM-
CNN, and we visualize the first two groups of layers. One of the neurons in the second layer is
selected, the corresponding feature map is shown, and the connected neurons in the first layer are
highlighted. For the connections between neurons, the associated filters are displayed as well. The
interactive inspection approach enables us to find and analyze the important features.
Clustering similar neurons into several functioning groups provides a clear overview of the

learned network. In our visual analytics framework, the neurons are clustered into three types of
groups: (1) high-activation positive nodes, whose associated weights are large positive values—
these nodes contribute positive features to the output nodes in the next layer; (2) high-activation
negative nodes, whose weights are large negative values; (3) low-activation nodes, whose associ-
ated weights are approximately zero. These nodes provide almost no features to the output layers,
so they have no potentials and can be removed to reduce the network complexity and improve the
performance of the network.
As illustrated in Figure 9, a set of smiling 3D face data is passed to the trained 3DMCNN. The

nodes in each layer are clustered and visualized, and the associated spectrum colors represent the
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Fig. 9. Illustration of the feature visualization process. Red cluster contains high-activation positive nodes,

green cluster contains low-activation nodes, and blue cluster contains high-activation negative nodes. Gray

nodes are unconnected nodes to the selected node. Sample feature maps are displayed beside each cluster.

different activation values. High-activation positive nodes are labeled in red, low-activation nodes
are labeled in green, and high-activation negative nodes are labeled in blue. We treat a node as a
low-activation node if the total contribution to the final output is less than 5%. The connectivities
are also grouped for simplified visualization of the network. In Figure 9, we trace back the classi-
fication result, for example, “happiness,” to explore the learned feature patches. We consecutively
select the high-activation positive nodes to see the lower-level neurons connected to them. Shallow
layers of the CNN detect detailed features such as contours and color patches, while deeper layers
detect more global features such as detecting the parts of the objects. As we learned by visualiz-
ing the feature maps in each layer, our 3DMCNN also learns the expressions in a similar manner:
it detects feature patches and then detects larger areas of the face and their combinations. Since
we start training the network with a sufficient number of neurons, there exists many redundant
neurons. Visualizing and interactively removing these redundant neurons improve the network
efficiency, simplify the network, and reduce the overfitting problems.

5 EXPERIMENT

We have applied our algorithm on public 3D face expression databases and Kinect scanned face
models. The surface geometric features are experimented on first, followed by the training se-
tups for the 3D MCNN. We compare our method with the 2D CNN-based method and geome-
try image-based method for facial expression recognition. Then, we analyze cases in which our
method performs better than other methods. Our experiments have been performed on a Linux
PC with 3.0GHz eight-core CPU, 8GB memory, and GeForce 980 graphics card with the NVIDIA
CUDA Framework 6.5. The computation time of our method is mainly spent on the 3D Mesh CNN
training process. The reconstruction and feature computation time for 3D face is approximately
3 seconds for each image.

5.1 Datasets

To evaluate our method, we employ two public 3D expression databases for training and testing.
FaceWarehouse is used for training and 3D face generation in the testing phase. BU-3DFE is used
for testing and comparison among different learning methods.
FaceWarehouse [7]: FaceWarehouse is a database of 3D facial expressions for visual computing

applications. It includes 3D face scans of 150 individuals aged between 7 and 80 from various ethnic
backgrounds. There are 20 expressions including neutral expressions for each person. For each
expression, both the 3D model and the 2D image with landmarks are provided. The landmarks
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include important facial feature points, which can be used for fine-tuning the reconstructed 3D
faces. The 3D face models with expressions are obtained by deforming a template facial mesh
to match the scanned depth image. These meshes with consistent topology are assembled as a
rank-3 tensor to build a bilinear face model with identity and expression. In our experiment, the
expressions are manually labeled for six prototypic expressions (happiness, disgust, fear, angry,
surprise, and sadness).
BU-3DFE (Binghamton University 3D Facial Expression) Database [45]: The BU-3DFE

database includes 100 subjects (56% female, 44% male), aged from 18 to 70, with a variety of ethnic
backgrounds, including white, black, East Asian, Middle East Asian, Indian, and Hispanic Latino.
There are seven expressions for each subject including neutral expressions and the six prototypic
expressions. For each nonneutral expression, there are four 3D shapes with four levels of intensity.
Therefore, there are 25 instances of 3D expression models for each subject, resulting in a total of
2,500 3D facial expression models in the database. A color facial image is associated with each
expression shape model.

5.2 Visual Analytics-Guided CNN Design and Optimization

We train the 3DMCNN with the FaceWarehouse dataset and test with the BU-3DFE dataset. Since
there are symmetric and similar expressions, the data is manually labeled in five nonneutral classes
and one neutral class. To improve the training robustness, we generate some randomness (±5%) to
the 3D face reconstruction process to obtain more training datasets: (1) Add a random variance to
the identity coefficientwi to generate a new identity. (2) Add a random variance to the expression
coefficient we . Including the original 150 faces of the subjects and 450 synthetic data, we prepare
600 faces for each expression. We compute the three types of signatures on the 3D faces. Figure 11
illustrates the computed geometry signatures: (a) mean curvature, (b) conformal factor, and (c) heat
kernel. The geometry features show similarity within the same expression across different subjects
while varying between different expressions.
We start with three layers of the convolution layer, ReLU layer, and pooling layer, followed

by two fully connected layers and a SoftMax classification layer. We set the number of nodes to
192 for convolution layer 1, and 256 for both convolution layers 2 and 3, respectively, which we
consider as sufficient numbers for neurons. We set the weight update ratio to 0.0005 and run for
20,000 iterations. Once we obtain the initial classification network, we use our node clustering and
visualization method to selectively remove low-activation neurons and retrain the network with
the selected high-activation neurons as the initial status. An example of the optimization process
is discussed in the following section. Figure 10 shows the evaluation results of the network sim-
plification sessions. After 20 sessions of modification of the network based on our visual analytics
approach, the training time, the number of nodes, and the number of maximum iterations are re-
duced while keeping a similar prediction accuracy. The final nodes are set to 128 for convolution
layer 1, 192 for layer 2, and 256 for layer 3. Using the final network, we test on the public database
and the results are discussed in Section 5.4.

5.3 Case Study

In this section, we provide further details on the analysis performed with our visual analytics ap-
proach. As we discussed in Section 5.2, we optimize the network by reducing the redundancy. Since
we start with a sufficient number of neurons, it usually generates many low-activation neurons,
which increases the computational cost without contributing to the classification result. These
neurons often have low connectivity to the subsequent layers as well. Our goal is to reduce the
number of neurons with low activation values and low connectivity. We use the histogram plots to
observe the distributions of the activation values. Figure 12 shows the activation histograms of the
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Fig. 10. Evaluation of the interactive network simplification. Graphs show the training time, accuracy, node

number, and maximum iteration with respect to the modification sessions.

Fig. 11. The geometry signatures on the 3D face. Each row shows different expressions of the same subject.

Expressions 1, 2, 3 show three expressions: happiness, anger, and surprise. In each expression, column (a)

shows the mean curvature, column (b) shows the conformal factor, and column (c) shows the heat kernel

signature.

convolutional layers. Activation values were scaled to a range between −1 and 1, and 21 bins were
selected to generate the histograms. Typical feature maps of the clusters are displayed accordingly
on the histograms. The detailed lists of the neurons can be shown by selecting the histogram bins.
The upper row of Figure 12 shows the initial stage before the network tuning, and the lower row
shows the final stage after optimization. Initially, there is a large number of low-activation nodes
in convolution layer 1 as shown in the histogram. We further inspect the learned features via the
filter list. Figure 13 shows the list of the selected cluster of the neurons in an increasing order of
the activation value. The connectivity (out) shows how many neurons in the subsequent layer are
connected and the connectivity (in) shows how many preceding neurons are connected. The list
can be rearranged by selecting different orders. We remove those neurons with low activation and
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Fig. 12. The activation histograms of the convolution layers. The upper row shows the histograms of the ini-

tial stage and the lower row shows histograms of the final optimized stage. Some sample filters are displayed

on the histograms.

Fig. 13. The detailed inspection on the selected group of neurons. The table shows the list of the filters with

low activations.

connectivity and then retrain the network by keeping the rest of the feature maps. The neuron
selection and removal can be reversed if the result shows unexpected changes. The bottom row
of Figure 12 shows the activation histograms in the final stage, where the number of the low-
activation neurons were greatly reduced compared to other neurons. Based on the modification
using our visual analytics approach, we optimize the network by reducing the first convolutional
layer from 192 to 128 filters, and the second convolutional layer from 256 to 192. The optimized
result provides a compact network with reduced training time and the similar prediction accuracy.
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Table 1. Training Accuracy Based on Single Geometry Signature

and Their Combination for Each Expression

Features Neutral (%) Happiness (%) Sadness (%) Angry (%) Surprise (%) Fear (%) Average (%)

Mean Curvature 85.2 83.5 82.3 85.6 83.1 83.3 83.8

Conformal Factor 80.1 82.6 80.2 75.1 77.5 78.5 79.0

Heat Kernel Signature 60.1 56.2 62.1 66.7 51.6 53.6 58.4

Combined 92.3 90.1 89.5 88.1 90.2 89.6 89.8

Fig. 14. The comparison result between our method and other CNN-based methods. Our method achieves

the highest recognition accuracy.

5.4 Comparisons and Evaluation

We evaluate our 3DMCNN framework by selecting different geometric signatures separately as
well as their combinations to train a 3DMCNN. To fairly compare their performance in terms of
providing sufficient features for training, we use the same 3DMCNN architecture and the same
number of training data. Table 1 shows the test accuracy for each expression as well as the av-
erage. Mean curvature achieves the highest accuracy for 3DMCNN using the single feature only,
followed by the conformal factor, while heat kernel achieves the lowest accuracy. This is because
mean curvature and conformal factor carry more detailed information than heat kernel in local
areas. Combining the three signatures as three channels of the input significantly improved the
classification accuracy.
We also compare our method with several existing methods: (1) traditional image-based

CNNs [27], which uses images to train the CNNs; (2) geometry image CNNs [37], which map the
3D shape to the 2D image and generates synthetic geometric images for training regular CNNs;
and (3) volumetric CNNs [43], which extend 2D image CNNs to 3D cubic CNNs. These methods
are proposed for general 3D shape recognition purposes, and we employ them to our face expres-
sion recognition application for comparisons. We also implement an extra two types of methods
derived from our method. (4) The 3D faces with their geometric signatures are rendered to pro-
jection images with virtual cameras and take the images for training and testing. We denote this
method as the projection image-based method. (5) Since we capture the RGB information with the
depth value simultaneously, we are actually able to obtain 3D faces with RGB textures. We com-
bine this color information with geometric signatures to train a six-channel 3DMCNN, denoted
as 3D Mesh&Image CNN. We compare these methods under the same configuration of the net-
work architecture, i.e., same number of layers and neurons. Figure 14 summarizes the results. Our
3DMCNN and 3DMesh&Image CNNs achieved the highest accuracy. Geometric image CNNs [37]
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Fig. 15. High activation feature areas on 3D face surface of two expression classes: (a) is happiness and

(b) is anger. All the feature areas are mapped to the template face for consistent visualization.

also achieve a high classification accuracy (85%), since they also focus on the geometric features.
However, the 2D authelic mapping used in the method does not guarantee a distance-preserving
mapping, since the convolution on the 3D surface domain is nonuniform. The projection image-
basedmethod achieves slightly higher accuracy than the RGB image-basedmethod, but lower than
our mesh-based method. This is because they both learn other face-related features, such as face
contour, color patch, and so on. Volumetric CNNs achieve the lowest accuracy, since they need
extra depth of the network to reach their best performance. As a result, our method achieves the
best accuracy (90%) under a shallow and compact network configuration.

5.5 Knowledge from Visual Analytics of CNNs

Our visualization system provides an interactive way of neuron cluster selection for visualizing
the learned features. By selecting the highest-activation cluster, the features are deconvolved back
to the input 3D face space and the areas are highlighted. These areas are important since they lead
to the strongest responses in the CNNs. Figure 15 shows the high-activation areas for two different
expressions. The top nine high-activation areas are selected for demonstration in each expression.
Figure 15(a) shows the features of the “happiness” class and Figure 15(b) shows features of the
“anger” class. High-activation areas for happiness are mostly located around mouth corners as
shown in the result. Furthermore, these features have strong reaction on mean curvature and only
one feature area reacts on the conformal factor (lower left of Figure 15(a)). On the other hand,
high-activation areas for “anger” are distributed around the eyes and forehead. In contrast to the
“happiness” class, four areas react to conformal factors for the “anger” class. From the visualization
result, we know different geometric signatures carry different information for certain expressions.
Figure 16 shows the high-activation areas for “happiness” and “anger” for comparison. We map
these areas to the template face domain for consistent visualization purposes. Features are located
around the mouth and eyes for “happiness.” Since features around the eyes are also considered as
important as mouth corners, the 2D image-based method may not work well for some ambiguous
expressions. Figure 17 shows three examples where the image-based method fails to correctly clas-
sify the expressions; however, we successfully classify it using our method. Figure 17(a) shows that
the subject unintentionally closed her eyes while smiling, which leads to misclassification in the
2D image-based method. Figure 17(b) shows the case is classified to “anger” using the image-based
method under extreme illumination, whereas it was classified to “happiness” using our method.
Figure 17(c) shows the failed case for the image-based method under large rotation. Our method
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Fig. 16. High-activation feature areas on 2D images of two expression classes: (a) is happiness and (b) is

anger.

Fig. 17. Successful classification cases using our method while the 2D image-based method misclassified.

provides a robust and stable classification outcome to some ambiguous expressions and also under
some uncontrolled environment conditions and extreme head poses.

5.6 Limitations

Although the proposed 3D mesh CNN can achieve high performance on facial expression recogni-
tions, there are two main limitations. One is that our method needs a uniform sampling standard
across the 3D shapes. This is because, similar to the image-based CNNs, the computations of convo-
lution and pooling need to be performed consistently on the 3D surface under a uniformly defined
structure. Further studies need to be done to apply the 3DMCNN to general classification tasks.
The second limitation is that the 3D deformable face model contains limited high-frequency de-
tails. Fine local details such as wrinkles are not properly modeled and therefore result in the fitted
model not containing this information either. Therefore, some subtle expressions with tiny facial
deformations cannot be predicted accurately using current 3D face models and data. This disad-
vantage would affect the potential peak performance of the 3DMCNN to learn deeper features
using a smaller size of convolution filters.
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6 CONCLUSION

In this article, we have presented a 3D Mesh Convolutional Neural Network for facial expression
recognition and an interactive visual analytics method for the purpose of designing and modifying
the networks. Based on the depth surface scanning via an RGBD camera, we have reconstructed a
3D face model by fitting a deformable face model to the raw surface. We have adopted three types
of geometric signatures, including mean curvature, conformal factor, and heat kernel, as feature
values of the shape surface. These signatures can comprehensively describe the shape surface both
locally and globally. Using the geometric signatures, the 3DMCNN is trained. To uniformly con-
volve the sampling points on the face surface, we proposed a geodesic distance-based convolution
scheme. This geodesic distance-based convolution and poolingmethod can prevent dislocated false
features and preserve actual local features. We have trained and tested the 3DMCNN using two
public 3D face expression databases and analyzed the effectiveness of our method by interactively
visualizing the learned features on the neurons. Through the visualization results, we have demon-
strated some high-activation features that affect the recognition result most. We have compared
our method with the traditional image-based CNNs, and our method achieves higher recognition
accuracy. The visual analytics of the learned features show that the geometric signatures are more
sensitive and effective in learning facial expressions than image features. In future work, we will
develop better 3D face modeling with higher shape resolution and explore the influences. We will
also extend the 3DMCNN to other generalized classification tasks.
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