
DEPENDABLE MESSAGING
IN WIRELESS SENSOR NETWORKS

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the

Graduate School of The Ohio State University

By

Hongwei Zhang, B.S., M.S.

* * * * *

The Ohio State University

2006

Dissertation Committee:

Anish Arora, Adviser

Prasun Sinha

Paul Sivilotti

Dong Xuan

Xiaodong Zhang

Approved by

Adviser
Graduate Program in

Computer Science and
Engineering

c© Copyright by

Hongwei Zhang

2006

ABSTRACT

Messaging is a basic service in sensornets. Yet the unique system and application prop-

erties of sensornets pose substantial challenges for the messaging design: Firstly, dynamic

wireless links, constrained resources, and application diversity challenge the architecture

and protocol design of sensornet messaging; Secondly, complex faults and large system

scale introduce new challenges to the design of fault-tolerant protocols. The objective of

this dissertation is to address the aforementioned challenges of sensornet messaging.

Despite the extensive effort in studying sensornet messaging, the lack of a basic un-

derstanding of its essential components has been an obstacle for reliable, efficient, and

reusable messaging services in sensornets. To address this problem, one task of this dis-

sertation is to identify the basic components of sensornet messaging and to study the re-

lated algorithmic design issues. More specifically, we propose the messaging architecture

SMA that consists of three components: traffic-adaptive link estimation and routing (TLR),

application-adaptive structuring (AST), and application-adaptive scheduling (ASC). TLR

deals with dynamic wireless links as well as the impact of application traffic patterns on

link dynamics; AST and ASC control the spatial and temporal flow of data packets to

support application-specific in-network processing and QoS requirements. To provide an

instance of the component TLR, we propose the routing protocol Learn on the Fly (LOF).

LOF solves the problem of precisely estimating wireless link properties in the presence

of varying network conditions. Having instantiated the foundational component TLR,

ii

we study component ASC from the perspective of in-network processing and QoS pro-

visioning respectively. Taking packet packing as an example of in-network processing,

we study the problem of scheduling packet transmissions to improve messaging efficiency

(e.g., the degree of in-network aggregation). For the basic problem of reliable and real-time

data transport in event-detection sensornets, we propose the protocol Reliable Bursty Con-

vergecast (RBC) that innovates the window-less block acknowledgment scheme and the

retransmission-aware differentiated contention control mechanism. Even though detailed

study of AST is still a part of our future work, the architecture SMA provides a framework

for sensornet messaging, and the study of components TLR and ASC provides the algorith-

mic references for instantiating SMA. This part of the dissertation work has also provided

dependable messaging services for several real-world sensornet systems.

The second part of the dissertation addresses the challenges that complex faults and

large system scale bring to the design of fault-tolerant protocols. For scalable dependability

irrespective of fault complexity and system scale, we propose the concept of local stabi-

lization. In a locally-stabilizing system, fault impact is locally contained around where the

fault has occurred, and the time taken for the system to stabilize depends only on the size

of the fault-perturbed region instead of the system size. For shortest path routing, a basic

problem in messaging, we propose a locally-stabilizing protocol LSRP. Upon starting at an

arbitrary state where the perturbation size is p, LSRP stabilizes to yield shortest path routes

within O(p) time, and the nodes affected by the perturbation are within O(p) distance from

the perturbed regions. The concept of local stabilization and the algorithmic approach of

LSRP are generically applicable to other networking and distributed computing problems.

iii

To my family.

iv

ACKNOWLEDGMENTS

To reach this stage in my Ph.D. study and this point in my life, I am indebted to many

great people for their wisdom, support, and love.

I was fortunate to have met Dr. Anish Arora in early 2001. It is him who has given me

the opportunity to conduct focused research in the past years, and it is him who has showed

me the road to high quality work. While enjoying the freedom of independent thinking,

I greatly appreciated his insightful advice on my research as well as life. I also greatly

appreciate his patience in guiding me through the early stages of my Ph.D. study. I still

remember that, when I was writing my first research paper in English, he went through and

polished every sentence of the draft!

While working for the DARPA NEST research program, I was also fortunate enough

to interact with and learn from many great scientists and researchers including Dr. Emre

Ertin, Dr. Mohamed Gouda, Dr. Ted Herman, Dr. Sandeep Kulkarni, Dr. William Leal, Dr.

Mikhail Nesterenko, Dr. Rajiv Ramnath, and Dr. Prasun Sinha. Their wisdom and humor

have greatly enriched my Ph.D. experience.

Being a Ph.D. student in an active research department, I have also enjoyed and appre-

ciated the advice and help from many other professors including Dr. Ten H. Lai, Dr. David

Lee, Dr. Ming T. Liu, Dr. Paul Sivilotti, Dr. Dong Xuan, and Dr. Xiaodong Zhang. They

have made my stay at The Ohio State University fun and fruitful.

v

Being a research intern at Motorola Labs in Summer 2005, I have greatly enjoyed work-

ing with my manager and friend Mr. Loren J. Rittle. I greatly appreciate his support during

and after my internship at Motorola.

During my Ph.D. study, I have enjoyed working with many other fellow graduate stu-

dents, both within and outside The Ohio State University. I have got the chance to work

with Hui Cao, Young-ri Choi, Zhijun Liu, Vinayak Naik, and Lifeng Sang on shared

projects or research problems, and it was a wonderful experience. I have also interacted

extensively with many other graduate colleagues including Sandip Bapat, Murat Demirbas,

Prabal Dutta, Vinodkrishnan Kulathumani, Santosh Kumar, Vineet Mittal, and Mukundan

Sridhara. Their help and laughters have greatly enriched my life at The Ohio State Univer-

sity. I would also like to thank my many other friends for their continued support during

my life and study.

I am indebted to my parents Wancai Zhang and Shunbi Wang for their unconditional

love and support. I would also like to thank the rest of my family — who are too numerous

to name individually — for their love and help. It is this family that has made me strong

and courageous to be the one I am today.

Last, but certainly not least, I would like to thank my wife Yun Wang for her uncondi-

tional love, care, and laughter. Her love and support have been enabling me to focus on my

research during the days and nights, the weekdays and weekends. Without her, I would not

have been able to accomplish what I have achieved so far. Yun is my love, my inspiration,

and my life.

vi

VITA

January 13, 1975 . Born - Chongqing, China

1997 . B.S. Computer Engineering,
Chongqing University, China

2000 . M.S. Computer Engineering,
Chongqing University, China

2000-2001 .Graduate Fellow,
The Ohio State University

June - September 2005 .Research Intern,
Motorola Labs, USA

2001-present .Graduate Research Associate,
The Ohio State University

PUBLICATIONS

Research Publications

Anish Arora and Hongwei Zhang. “LSRP: Local Stabilization in Shortest Path Routing”.
IEEE/ACM Transactions on Networking, 14 (3):520-531, June, 2006.

Anish Arora, Prabal Dutta, Sandip Bapat, Vinod Kulathumani, Hongwei Zhang, Vinayak
Naik, Vineet Mittal, Hui Cao, Murat Demirbas, Mohamed Gouda, Young-Ri Choi, Ted
Herman, Sandeep Kulkarni, U. Arumugam, Mikhail Nesterenko, A. Vora, and M. Miyashita.
“A Line in the Sand: A Wireless Sensor Network for Target Detection, Classification, and
Tracking”. Computer Networks (Elsevier), 46(5):605-634, December, 2004.

Hongwei Zhang and Anish Arora. “GS3: Scalable Self-configuration and Self-healing in
Wireless Sensor Networks”. Computer Networks (Elsevier), 43(4):459-480, November,
2003.

vii

Hongwei Zhang, Anish Arora, and Prasun Sinha. “Learn on the Fly: Data-driven Link Es-
timation and Routing in Sensor Network Backbones”. 25th IEEE International Conference
on Computer Communications (INFOCOM), 2006.

Emre Ertin, Anish Arora, Rajiv Ramnath, Mikhail Nesterenko, Vinayak Naik, Sandip Ba-
pat, Vinod Kulathumani, Mukundan Sridharan, Hongwei Zhang, and Hui Cao. “Kansei:
A Testbed for Sensing at Scale”. 5th IEEE/ACM International Conference on Information
Processing in Sensor Networks Special Track on Platform Tools and Design Methods for
Network Embedded Sensors (IPSN/SPOTS), 2006.

Vinayak Naik, Emre Ertin, Hongwei Zhang, and Anish Arora. “Wireless Testbed Bonsai”.
2nd International Workshop on Wireless Network Measurement (WiNMee), 2006.

Hongwei Zhang, Anish Arora, Young-ri Choi, and Mohamed Gouda. “Reliable Bursty
Convergecast in Wireless Sensor Networks”. 6th ACM International Symposium on Mobile
Ad Hoc Networking and Computing (MobiHoc), 2005.

Vinayak Naik, Anish Arora, Prasun Sinha, and Hongwei Zhang. “Sprinkler: A Reliable
Data Dissemination Service for Wireless Embedded Devices”. 26th IEEE Real-Time Sys-
tems Symposium (RTSS), 2005.

Anish Arora, Rajiv Ramnath, Emre Ertin, Prasun Sinha, Sandip Bapat, Vinayak Naik,
Vinod Kulathumani, Hongwei Zhang, Hui Cao, Mukundan Sridhara, Santosh Kumar, Nick
Seddon, Chris Anderson, Ted Herman, N. Trivedi, C. Zhang, Mohamed Gouda, Young-Ri
Choi, Mikhail Nesterenko, R. Shah, Sandeep Kulkarni, M. Aramugam, L. Wang, David
Culler, Prabal Dutta, Cory Sharp, Gille Tolle, Mike Grimmer, B. Ferriera, and Ken Parker.
“ExScal: Elements of an Extreme Scale Wireless Sensor Networks”. 11th IEEE Inter-
national Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA), 2005.

Hongwei Zhang and Anish Arora. “Brief Announcement: Continuous Containment and
Local Stabilization in Path-vector Routing”. 24th ACM Symposium on Principles of Dis-
tributed Computing (PODC), 2005.

Hongwei Zhang, Anish Arora, and Zhijun Liu. “A Stability-oriented Approach to Improv-
ing BGP Convergence”. 23rd IEEE Symposium on Reliable Distributed Systems (SRDS),
2004.

Anish Arora and Hongwei Zhang. “LSRP: Local Stabilization in Shortest Path Routing”.
IEEE-IFIP International Conference on Dependable Systems and Networks (DSN), 2003.

viii

Hongwei Zhang and Anish Arora. “GS3: Scalable Self-configuration and Self-healing
in Wireless Networks”. 21st ACM Symposium on Principles of Distributed Computing
(PODC), 2002.

Hongwei Zhang and Arjan Durresi. “Differentiated Multi-Layer Survivability in IP/WDM
Networks”. 8th IEEE-IFIP Network Operations and Management Symposium (NOMS),
2002.

FIELDS OF STUDY

Major Field: Computer Science and Engineering

Studies in:

Computer Networking Prof. Anish Arora
Prof. Prasun Sinha
Prof. Dong Xuan
Prof. Xiaodong Zhang

Software Systems Prof. Paul Sivilotti
Computer Architecture Prof. Mario Lauria

ix

TABLE OF CONTENTS

Page

Abstract . ii

Dedication . iv

Acknowledgments . v

Vita . vii

List of Tables . xiv

List of Figures . xv

Chapters:

1. Introduction . 1

1.1 Messaging: a challenge problem in sensornets 1
1.2 Contributions of the dissertation . 6
1.3 Organization of the dissertation . 11

2. Sensornet messaging architecture . 13

2.1 Basic components of sensornet messaging 13
2.2 SMA: an architecture for sensornet messaging 15

2.2.1 TLR: traffic-adaptive link estimation and routing 16
2.2.2 AST: application-adaptive structuring 17
2.2.3 ASC: application-adaptive scheduling 19

2.3 Summary . 21

x

3. Data-driven link estimation and routing . 23

3.1 Motivation . 23
3.2 Why data-driven link estimation and routing? 25

3.2.1 Experiment design . 25
3.2.2 Experimental results . 29
3.2.3 Data-driven routing . 33

3.3 ELD: the routing metric . 36
3.3.1 A metric using MAC latency and geography 36
3.3.2 Sample size analysis . 39

3.4 LOF: a data-driven protocol . 42
3.4.1 Learning where we are . 43
3.4.2 Initial sampling . 44
3.4.3 Data-driven adaptation . 45
3.4.4 Exploratory neighbor sampling 49

3.5 Experimental evaluation . 50
3.5.1 Experiment design . 50
3.5.2 Experimental results . 53
3.5.3 Other experiments . 57

3.6 Summary . 60

4. Packing-oriented scheduling . 62

4.1 Packet packing . 62
4.2 Packing-oriented scheduling . 63

4.2.1 Utility calculation . 64
4.2.2 Scheduling rule . 68
4.2.3 Implementation . 69

4.3 Performance evaluation . 70
4.3.1 Simulation study . 71
4.3.2 Experimental study . 77

4.4 Summary . 80

5. Reliable and real-time data transport . 81

5.1 Motivation . 81
5.2 Testbed and experiment design . 83
5.3 Limitations of two hop-by-hop packet recovery mechanisms 87

5.3.1 Synchronous explicit ack (SEA) 87
5.3.2 Stop-and-wait implicit ack (SWIA) 90

5.4 Protocol RBC . 92

xi

5.4.1 Window-less block acknowledgment 93
5.4.2 Differentiated contention control 98
5.4.3 Timer management in window-less block acknowledgment . . . 100

5.5 Experimental results . 103
5.6 Discussion . 111

5.6.1 Continuous event convergecast 111
5.6.2 Flow control . 115

5.7 Summary . 116

6. Locally-stabilizing shortest path routing . 118

6.1 Motivation . 118
6.2 Preliminaries . 120
6.3 Local stabilization: concepts and properties 123

6.3.1 Concepts related to local stabilization 123
6.3.2 Properties of F -local stabilizing systems 128

6.4 Protocol LSRP . 129
6.4.1 Problem statement . 130
6.4.2 Fault propagation in existing distance-vector protocols 130
6.4.3 Protocol concepts . 131
6.4.4 The design of LSRP . 136
6.4.5 Examples revisited . 143

6.5 Protocol analysis . 146
6.5.1 Property of local stabilization 146
6.5.2 Properties of loop freedom and quick loop removal 149

6.6 Discussion . 150
6.6.1 Impact of network topology on local stabilization 150
6.6.2 Issues related to the application of LSRP 152

6.7 Summary . 154

7. Related work . 156

7.1 Messaging architecture . 156
7.2 Link estimation and routing . 158
7.3 Packing-oriented scheduling . 160
7.4 Reliable and real-time data transport . 161
7.5 Local stabilization . 163

8. Concluding remarks . 165

Appendices:

xii

A. RBC: ack-loss probability in RBC . 168

B. RBC: probability that an orphan packet has not been received 170

C. RBC: proof of Theorem 1 . 171

D. LSRP: proof of Lemma 1 . 173

Bibliography . 180

Index . 188

xiii

LIST OF TABLES

Table Page

5.1 SEA with B-MAC in Lites trace . 87

5.2 SEA with S-MAC in Lites trace . 89

5.3 SWIA with B-MAC in Lites trace . 91

5.4 RBC in Lites trace . 104

5.5 RBC without differentiated contention control 108

xiv

LIST OF FIGURES

Figure Page

1.1 Scatter plot of broadcast packet delivery rate in Kansei [13]. There are 300
data points for each distance, with each data points representing the status
of 100 broadcast transmissions. (Interested readers can find more detailed
discussion of the experimentation environment in Section 3.2.) 2

1.2 Time series of packet delivery rates of the link that corresponds to the 5.5-
meter transmitter-receiver distance . 3

2.1 SMA: a sensornet messaging architecture 15

2.2 Example of application-adaptive structuring 18

2.3 Example of application-adaptive scheduling 20

3.1 Outdoor testbed . 26

3.2 Sensornet testbed Kansei . 26

3.3 The traffic trace of an ExScal event . 28

3.4 Outdoor testbed . 30

3.5 Indoor testbed Kansei . 31

3.6 Network condition, measured in broadcast reliability, in different interfer-
ence scenarios . 32

3.7 The difference between broadcast and unicast in different interference sce-
narios . 32

xv

3.8 Error in estimating unicast delivery rate via that of broadcast 34

3.9 Le calculation . 37

3.10 Mean unicast MAC latency and the ELD 38

3.11 Histogram for unicast MAC latency . 40

3.12 Sample size requirement . 41

3.13 MAC latency in the presence of interference 44

3.14 A time series of log(LD) . 46

3.15 The weight α in EWMA . 48

3.16 End-to-end MAC latency . 54

3.17 Number of hops in a route . 54

3.18 Per-hop MAC latency . 54

3.19 Average per-hop geographic distance . 54

3.20 COV of per-hop geographic distance in a route 55

3.21 Number of unicast transmissions per packet received 56

3.22 Number of failed unicast transmissions . 57

3.23 End-to-end MAC latency . 58

3.24 End-to-end MAC latency: event traffic, 1 sender. (Note: the experiments
are done with a 15×6 subgrid of Kansei.) 58

3.25 Network throughput (Note: the experiments are done with a 15×6 grid of
Kansei.) . 59

4.1 Packing ratio . 72

xvi

4.2 Average number of transmissions and receptions per information unit re-
ceived . 73

4.3 Information delivery reliability . 74

4.4 Packing ratio . 74

4.5 Average number of transmissions and receptions per information unit re-
ceived . 75

4.6 Information delivery reliability . 75

4.7 Packing ratio . 76

4.8 Average number of transmissions and receptions per information unit re-
ceived . 76

4.9 Information delivery reliability . 77

4.10 Tmote Sky sensor node grid . 78

4.11 Packing ratio . 79

4.12 Average number of transmissions and receptions per information unit re-
ceived . 79

4.13 Information delivery reliability . 79

5.1 The testbed . 84

5.2 The distribution of packets generated in Lites trace 85

5.3 The distribution of packet reception in SEA with B-MAC 88

5.4 The distribution of packet reception in SEA with S-MAC 89

5.5 The distribution of packet reception in SWIA with B-MAC 91

5.6 Virtual queues at a node . 94

5.7 The distribution of packet reception in RBC 105

xvii

5.8 The distributions of packet generation and reception 106

5.9 Node reliability . 107

5.10 Distribution of node reliability . 107

5.11 Node reliability as a function of routing hops 108

6.1 A legitimate system state . 125

6.2 Example of fault propagation in existing distance-vector routing protocols . 131

6.3 Layering of diffusing waves in shortest path routing 133

6.4 LSRP: local stabilization in shortest path routing 137

6.5 System behavior after d.v8 is corrupted to 1. 143

6.6 System behavior after d.v11 is corrupted to 2. 145

6.7 An example where denser edges reduce the perturbation size and range of
contamination upon perturbations in the system 151

C.1 Porph vs. min(Ploss) . 172

D.1 The “distance value” of every perturbed node is no less than what all the
healthy boundary nodes can offer, and there are some sources of fault prop-
agation. In the figure, SW , CW , and SCW stand for stabilization wave,
containment wave, and super-containment wave respectively. 175

xviii

CHAPTER 1

INTRODUCTION

1.1 Messaging: a challenge problem in sensornets

In wireless sensor networks, which we refer to as sensornets hereafter, each node usu-

ally has limited capability in sensing, computing, and control. Therefore, nodes in sen-

sornets coordinate with one another to perform tasks such as event detection and data col-

lection [11]. Since nodes are spatially distributed, message passing is the basic enabler of

node coordination in sensornets. This dissertation deals with the sensornet system services

that are responsible for message passing; these services include consideration of routing

and transport issues and we refer to them as the messaging services.

Despite the fact that messaging has been extensively studied for decades in traditional

networks such as the Internet, the unique system and application properties of sensornets

bring substantial challenges to the design of messaging services. Among others, the salient

properties of sensornets and accordingly the challenges to sensornet messaging design are

as follows:

• Dynamic and potentially unreliable wireless links: Unlike in wireline networks such

as the Internet, wireless communication is subject to the impact of a variety of factors

such as fading, multi-path, environmental noise, and co-channel interference. Thus

1

wireless link properties (e.g., packet delivery rate) are dynamic and assume complex

spatial and temporal patterns [102, 107]. For instance, Figure 1.1 shows how link

0 5 10
0

20

40

60

80

100

distance (meter)

pa
ck

et
 d

el
iv

er
y

ra
te

 (%
)

Figure 1.1: Scatter plot of broadcast packet delivery rate in Kansei [13]. There are 300
data points for each distance, with each data points representing the status of 100 broadcast
transmissions. (Interested readers can find more detailed discussion of the experimentation
environment in Section 3.2.)

reliability (i.e., packet delivery rate) changes with the transmitter-receiver distance

in the sensornet testbed Kansei [13]. We see that link reliability tends to decrease

as distance increases, but there exists a complex transition region (e.g., for distances

between 2.74 meters and 12.8 meters) where link reliability may well increase as

distance increases. For each specific link, its reliability also varies temporally. For

instance, Figure 1.2 shows the time series of the packet delivery rates for a link corre-

sponding to the 5.5-meter transmitter-receiver distance. We see that, even though the

average link reliability is more than 85%, the temporal variation is significant, for in-

stance, close to 20%. Similar phenonmena have been observed in other environments

such as outdoor forested areas [106, 102] and urban environments [10].

2

0 100 200 300
75

80

85

90

95

100

time series

pa
ck

et
 d

el
iv

er
y

ra
te

 (%
)

Figure 1.2: Time series of packet delivery rates of the link that corresponds to the 5.5-meter
transmitter-receiver distance

Therefore, wireless communication poses the challenge of guaranteeing reliable

messaging in the presence of dynamic and potentially unreliable wireless links.

• Constrained resources: Unlike devices in traditional networks, sensor nodes tend

to be constrained in resources such as memory, CPU processing power, wireless

channel bandwidth, and energy supply. For instance, the Tmote Sky sensor node

[6] only has 10KB of RAM, 48KB of ROM, a 8MHz CPU, a radio of bandwidth

250Kbps, and two AA batteries as the energy supply. The resource constraints not

only require network protocols to be of light-weight, they make it desirable is to

break the traditional end-to-end network architecture [26] and to process information

in the network, especially from the perspective of energy efficiency due to the high

energy consumption in wireless communications. Messaging determines to a great

extent the spatial and temporal flow of network traffic, thus it plays a significant

role in affecting the degree of in-network processing achievable and thus the energy

efficiency in sensornets.

3

Therefore, resource constraints challenge sensornet messaging not only in terms of

light-weight protocol design but also in terms of breaking the traditional network

architecture and facilitating in-network processing.

• Application diversity: With their unique capabilities in observing and controlling

the physical world, sensornets have a broad range of potential applications in science

(e.g., ecology and seismology), engineering (e.g., industrial control and precision

agriculture), and our daily life (e.g., traffic control and health care). Due to the broad

application domains, sensornet systems tend to differ in many ways including their

traffic patterns and quality of service (QoS) requirements. For instance, in data-

collection systems such as those for ecological study, application data are usually

generated periodically, and the applications can tolerate certain degree of loss and

delay in data delivery; yet in emergency-detection systems such as those for indus-

trial control, data are generated only when rare and emergent events occur, but the

data need to be delivered reliably and in real time. The implications of application

diversity for messaging include:

– Application traffic affects wireless link properties due to interference among

simultaneous transmissions. This impact can vary significantly across diverse

traffic patterns [102].

– Different requirements of QoS and in-network processing pose different con-

straints on the spatial and temporal flow of application data [103].

– Messaging services that are custom-designed for one application can be unsuit-

able for another, as is evidenced by a study of Zhang et al [4].

4

– It is desirable that message services accommodate diverse QoS and in-network

processing requirements.

Therefore, diversity in applications poses the challenge of designing messaging ser-

vices that self-adapt to application properties.

• Complex faults and large system scale: During the past years of field deployments

of sensornet systems, we have observed a variety of faults, from the simple ones such

as node or link failure to more complex ones such as state corruption and system sig-

nal loss [19]. We have also seen that sensornet systems tend to be of large scale

(e.g., in terms of the number of nodes deployed) given the limited capability of each

individual node. As network scales up, the overall probability of fault occurrence in-

creases. Moreover, faults occurring at a small region can propagate unboundedly and

affect a lot of nodes in the network, thus degenerating the stability and availability of

the system.

Therefore, the challenge here is how to guarantee network dependability irrespective

of system scale and fault complexity.

In summary, the basic challenges of sensornet messaging are twofold:

• Firstly, how to provide reliable and efficient messaging despite complex dynam-

ics of wireless communication, constrained resources, and application diversity?

• Secondly, how to guarantee scalable dependability irrespective of system scale

and fault complexity?

This dissertation answers questions related to the above two problems.

5

1.2 Contributions of the dissertation

For reliable and efficient messaging despite dynamic wireless links, constrained re-

sources, and application diversity, the dissertation addresses the architectural and algorith-

mic issues as follows:

• [Architecture.] To build the framework for reliable, efficient, and reusable messag-

ing in sensornets, we propose the Sensornet Messaging Architecture (SMA) [103]

which decomposes the messaging task via two levels of abstraction:

– At the lower level, we identify the component traffic-adaptive link estima-

tion and routing (TLR) that is responsible for precisely estimating wireless

link properties (e.g., reliability) according to application data traffic patterns.

TLR constructs a reliable and efficient messaging structure for data packet flow,

based on which other high-level logics for further enhancing messaging reliabil-

ity and efficiency can be applied. TLR is generic to all sensornet applications

and can be performed automatically without any explicit input from applica-

tions.

– At the higher level, we identify the components application-adaptive structur-

ing (AST) and application-adaptive scheduling (ASC) that control the spatial

and temporal flow of data packets to facilitate functionalities (e.g., in-network

processing and transport control) that are tightly coupled with applications.

AST and ASC incorporate application-specific properties (e.g., methods of in-

network processing and application QoS requirements) in forming messaging

structures and in scheduling packet transmissions respectively, to improve the

reliability and efficiency of sensornet messaging.

6

SMA provides the guidelines for composing sensornet messaging services and for

designing the individual messaging components.

• [Link estimation & routing.] To build the basic structure for reliable and efficient

messaging, and to provide an instantiation of the TLR component of SMA, we pro-

pose the routing protocol Learn on the Fly (LOF) [102]. LOF estimates link quality

based on data transmissions, and it chooses routes by way of a locally measurable

metric ELD, the expected MAC latency per unit-distance to the destination. In ad-

dressing the challenge of data-driven link estimation to routing protocol design, i.e.,

uneven link sampling where a used link is continuously sampled yet an unused link

never gets sampled, LOF uses the technique of exploratory neighbor sampling where

every alternative link (or route) is sampled with controlled probability and frequency.

Using an event traffic trace from the field sensornet of ExScal [12], we experimen-

tally evaluate the design and the performance of LOF in a testbed of 195 Stargates

[1] with 802.11b radios (which are usually used in sensornet backbones). We also

compare the performance of LOF with that of existing protocols, represented by the

geography-unaware ETX [27, 95] and the geography-based PRD [83]. We find that

LOF reduces end-to-end MAC latency, reduces energy consumption in packet deliv-

ery, and improves route stability. Besides bursty event traffic, we evaluate LOF in the

case of periodic traffic, and we find that LOF outperforms existing protocols in that

case too. The results corroborate the feasibility as well as the benefits of data-driven

link estimation and routing.

• [Packing-oriented scheduling.] To understand the algorithmic issues in application-

adaptive scheduling and to provide an instantiation of the ASC component of SMA,

7

we study the ASC component in detail by taking packet packing (i.e., aggregating

shorter packets into longer ones) as an example of in-networking processing [103].

We propose to schedule packet transmissions so that the utility of a transmission

(e.g., degree of in-network aggregation) is maximized. To this end. we propose a

distributed algorithm in which a node dynamically estimates the potential utility of

transmitting a packet and decides when to transmit so that the utility is maximized

while satisfying certain end-to-end timeliness guarantees on data delivery. This algo-

rithmic framework is generically applicable to other in-networking processing meth-

ods.

We evaluate our design via both simulation and experimentation with Tmote Sky

sensor nodes. We find that our approach significantly improves energy efficiency and

messaging reliability. For instance, the energy efficiency is improved by a factor up

to 3.22, and the reliability is improved by 12.92%.

• [Reliable & real-time data transport.] Besides facilitating in-network process-

ing, another important role of the ASC component is to support the application QoS

requirements such as reliability and timeliness in data delivery. In the context of

event-detection applications, we propose the protocol Reliable Bursty Convergecast

(RBC) for reliable and real-time data transport in sensornets [100].

We study the limitations of two commonly used hop-by-hop packet recovery schemes

in bursty convergecast. We discover that the lack of retransmission scheduling in

both schemes makes retransmission-based packet recovery ineffective in the case of

bursty convergecast. Moreover, in-order packet delivery makes the communication

channel under-utilized in the presence of packet- and ack-loss.

8

To address the challenges, we design protocol RBC (for Reliable Bursty Converge-

cast). Taking advantage of the unique sensor network models, RBC features the

following mechanisms:

– To improve channel utilization, RBC uses a window-less block acknowledg-

ment scheme that enables continuous packet forwarding in the presence of

packet- and ack-loss. The block acknowledgment also reduces the probabil-

ity of ack-loss, by replicating the acknowledgment for a received packet.

– To ameliorate retransmission-incurred channel contention, RBC introduces dif-

ferentiated contention control, which ranks nodes by their queuing conditions

as well as the number of times that the enqueued packets have been transmitted.

A node ranked the highest within its neighborhood accesses the channel first.

In addition, we design techniques that address the challenges of timer-based retrans-

mission control in bursty convergecast:

– To deal with continuously changing ack-delay, RBC uses adaptive retransmis-

sion timer which adjusts itself as network state changes.

– To reduce delay in timer-based retransmission and to expedite retransmission of

lost packets, RBC uses block-NACK, retransmission timer reset, and channel

utilization protection.

We evaluate RBC by experimenting with an outdoor testbed of 49 MICA2 motes

and with realistic traffic trace from the field sensor network of Lites. Our exper-

imental results show that, compared with a commonly used implicit-ack scheme,

RBC increases the packet delivery ratio by a factor of 2.05 and reduces the packet

9

delivery delay by a factor of 10.91. Moreover, RBC achieves a goodput of 6.37 pack-

ets/second for the traffic trace of Lites, almost reaching the optimal goodput — 6.66

packets/second — for the trace.

In addition to addressing the challenges of wireless communication, resource con-

straints, and application diversity, we also address the following foundational and algo-

rithmic issues for scalable dependability in sensornet messaging:

• [Local stabilization.] For scalable dependability in large scale dynamic sensor-

nets, it is desirable that faults be contained locally around where they have occurred,

and that the time taken for a system to stabilize be a function F of the size of the

fault-perturbed regions instead of the size of the system. We call this property F -

local stabilization. To characterize the properties of locally stabilizing systems, we

formulate the concepts of perturbation size, F -local stabilization, and range of con-

tamination [15]. These concepts take into account the minimum amount of work

required for systems to stabilize and are generically applicable to networking as well

as distributed computing problems.

• [Locally-stabilizing routing.] For shortest path routing, a basic problem in mes-

saging, we design a locally-stabilizing protocol LSRP (for Locally Stabilizing short-

est path Routing Protocol) [15]. LSRP achieves local stabilization via two tech-

niques. Firstly, it layers system computation into three diffusing waves each hav-

ing a different propagation speed, i.e., “stabilization wave” with the lowest speed,

“containment wave” with intermediate speed, and “super-containment wave” with

the highest speed. The containment wave contains the mistakenly initiated stabiliza-

tion wave, the super-containment wave contains the mistakenly initiated containment

10

wave, and the super-containment wave self-stabilizes itself locally. Secondly, LSRP

avoids forming loops during stabilization, and it removes all transient loops within

small constant time.

Upon starting at an arbitrary state where the perturbation size is p, LSRP stabilizes to

yield shortest path routes within O(p) time, and the nodes affected by the perturbation

are within O(p) distance from the perturbed regions. Given two (or more) perturbed

regions, LSRP stabilizes each region independently of and concurrently with the

other(s) if the half distance between the regions is ω(p′), where p′ is the size of the

largest perturbed region. Moreover, LSRP not only guarantees loop-freedom during

stabilization, it also removes any existing loop (which is created by a fault) within

constant time irrespective of the loop length. To the best of our knowledge, LSRP is

the first protocol that achieves local stabilization in shortest path routing.

Besides analysis and simulation, most algorithms proposed in the dissertation have been

implemented and have provided dependable messaging services for real-world sensornet

systems such as A Line in the Sand [14], ExScal [12], and MUSE [80].

1.3 Organization of the dissertation

The rest of this dissertation is organized as follows. We present the sensornet messaging

architecture SMA in Chapter 2, followed by the discussion of the individual components of

SMA from Chapter 3 to Chapter 5. More specifically, we discuss data-driven link estima-

tion and routing in sensornets in Chapter 3, we discuss application-adaptive scheduling in

Chapter 4, and we present the protocol for reliable and real-time data transport in Chapter 5.

11

For scalable dependability in messaging, we present the concept and protocol for locally-

stabilizing shortest path routing in Chapter 6. We discuss related work in Chapter 7, and

we make concluding remarks in Chapter 8.

12

CHAPTER 2

SENSORNET MESSAGING ARCHITECTURE

To deal with the complex dynamics of wireless communication and to support diversi-

fied applications in a scalable manner, it is desirable to have a unified messaging architec-

ture that identifies the common components as well as their interactions [103]. To this end,

we first review the basic functions of sensornet messaging, based upon which we identify

the common messaging components and design the messaging architecture SMA.

2.1 Basic components of sensornet messaging

As in the case for the Internet, the objective of messaging in sensornets is to deliver data

from their sources to their destinations. To this end, the basic tasks of messaging are, given

certain QoS constraints (e.g., reliability and latency) on data delivery, choose the route(s)

from every source to the corresponding destination(s) and schedule packet flow along the

route(s). As we argued before, unlike wired networks, the design of messaging in sensor-

nets is challenging as a result of wireless communication dynamics, resource constraints,

and application diversity.

Given the complex dynamics of sensornet wireless links, a key component of sensornet

messaging is precisely estimating wireless link properties and then finding routes of high

quality links to deliver data traffic. Given that data traffic pattern affects wireless link

13

properties due to interference among simultaneous transmissions [102], link estimation

and routing should be able to take into account the impact of application data traffic, and

we call this basic messaging component traffic-adaptive link estimation and routing (TLR).

With the basic communication structure provided by the TLR component, another im-

portant task of messaging is to adapt the structure and data transmission schedules accord-

ing to application properties such as in-network processing and QoS requirements. Given

the resource constraints in sensornets, application data may be processed in the network

before it reaches the final destination to improve resource utilization (e.g., to save energy

and to reduce data traffic load). For instance, data arriving from different sources may be

compressed at an intermediate node before it is forwarded further. Given that messaging de-

termines the spatial and temporal flow of application data and that data items from different

sources can be processed together only if they meet somewhere in the network, messaging

significantly affects the degree of processing achievable in the network [103, 34]. It is there-

fore desirable that messaging consider in-network processing when deciding how to form

the messaging structure and how to schedule data transmissions. In addition, messaging

should also consider application QoS requirements (e.g., reliability and latency in packet

delivery), because messaging structure and transmission schedule determine the QoS ex-

perienced by application traffic [54, 90, 47]. In-network processing and QoS requirements

tend to be tightly coupled with applications, thus we call the structuring and scheduling

in messaging application-adaptive structuring (AST) and application-adaptive scheduling

(ASC) respectively.

14

2.2 SMA: an architecture for sensornet messaging

The messaging components discussed in the previous section are coupled with wireless

communication and applications in different ways and at different degrees, thus we adopt

two levels of abstraction in designing the architecture for sensornet messaging. The archi-

tecture, SMA (for Sensornet Messaging Architecture), is shown in Figure 2.1. At the lower

Application-adaptive
structuring (AST)

Application-adaptive
scheduling (ASC)

Link layer (including MAC)

Traffic-adaptive link estimation
and routing (TLR)

Application

Physical layer

Figure 2.1: SMA: a sensornet messaging architecture

level, traffic-adaptive link estimation and routing (TLR) interacts directly with the link

layer to estimate link properties and to form the basic routing structure in a traffic-adaptive

manner. TLR can be performed without explicit input from applications, and TLR does not

directly interface with applications. At the higher level, both application-adaptive structur-

ing (AST) and application-adaptive scheduling (ASC) need input from applications, thus

AST and ASC interface directly with applications. Besides interacting with TLR, AST and

ASC may need to directly interact with link layer to perform tasks such as adjusting radio

transmission power level and fetching link-layer acknowledgment to a packet transmis-

sion.In the architecture, the link and physical layers support higher-layer messaging tasks

15

(i.e., TLR, AST, and ASC) by providing the capability of communication within one-hop

neighborhoods.

In what follows, we elaborate on the individual components of SMA.

2.2.1 TLR: traffic-adaptive link estimation and routing

To estimate wireless link properties, one approach is to use beacon packets as the ba-

sis of link estimation. That is, neighbors exchange broadcast beacons, and they estimate

broadcast link properties based on the quality of receiving one another’s beacons (e.g., the

ratio of beacons successfully received, or the RSSI/LQI of packet reception); then, neigh-

bors estimate unicast link properties based on those of beacon broadcast, since data are

usually transmitted via unicast. This approach of beacon-based link estimation has been

used in several routing protocols including ETX [95, 27].

We find that there are two major drawbacks of beacon-based link estimation. Firstly, it

is hard to build high-fidelity models for temporal correlations in link properties [93, 91, 55],

thus most existing routing protocols do not consider temporal link properties and assume

instead independent bit error or packet loss. Consequently, significant estimation error can

be incurred, as we show in [102]. Secondly, even if we could precisely estimate unicast

link properties, the estimated values may only reflect unicast properties in the absence —

instead of the presence— of data traffic, which matters since the network traffic affects link

properties due to interference. This is especially the case in event-detection applications,

where events are usually rare (e.g., one event per day) and tend to last only for a short

time at each network location (e.g., less than 20 seconds). Therefore, beacon-based link

estimation cannot precisely estimate link properties in a traffic-adaptive manner.

16

To address the limitations of beacon-based link estimation, Zhang et al [102] propose

the LOF routing protocol (for Learn on the Fly) that estimates unicast link properties via

MAC feedback1 for data transmissions themselves without using beacons. Since MAC

feedback reflects in-situ the network condition in the presence of application traffic, link

estimation in LOF is traffic-adaptive. LOF also addresses the challenges of data-driven

link estimation to routing protocol design, such as uneven link sampling (i.e., the quality

of a link is not sampled unless the link is used in data forwarding). It has been shown that,

compared with beacon-based link estimation and routing, LOF improves both the reliability

and energy efficiency in data delivery. More importantly, LOF quickly adapts to changing

traffic patterns, and this is achieved without any explicit input from applications.

The TLR component provides the basic service of automatically adapting link estima-

tion and routing structure to application traffic patterns. TLR also exposes its knowledge

of link and route properties (such as end-to-end packet delivery latency) to higher level

components AST and ASC, so that AST and ASC can optimize the degree of in-network

processing while providing the required QoS in delivering individual pieces of application

data.

2.2.2 AST: application-adaptive structuring

One example of application-adaptive structuring is to adjust messaging structure ac-

cording to application QoS requirements. For instance, radio transmission power level

determines the communication range of each node and the connectivity of a network. Ac-

cordingly, transmission power level affects the number of routing hops between any pairs

of source and destination and thus packet delivery latency. Transmission power level also

1The MAC feedback for a unicast transmission includes whether the transmission has succeeded and how
many times the packet has been retransmitted at the MAC layer.

17

determines the interference range of packet transmissions, and thus it affects packet deliv-

ery reliability. Therefore, radio transmission power level (and thus messaging structure)

can be adapted to satisfy specific application QoS requirements, and Kawadia and Kumar

have studied this in [54].

Besides QoS-oriented structuring, another example of application-adaptive structuring

is to adjust messaging structure according to the opportunities of in-network processing.

Messaging structure determines how data flows spatially, and thus affects the degree of

in-network processing achievable. For instance, as shown in Figure 2.2(a), nodes 3 and 4

0

4

21

3 5

(a) Before adapta-
tion

0

4

21

3 5

(b) After adaptation

Figure 2.2: Example of application-adaptive structuring

detect the same event simultaneously. But the detection packets generated by nodes 3 and

4 cannot be aggregated in the network, since they follow different routes to the destination

node 0. On the other hand, if node 4 can detect the correlation between its own packet and

that generated by node 3, node 4 can change its next-hop forwarder to node 1, as shown

in Figure 2.2(b). Then the packets generated by nodes 3 and 4 can meet at node 1, and be

aggregated before being forwarded to the destination node 0.

18

In general, to improve the degree of in-network processing, a node should consider the

potential in-network processing achievable when choosing the next-hop forwarder. One

way to realize this objective is to adapt the existing routing metric. For each neighbor k, a

node j estimates the utility uj,k of forwarding packets to k, where the utility is defined as the

reduction in messaging cost (e.g., number of transmissions) if j’s packets are aggregated

with k’s packets. Then, if the cost of messaging via k without aggregation is cj,k, the

associated messaging cost c′j,k can be adjusted as follows (to reflect the utility of in-network

processing):

c′j,k = cj,k − uj,k

Accordingly, a neighbor with the lowest adjusted messaging cost is selected as the next-hop

forwarder.

Since QoS requirements and in-network processing vary from one application to an-

other, AST needs input from applications, and it needs to interface with applications di-

rectly.

2.2.3 ASC: application-adaptive scheduling

One example of application-adaptive scheduling is to schedule packet transmissions to

satisfy certain application QoS requirements. To improve packet delivery reliability, for in-

stance, lost packets can be retransmitted. But packet retransmission consumes energy, and

not every sensornet application needs 100% packet delivery rate. Therefore, the number of

retransmissions can be adapted to provide different end-to-end packet delivery rates while

minimizing the total number of packet transmissions [14]. To provide differentiated time-

liness guarantee on packet delivery latency, we can also introduce priority in transmission

scheduling such that urgent packets have high priority of being transmitted [100]. Similarly,

19

data streams from different applications can be ranked so that transmission scheduling en-

sures differentiated end-to-end throughput to different applications [32].

Besides QoS-oriented scheduling, another example of application-adaptive scheduling

to schedule packet transmissions according to the opportunities of in-network processing.

Given a messaging structure formation, transmission scheduling determines how data flows

along the structure temporally and thus the degree of in-network processing achievable. To

give an example, let us look at Figure 2.3(a). A dupers node 4 detects an event earlier than

0

4

21

3 5

(a) Before adapta-
tion

0

4

21

3 5

held

(b) After adaptation

Figure 2.3: Example of application-adaptive scheduling

node 3 does. Then the detection packet from node 4 can reach node 1 earlier than the packet

from node 3. If node 1 immediately forwards the packet from node 4 after receiving it, then

the packet from node 4 cannot be aggregated with that from node 3, since the packet from

node 4 has already left node 1 when the packet from node 3 reaches node 1. On the other

hand, if node 1 is aware of the correlation between packets from nodes 3 and 4, then node 1

can hold the packet from 4 after receiving it (as shown in Figure 2.3(b)). Accordingly, the

packet from node 3 can meet that from node 4, and these packets can be aggregated before

being forwarded.

20

In general, a node should consider both application QoS requirements and the potential

in-network processing when scheduling data transmissions, so that application QoS re-

quirements are better satisfied and the degree of in-network processing is improved. Given

that in-network processing and QoS requirements are application specific, ASC needs to

directly interface with applications.

Remark. It is desirable that the components TLR, AST, and ASC be deployed all together

to achieve the maximal network performance. That said, the three components can also

be deployed in an incremental manner while maintaining the benefits of each individual

component, as shown in [102] and [103].

2.3 Summary

To address the challenges of wireless communication, constrained resources, and ap-

plication diversity in sensornets, we propose the Sensornet Messaging Architecture (SMA)

in which we adopt two levels of abstraction:

• At the lower level, we identify the component traffic-adaptive link estimation and

routing (TLR) that is responsible for precisely estimating wireless link properties

(e.g., reliability) according to application data traffic patterns. TLR is generic to

all sensornet applications and can be performed automatically without explicit input

from applications.

• At the higher level, we identify the components application-adaptive structuring

(AST) and application-adaptive scheduling (ASC) to support functionalities (e.g.,

in-network processing and QoS) that are tightly coupled with applications. AST and

21

ASC incorporate application-specific properties (e.g., methods of in-network pro-

cessing and QoS requirements) in forming messaging structures and in scheduling

packet transmissions respectively.

In the immediately following chapters of this dissertation, we first discuss the routing

protocol LOF, an instantiation of the component TLR, in Chapter 3. Then, we discuss the

ASC component from the perspective of in-network processing in Chapter 4, and from the

perspective of application QoS requirements in Chapter 5. Detailed study of AST is a part

of our future work.

22

CHAPTER 3

DATA-DRIVEN LINK ESTIMATION AND ROUTING

In this chapter, we study in detail why and how to perform link estimation and routing

in a traffic-adaptive manner, and we present the routing protocol Learn on the Fly (LOF)

as an instantiation of the TLR component of SMA.

3.1 Motivation

As the quality of wireless links, for instance, packet delivery rate, varies both tempo-

rally and spatially in a complex manner [10, 56, 107], estimating link quality is an important

aspect of routing in wireless networks. To this end, peers exchange broadcast beacons pe-

riodically in existing routing protocols [27, 30, 31, 83, 95], and the measured quality of

broadcast acts as the basis of link estimation. Nonetheless, beacon-based link estimation

has several drawbacks:

• Firstly, link quality for broadcast beacons differs significantly from that for unicast

data, because broadcast beacons and unicast data differ in packet size, transmission

rate, and coordination method at the media-access-control (MAC) layer [22, 66].

Therefore, we have to estimate unicast link quality based on that of broadcast.

• It is, however, difficult to precisely estimate unicast link quality via that of broadcast,

because temporal correlations of link quality assume complex patterns [94] and are

23

hard to model. As a result, existing routing protocols do not consider temporal link

properties in beacon-based estimation [27, 95]. Thus the link quality estimated us-

ing periodic beacon exchange may not accurately apply for unicast data, which can

negatively impact the performance of routing protocols.

• Even if we could precisely estimate unicast link quality based on that of broadcast,

beacon-based link estimation may not reflect in-situ network condition either. For

instance, a typical application of sensornets is to monitor an environment (be it an

agricultural field or a classified area) for events of interest to the users. Usually, the

events are rare. Yet when an event occurs, a large burst of data packets is often gen-

erated that needs to be routed reliably and in real-time to a base station [100]. In this

context, even if there were no discrepancy between the actual and the estimated link

quality using periodic beacon exchange, the estimates still tend to reflect link quality

in the absence, rather than in the presence, of bursty data traffic. This is because:

Firstly, link quality changes significantly when traffic pattern changes (as we will

show in Section 3.2.2); Secondly, link quality estimation takes time to converge, yet

different bursts of data traffic are well separated in time, and each burst lasts only for

a short period.

Beacon-based link estimation is not only limited in reflecting the actual network condi-

tion, it is also inefficient in energy usage. In existing routing protocols that use link quality

estimation, beacons are exchanged periodically. Therefore, energy is consumed unneces-

sarily for the periodic beaconing when there is no data traffic. This is especially true if the

events of interest are infrequent enough that there is no data traffic in the network most of

the time [100].

24

To deal with the shortcomings of beacon-based link quality estimation and to avoid

unnecessary beaconing, we propose the routing protocol LOF that uses data transmission

itself as the basis of link estimation and thus is traffic-adaptive.

In the remainder of this chapter, we study in detail the shortcomings of beacon-based

link quality estimation, and we analyze the feasibility of data-driven routing in Section 3.2.

Following that, we present the routing metric ELD in Section 3.3, and we design the proto-

col LOF in Section 3.4. We experimentally evaluate LOF in Section 3.5, and we summarize

this chapter in Section 3.6.

3.2 Why data-driven link estimation and routing?

In this section, we first experimentally study the impact of packet type, packet length,

and interference on link properties2. Then we discuss the shortcomings of beacon-based

link property estimation, as well as the concept of data-driven link estimation and routing.

3.2.1 Experiment design

We set up two 802.11b network testbeds as follows.

Outdoor testbed. In an open field (see Figure 3.1), we deploy 29 Stargates in a straight

line, with a 45-meter separation between any two consecutive Stargates. The Stargates run

Linux with kernel 2.4.19. Each Stargate is equipped with a SMC 2.4GHz 802.11b wireless

card and a 9dBi high-gain collinear omnidirectional antenna, which is raised 1.5 meters

above the ground. To control the maximum communication range, the transmission power

level of each Stargate is set as 35. (Transmission power level is a tunable parameter for

2In this chapter, the phrases link quality and link property are used interchangeably.

25

Figure 3.1: Outdoor testbed

802.11b wireless cards, and its range is 127, 126, . . . , 0, 255, 254, . . . , 129, 128, with 127

being the lowest and 128 being the highest.)

Sensornet testbed Kansei. In an open warehouse with flat aluminum walls (see Fig-

ure 3.2(a)), we deploy 195 Stargates in a 15 × 13 grid (as shown in Figure 3.2(b)) where

the separation between neighboring grid points is 0.91 meter (i.e., 3 feet). The deployment

(a) Kansei

columns (0 - 14)

ro
w

s
(0

 -
12

)

(b) grid topology

Figure 3.2: Sensornet testbed Kansei

is a part of the sensornet testbed Kansei [13]. For convenience, we number the rows of

the grid as 0 - 12 from the bottom up, and the columns as 0 - 14 from the left to the right.

Each Stargate is equipped with the same SMC wireless card as in the outdoor testbed. To

create realistic multi-hop wireless networks similar to the outdoor testbed, each Stargate is

equipped a 2.2dBi rubber duck omnidirectional antenna and a 20dB attenuator. We raise

26

the Stargates 1.01 meters above the ground by putting them on wood racks. The trans-

mission power level of each Stargate is set as 60, to simulate the low-to-medium density

multi-hop networks where a node can reliably communicate with around 15 neighbors.

The Stargates in the indoor testbed are equipped with wall-power and outband Ethernet

connections, which facilitate long-duration complex experiments at low cost. We use the

indoor testbed for most of the experiments in this chapter; we use the outdoor testbed

mainly for justifying the generality of the phenomena observed in the indoor testbed.

Experiments. In the outdoor testbed, the Stargate at one end acts as the sender, and the

other Stargates act as receivers. Given the constraints of time and experiment control, we

leave complex experiments to the indoor testbed and only perform relatively simple exper-

iments in the outdoor testbed: the sender first sends 30,000 1200-byte broadcast packets,

then it sends 30,000 1200-byte unicast packets to each of the receivers.

In the indoor testbed, we let the Stargate at column 0 of row 6 be the sender, and the

other Stargates in row 6 act as receivers. To study the impact of interference, we consider

the following scenarios (which are named according to the interference):

• Interferer-free: there is no interfering transmission. The sender first sends 30,000

broadcast packets each of 1200 bytes, then it sends 30,000 1200-byte unicast packets

to each of the receivers, and lastly it broadcasts 30,000 30-byte packets.

• Interferer-close: one “interfering” Stargate at column 0 of row 5 keeps sending 1200-

byte unicast packets to the Stargate at column 0 of row 7, serving as the source of the

interfering traffic. The sender first sends 30,000 1200-byte broadcast packets, then it

sends 30,000 1200-byte unicast packets to each of the receivers.

27

• Interferer-middle: the Stargate at column 7 of row 5 keeps sending 1200-byte unicast

packets to the Stargate at column 7 of row 7. The sender performs the same as in the

case of interferer-close.

• Interferer-far: the Stargate at column 14 of row 5 keeps sending 1200-byte unicast

packets to the Stargate at column 14 of row 7. The sender performs the same as in

the case of interferer-close.

• Interferer-exscal: In generating the interfering traffic, every Stargate runs the routing

protocol LOF (as detailed in later sections of this chapter), and the Stargate at the

upper-right corner keeps sending packets to the Stargate at the left-bottom corner,

according to an event traffic trace from the field sensornet of ExScal [12] . The

traffic trace corresponds to the packets generated by a Stargate when a vehicle passes

across the corresponding section of ExScal network. In the trace, 19 packets are

generated, with the first 9 packets corresponding to the start of the event detection

and the last 10 packets corresponding to the end of the event detection. Figure 3.3

shows, in sequence, the intervals between packets 1 and 2, 2 and 3, and so on. The

0 5 10 15
0

500

1000

1500

2000

2500

3000

3500

sequence

pa
ck

et
 in

te
rv

al
 (m

ill
is

ec
on

ds
)

Figure 3.3: The traffic trace of an ExScal event

sender performs the same as in the case of interferer-close.

28

In all of these experiments, except for the case of interferer-exscal, the packet generation

frequency, for both the sender and the interferer, is 1 packet every 20 milliseconds. In

the case of interferer-exscal, the sender still generates 1 packet every 20 milliseconds, yet

the interferer generates packets according to the event traffic trace from ExScal, with the

inter-event-run interval being 10 seconds. (Note that the scenarios above are far from be-

ing complete, but they do give us a sense of how different interfering patterns affect link

properties.)

In the experiments, broadcast packets are transmitted at the basic rate of 1M bps, as

specified by the 802.11b standard. Not focusing on the impact of packet rate in our study,

we set unicast transmission rate to a fixed value (e.g., 5.5M bps). (We have tested different

unicast transmission rates and observed similar phenomena.) For other 802.11b parameters,

we use the default configuration that comes with the system software. For instance, unicast

transmissions use RTS-CTS handshake, and each unicast packet is retransmitted up to 7

times until success or failure in the end.

3.2.2 Experimental results

For each case, we measure various link properties, such as packet delivery rate and

the run length of packets successfully received without any loss in between, for each link

defined by the sender - receiver. Due to space limitations, however, we only present the

data on packet delivery rate here. The packet delivery rate is calculated once every 100

packets (we have also calculated delivery rates in other granularities, such as once every

20, 50 or 1000 packets, and similar phenomena were observed).

29

We first present the difference between broadcast and unicast when there is no inter-

ference, then we present the impact of interference on network conditions as well as the

difference between broadcast and unicast.

Interferer free

Figure 3.4 shows the scatter plot of the delivery rates for broadcast and unicast packets

0 500 1000 1500
0

20

40

60

80

100

distance (meter)

pa
ck

et
 d

el
iv

er
y

ra
te

 (%
)

(a) broadcast
0 200 400 600 800

95

96

97

98

99

100

distance (meter)

pa
ck

et
 d

el
iv

er
y

ra
te

 (%
)

(b) unicast

Figure 3.4: Outdoor testbed

at different distances in the outdoor testbed. From the figure, we observe the following:

• Broadcast has longer communication range than unicast. This is due to the fact that

the transmission rate for broadcast is lower, and that there is no RTS-CTS handshake

for broadcast. (Note: the failure in RTS-CTS handshake also causes a unicast to fail.)

• For links where unicast has non-zero delivery rate, the mean delivery rate of unicast

is higher than that of broadcast. This is due to the fact that each unicast packet is

retransmitted up to 7 times upon failure.

• The variance in packet delivery rate is lower in unicast than that in broadcast. This

is due to the fact that unicast packets are retransmitted upon failure, and the fact that

30

there is RTS-CTS handshake for unicast. (Note: the success in RTS-CTS handshake

implies higher probability of a successful unicast, due to temporal correlations in link

properties [21].)

Similar results are observed in the indoor testbed, as shown in Figures 3.5(a) and 3.5(b).

Nevertheless, there are exceptions at distances 3.64 meters and 5.46 meters, where the

0 5 10 15
0

20

40

60

80

100

distance (meter)

pa
ck

et
 d

el
iv

er
y

ra
te

 (%
)

(a) broadcast: 1200-byte packet
0 5 10 15

0

20

40

60

80

100

distance (meter)

pa
ck

et
 d

el
iv

er
y

ra
te

 (%
)

(b) unicast: 1200-byte packet
0 5 10 15

0

20

40

60

80

100

distance (meter)

pa
ck

et
 d

el
iv

er
y

ra
te

 (%
)

(c) broadcast: 30-byte packet

Figure 3.5: Indoor testbed Kansei

delivery rate of unicast takes a wider range than that of broadcast. This is likely due to

temporal changes in the environment. Comparing Figures 3.5(a) and 3.5(c), we see that

packet length also has significant impact on the mean and variance of packet delivery rate.

Implication. From Figures 3.4 and 3.5, we see that packet delivery rate differs signif-

icantly between broadcast and unicast, and the difference varies with environment, hard-

ware, and packet length.

Interference scenarios

To demonstrate how network condition changes with interference scenarios, Figure 3.6

shows the broadcast packet delivery rates in different interference scenarios. We see that

31

0 2 4 6 8 10 12 14
0

20

40

60

80

100

distance (meter)

M
ea

n
br

oa
dc

as
t r

el
ia

bi
lit

y
(%

)

interferer−free
interferer−close
interferer−middle
interferer−far
interferer−exscal

Figure 3.6: Network condition, measured in broadcast reliability, in different interference
scenarios

broadcast packet delivery rate varies significantly (e.g., up to 39.26%) as interference pat-

terns change. Thus, link properties estimated for one scenario may not apply to another.

Having shown the impact of interference patterns on network condition, Figure 3.7

shows how the difference between broadcast and unicast in the mean packet delivery rate

0 2 4 6 8 10 12 14
−60

−40

−20

0

20

40

60

80

100

distance (meter)

di
ffe

re
nc

e
in

 p
ac

ke
t d

el
iv

er
y

ra
te

 (%
)

interferer−free
interferer−close
interferer−middle
interferer−far
interferer−exscal

Figure 3.7: The difference between broadcast and unicast in different interference scenarios

changes as the interference and distance change. Given a distance and an interference

scenario, the difference is calculated as U−B
B

, where U and B denote the mean delivery

rate for unicast and broadcast respectively. From the figure, we see that the difference

32

is significant (up to 94.06%), and that the difference varies with distance. Moreover, the

difference changes significantly (up to 103.41%) as interference pattern changes.

Implication. For sensornets where data bursts are well separated in time and possibly in

space (e.g., in bursty convergecast), the link properties experienced by periodic beacons

may well differ from those experienced by data traffic. Moreover, the difference between

broadcast and unicast changes as interference pattern changes.

3.2.3 Data-driven routing

To ameliorate the differences between broadcast and unicast link properties, researchers

have proposed to make the length and transmission rate of broadcast beacons be the same as

those of data packets, and then estimate link properties of unicast data via those of broadcast

beacons by taking into account factors such as link asymmetry. ETX [27] has explored this

approach. Nevertheless, this approach may not be always feasible when the length of data

packets is changing; or even if the approach is always feasible, it still does not guarantee

that link properties experienced by periodic beacons reflect those in the presence of data

traffic, especially in event-driven sensornet applications. Moreover, the existing method

for estimating metrics such as ETX does not take into account the temporal correlations

in link properties [21] (partly due to the difficulty of modeling the temporal correlations

themselves [94]), which further decreases its estimation fidelity. For instance, Figure 3.8

shows the significant error3 in estimating unicast delivery rate via that of broadcast under

different interference scenarios when temporal correlations in link properties are not con-

sidered (i.e., assuming independent bit error and packet loss). Therefore, it is not trivial, if

3The error is defined as actual unicast link reliability minus the estimated link reliability

33

0 2 4 6 8 10 12 14
−100

−50

0

50

100

distance (meter)

er
ro

r i
n

be
ac

on
−b

as
ed

 e
st

im
at

io
n

(%
)

interferer−free
interferer−close
interferer−middle
interferer−far
interferer−exscal

Figure 3.8: Error in estimating unicast delivery rate via that of broadcast

even possible, to precisely estimate link properties for unicast data via those of broadcast

beacons.

To circumvent the difficulty of estimating unicast link properties via those of broadcast,

we propose to directly estimate unicast link properties via data traffic itself. In this context,

since we are not using beacons for link property estimation, we also explore the idea of not

using periodic beacons in routing at all (i.e., beacon-free routing) to save energy; otherwise,

beaconing requires nodes to wake up periodically even when there is no data traffic.

To enable data-driven routing, we need to find alternative mechanisms for accomplish-

ing the tasks that are traditionally assumed by beacons: acting as the basis for link property

estimation, and diffusing information (e.g., the cumulative ETX metric). In sensornet back-

bones, data-driven routing is feasible because of the following facts:

• MAC feedback. In MACs where every frame transmission is acknowledged by the

receiver (e.g., in the 802.11b MAC), the sender can determine if a transmission has

succeeded by checking whether it receives the acknowledgment. Also, the sender can

determine how long each transmission takes, i.e., MAC latency. Therefore, the sender

is able to get information on link properties without using any beacons. (Note: it has

34

also been shown that MAC latency is a good routing metric for optimizing wireless

network throughput [17].)

• Mostly static network & geography. Nodes are static most of the time, and their

geographic locations are readily available via devices such as GPS. Therefore, we

can use geography-based routing in which a node only needs to know the location

of the destination and the information regarding its local neighborhood (such as the

quality of the links to its neighbors). Thus, only the location of the destination (e.g.,

the base station in convergecast) needs to be diffused across the network. Unlike in

beacon-based distance-vector routing, the diffusion happens infrequently since the

destination is static most of the time. In general, control packets are needed only

when the location of a node changes, which occurs infrequently.

In what follows, we first present the routing metric ELD which is based on geography

and MAC latency, then we present the design of LOF which implements ELD without using

periodic beacons.

Remarks:

• Although parameters such as Receiver Signal Strength Indicator (RSSI), Link Qual-

ity Indicator (LQI), and Signal to Noise Ratio (SNR) also reflect link reliability, it is

difficult to use them as a precise prediction tool [10]. Moreover, the aforementioned

parameters can be fetched only at packet receivers (instead of senders), and extra

control packets are needed to convey these information back to the senders if we

want to use them as the basis of link property estimation. Therefore, we do not rec-

ommend using these parameters as the core basis of data-driven routing, especially

when senders need to precisely estimate in-situ link properties.

35

• Our objective in this chapter is to explore the idea of data-driven link property estima-

tion and routing, and it is not our objective to prove that geography-based routing is

better than distance-vector routing. In principle, we could have used distance-vector

routing together with data-driven link property estimation, but this would introduce

periodic control packets which we would like to avoid to save energy. We will show

in Section 3.5.3, however, that geography-based data-driven routing has similar per-

formance as that of distance-vector data-driven routing.

• Conceptually, we could have also defined our routing metric based on other parame-

ters such as ETX [27] or RNP [21]. Nevertheless, the firmware of our SMC WLAN

cards does not expose information on the number of retries of a unicast transmission,

which makes it hard to estimate ETX or RNP directly via data traffic. As a part of our

future work, we plan to design mechanisms to estimate ETX and RNP via data traffic

(e.g., in IEEE 802.15.4 based mote networks) and study the corresponding protocol

performance.

3.3 ELD: the routing metric

In this section, we first formulate the routing metric ELD, the expected MAC latency per

unit-distance to the destination, then we analyze the sample size requirement in routing.

3.3.1 A metric using MAC latency and geography

For convergecast in sensornets (especially for event-driven applications), packets need

to be routed reliably and in real-time to the base station. As usual, packets should also

be delivered in an energy-efficient manner. Therefore, a routing metric should reflect link

reliability, packet delivery latency, and energy consumption at the same time. One such

36

S D

R

Le(S, R)

Figure 3.9: Le calculation

metric that we adopt in LOF is based on MAC latency, i.e., the time taken for the MAC

to transmit a data frame. (We have mathematically analyzed the relationship among MAC

latency, energy consumption, and link reliability, and we find that MAC latency is strongly

related to energy consumption in a positive manner, and the ratio between them changes

only slightly as link reliability changes. Thus, routing metrics optimizing MAC latency

would also optimize energy efficiency. Interested readers can find the detailed analysis in

[101].)

Given that MAC latency is a good basis for route selection and that geography enables

low frequency information diffusion, we define a routing metric ELD, the expected MAC

latency per unit-distance to the destination, which is based on both MAC latency and geog-

raphy. Specifically, given a sender S, a neighbor R of S, and the destination D as shown in

Figure 3.9, we first calculate the effective geographic progress from S to D via R, denoted

by Le(S, R), as (LS,D − LR,D), where LS,D denotes the distance between S and D, and

LR,D denotes the distance between R and D. Then, we calculate, for the sender S, the MAC

latency per unit-distance to the destination (LD) via R, denoted by LD(S, R), as4

{

DS,R

Le(S,R) if LS,D > LR,D

∞ otherwise
(3.1)

4Currently, we focus on the case where a node forwards packets only to a neighbor closer to the destination
than itself.

37

where DS,R is the MAC latency from S to R. Therefore, the ELD via R, denoted as

ELD(S, R), is E(LD(S, R)) which is calculated as

{

E(DS,R)
Le(S,R) if LS,D > LR,D

∞ otherwise
(3.2)

For every neighbor R of S, S associates with R a rank

〈ELD(S, R), var(LD(S, R)), LR,D, ID(R)〉

where var(LD(S, R)) denotes the variance of LD(S, R), and ID(R) denotes the unique

ID of node R. Then, S selects as its next-hop forwarder the neighbor that ranks the lowest

among all the neighbors. (Note: routing via metric ELD is a greedy approach, where each

node tries to optimize the local objective. Like many other greedy algorithms, this method

is effective in practice, as shown via experiments in Section 3.5.)

To understand what ELD implies in practice, we set up an experiment as follows: con-

sider a line network formed by row 6 of the indoor testbed shown in Figure 3.2, the Stargate

S at column 0 needs to send packets to the Stargate D at the other end (i.e., column 14). Us-

ing the data on unicast MAC latencies in the case of interferer-free, we show in Figure 3.10

the mean unicast MAC latencies and the corresponding ELD’s regarding neighbors at dif-

0 2 4 6 8 10 12 14
0

5

10

15

20

25

distance (meter)

mean MAC latency (ms)
ELD (ms/meter)

Figure 3.10: Mean unicast MAC latency and the ELD

38

ferent distances. From the figure, Stargate D, the destination which is 12.8 meters away

from S, offers the lowest ELD, and S sends packets directly to D. From this example, we

see that, using metric ELD, a node tends to choose nodes beyond the reliable communica-

tion range as forwarders, to reduce end-to-end MAC latency as well as energy consumption.

Remark. ELD is a locally measurable metric based only on the geographic locations

of nodes and information regarding the links associated with the sender S; ELD does not

assume link conditions beyond the local neighborhood of S. In the analysis of geographic

routing [83], however, a common assumption is geographic uniformity — that the hops

in any route have similar properties such as geographic length and link quality. As we

will show by experiments in Section 3.5, this assumption is usually invalid. For the sake

of verification and comparison, we derive another routing metric ELR, the expected MAC

latency along a route, based on this assumption. More specifically, ELR(S, R) =

{

E(DS,R)× d
LS,R+LR,D

LS,R
e if LS,D > LR,D

∞ otherwise
(3.3)

where dLS,R+LR,D

LS,R
e denotes the number of hops to the destination, assuming equal geo-

graphic distance at every hop. We will show in Section 3.5 that ELR is inferior to ELD.

3.3.2 Sample size analysis

To understand the convergence speed of ELD-based routing and to guide protocol de-

sign, we experimentally study the sample size required to distinguish out the best neighbor

in routing.

In our indoor testbed, let the Stargate at column 0 of row 6 be the sender S and Stargate

at the other end of row 6 be the destination D; then let S send 30,000 1200-byte unicast

packets to each of the other Stargates in the testbed, to get information (e.g., MAC latency

39

and reliability) on all the links associated with S. The objective is to see what sample size

is required for S to distinguish out the best neighbor.

First, we need to derive the distribution model for MAC latency. Figure 3.11 shows the

0 20 40 60 80
0

2000

4000

6000

8000

10000

12000

14000

16000

MAC latency (milliseconds)

of
 s

am
pl

es

Figure 3.11: Histogram for unicast MAC latency

histogram of the unicast MAC latencies for the link to a node 3.65 meters (i.e., 12 feet)

away from S. (The MAC latencies for other links assume similar patterns.) Given the

shape of the histogram and the fact that MAC latency is a type of “service time”, we select

three models for evaluation: exponential, gamma, and lognormal.5 Against the data on the

MAC latencies for all the links associated with S, we perform Kolmogorov-Smirnov test

[45] on the three models, and we find that lognormal distribution fits the data the best.

Therefore, we adopt lognormal distribution for the analysis in this chapter. Given that

MAC latency assumes lognormal distribution, the LD associated with a neighbor also as-

sumes lognormal distribution, i.e., log(LD) assumes normal distribution.

Because link quality varies temporally, the best neighbor for S may change temporally.

Therefore, we divide the 30,000 MAC latency samples of each link into chunks of time

span Wc, denoted as the window of comparison, and we compare all the links via their

5The methodology of LOF is independent of the distribution model adopted. Therefore, LOF would still
apply even if better models are found later.

40

50 100 150 200 250 300
10

0

10
1

10
2

10
3

window of comparison (seconds)

sa
m

pl
e

si
ze

75−percentile
80−percentile
85−percentile
90−percentile
95−percentile

(a) route selection
50 100 150 200 250 300

40

60

80

100

120

window of comparison (seconds)

sa
m

pl
e

si
ze

75−percentile
80−percentile
85−percentile
90−percentile
95−percentile

(b) absolute ELD

Figure 3.12: Sample size requirement

corresponding sample-chunks. Given each sample chunk for the MAC latency of a link,

we compute the sample mean and sample variance for the corresponding log(LD), and use

them as the mean and variance of the lognormal distribution. When considering the i-th

sample chunks of all the links (i = 1, 2, . . .), we find the best link according to these sample

chunks, and we compute the sample size required for comparing this best link with each of

the other links as follows:

Given two normal variates X1, X2 where X1 ∼ N(µ1, δ
2
1) and X2 ∼ N(µ2, δ

2
2),

the sample size required to compare X1 and X2 at 100(1 − α)% confidence
level is (Zα(δ1+δ2)

µ1−µ2
)2 (0 ≤ α ≤ 1), with Zα being the α-quantile of a unit nor-

mal variate [51].

In the end, we have a set of sample sizes for each specific Wc. For a 95% confidence

level comparison and route selection, Figure 3.12(a) shows the 75-, 80-, 85-, 90-, and 95-

percentiles of the sample sizes for different Wc’s. We see that the percentiles do not change

much as Wc changes. Moreover, we observe that, even though the 90- and 95-percentiles

tend to be large, the 75- and 80-percentiles are pretty small (e.g., being 2 and 6 respectively

when Wc is 20 seconds), which implies that routing decisions can converge quickly in

most cases. This observation also motivates us to use initial sampling in LOF, as detailed

in Section 3.4.2.

41

Remarks. In the analysis above, we did not consider the temporal patterns of link proper-

ties (which are usually unknown). Had the temporal patterns been known and used in link

estimation, the sample size requirement can be even lower.

By way of contrast, we also compute the sample size required to estimate the absolute

ELD value associated with each neighbor. Figure 3.12(b) shows the percentiles for a 95%

confidence level estimation with an accuracy of ±5%. We see that, even though the 90-

and 95-percentiles are less than those for route selection, the 75- and 80-percentiles (e.g.,

being 42 and 51 respectively when Wc is 20 seconds) are significantly greater than those for

route selection. Therefore, when analyzing sample size requirement for routing, we should

focus on relative comparison among neighbors rather than on estimating the absolute value,

unlike what has been done in the literature [95].

3.4 LOF: a data-driven protocol

Having determined the routing metric ELD, we are ready to design protocol LOF for

implementing ELD without using periodic beacons. Without loss of generality, we only

consider a single destination, i.e., the base station to which every other node needs to find

a route.

Briefly speaking, LOF needs to accomplish two tasks: First, to enable a node to obtain

the geographic location of the base station, as well as the IDs and locations of its neighbors;

Second, to enable a node to track the LD (i.e., MAC latency per unit-distance to the desti-

nation) regarding each of its neighbors. The first task is relatively simple and only requires

exchanging a few control packets among neighbors in rare cases (e.g., when a node boots

up); LOF accomplishes the second task using three mechanisms: initial sampling of MAC

42

latency, adapting estimation via MAC feedback for application traffic, and probabilistically

exploring alternative forwarders.

In what follows, we elaborate on the individual components of LOF. (Due to the limi-

tation of space, we relegate to [101] the discussion on implementation issues of LOF: reliably

fetching MAC feedback, reliable transport, node mobility, and neighbor-table size control.)

3.4.1 Learning where we are

LOF enables a node to learn its neighborhood and the location of the base station via

the following rules:

I. [Issue request] Upon boot-up, a node broadcasts M copies of hello-request packets

if it is not the base station. A hello-request packet contains the ID and the geographic

location of the issuing node. To guarantee that a requesting node is heard by its

neighbors, we set M as 7 in our experiments.

II. [Answer request] When receiving a hello-request packet from another node that is

farther away from the base station, the base station or a node that has a path to the

base station acknowledges the requesting node by broadcasting M copies of hello-

reply packets. A hello-reply packet contains the location of the base station as well as

the ID and the location of the issuing node.

III. [Handle announcement] When a node A hears for the first time a hello-reply packet

from another node B closer to the base station, A records the ID and location of B

and regards B as a forwarder-candidate.

43

IV. [Announce presence] When a node other than the base station finds a forwarder-

candidate (and thus a path) for the first time, or when the base station boots up, it

broadcasts M copies of hello-reply packets.

To reduce potential contention, every broadcast transmission mentioned above is preceded

by a randomized waiting period whose length is dependent on node distribution density in

the network. Note that the above rules can be optimized in various ways. For instance,

rule II can be optimized such that a node acknowledges at most one hello-request from

another node each time the requesting node boots up. Even though we have implemented

quite a few such optimizations, we skip the details here since they are not the focus of this

chapter.

3.4.2 Initial sampling

Having learned the location of the base station as well as the locations and IDs of its

neighbors, a node needs to estimate the LDs regarding its neighbors. To design the estima-

tion mechanism, let us first check Figure 3.13, which shows the mean unicast MAC latency

0 2 4 6 8 10 12 14
0

5

10

15

20

25

30

distance (meter)

m
ea

n
M

A
C

 la
te

nc
y

(m
ill

is
ec

on
ds

)

interferer−free
interferer−close
interferer−middle
interferer−far
interferer−exscal

Figure 3.13: MAC latency in the presence of interference

in different interfering scenarios for the indoor experiments described in Section 3.2.1. We

44

see that, even though MAC latencies change as interference pattern changes, the relative

ranking in the mean MAC latency among links does not change much. Neither will the

LDs accordingly.

In LOF, therefore, when a node S learns of the existence of a neighbor R for the first

time, S takes a few samples of the MAC latency for the link to R before forwarding any

data packets to R. The sampling is achieved by S sending a few unicast packets to R and

then fetching the MAC feedback. The initial sampling gives a node a rough idea of the

relative quality of the links to its neighbors, to jump start the data-driven estimation.

According to the analysis in Section 3.3.2, another reason for initial sampling is that,

with relatively small sample size, a node could gain a decent sense of the relative goodness

of its neighbors. We set the initial sample size as 6 (i.e., the 80-percentile of the sample

size when Wc is 20 seconds) in our experiments.

3.4.3 Data-driven adaptation

Via initial sampling, a node gets a rough estimation of the relative goodness of its

neighbors. To improve its route selection for an application traffic pattern, the node needs

to adapt its estimation of LD via the MAC feedback for unicast data transmission. (Ac-

cording to the analysis in Section 3.3.2, route decisions converge quickly because of the

small sample size requirement.) Since LD is lognormally distributed, LD is estimated by

estimating log(LD).

On-line estimation. To determine the estimation method, we first check the properties of

the time series of log(LD), considering the same scenario as discussed in Section 3.3.2.

Figure 3.14 shows a time series of the log(LD) regarding a node 3.65 meters (i.e., 12 feet)

away from the sender S (The log(LD) for the other nodes assumes similar patterns.). We

45

0 1 2 3
x 10

4

−1

0

1

2

3

sample series

lo
g(

LD
) (

m
s/

m
et

er
)

Figure 3.14: A time series of log(LD)

see that the time series fits well with the constant-level model [44] where the generating

process is represented by a constant superimposed with random fluctuations. Therefore, a

good estimation method is exponentially weighted moving average (EWMA) [44], assum-

ing the following form

V ←− αV + (1− α)V ′ (3.4)

where V is the parameter to be estimated, V ′ is the latest observation of V , and α is the

weight (0 ≤ α ≤ 1).

In LOF, when a new MAC latency and thus a new log(LD) value with respect to the

current next-hop forwarder R is observed, the V value in the right hand side of formula (3.4)

may be quite old if R has just been selected as the next-hop and some packets have been

transmitted to other neighbors immediately before. To deal with this issue, we define the

age factor β(R) of the current next-hop forwarder R as the number of packets that have

been transmitted since V of R was last updated. Then, formula (3.4) is adapted to be the

following:

V ←− αβ(R)V + (1− αβ(R))V ′ (3.5)

(Experiments confirm that LOF performs better with formula (3.5) than with formula (3.4).)

46

Each MAC feedback indicates whether a unicast transmission has succeeded and how

long the MAC latency l is. When a node receives a MAC feedback, it first calculates the age

factor β(R) for the current next-hop forwarder, then it adapts the estimation of log(LD) as

follows:

• If the transmission has succeeded, the node calculates the new log(LD) value using l

and applies it to formula (3.5) to get a new estimation regarding the current next-hop

forwarder.

• If the transmission has failed, the node should not use l directly because it does not

represent the latency to successfully transmit a packet. To address this issue, the node

keeps track of the unicast delivery rate, which is also estimated using formula (3.5),

for each associated link. Then, if the node retransmits this unicast packet via the

currently used link, the expected number of retries until success is 1
p
, assuming that

unicast failures are independent and that the unicast delivery rate along the link is p.

Including the latency for this last failed transmission, the expected overall latency l ′

is (1+ 1
p
)l. Therefore, the node calculates the new log(LD) value using l′ and applies

it to formula (3.5) to get a new estimation.

Another important issue in EWMA estimation is choosing the weight α, since it af-

fects the stability and agility of estimation. To address this question, we again perform

experiment-based analysis. Using the data from Section 3.3.2, we try out different α values

and compute the corresponding estimation fidelity, that is, the probability of LOF choos-

ing the right next-hop forwarder for S. Figure 3.15(a) shows the best α value and the

corresponding estimation fidelity for different windows of comparison. If the window of

comparison is 20 seconds, for instance, the best α is 0.8, and the corresponding estimation

47

fidelity is 89.3%. (Since the time span of the ExScal traffic trace is about 20 seconds, we

set α as 0.8 in our experiments.)

50 100 150 200 250 300
80

85

90

95

100

window of comparison (seconds)

best α (%)
estimation fidelity (%)

(a) best α

0 0.2 0.4 0.6 0.8 1
75

80

85

90

 α

es
tim

at
io

n
fid

el
ity

 (%
)

(b) sensitivity analysis

Figure 3.15: The weight α in EWMA

For sensitivity analysis, Figure 3.15(b) shows how the estimation fidelity changes with

α when the window of comparison is 20 seconds. We see that the estimation fidelity is

not very sensitive to changes in α over a wide range. For example, the estimation fidelity

remains above 85% when α changes from 0.6 to 0.98. Similar patterns are observed for the

other windows of comparison too. The insensitivity of estimation fidelity to α guarantees

the robustness of EWMA estimation in different environments.

Route adaptation. As the estimation of LD changes, a node S adapts its route selec-

tion by the ELD metric. Moreover, if the unicast reliability to a neighbor R is below

certain threshold (say 60%), S will mark R as dead and will remove R from the set of

forwarder-candidates. If S loses all its forwarder-candidates, S will first broadcast M

copies of hello-withdrawal packets and then restarts the routing process. If a node S ′ hears

a hello-withdrawal packet from S, and if S is a forwarder-candidate of S ′, S ′ removes S

from its set of forwarder-candidates and update its next-hop forwarder as need be. (As a

side note, we find that, on average, only 0.9863 neighbors of any node are marked as dead

48

in both our testbed experiments and the field deployment of LOF in project ExScal [12].

Again, the withdrawing and rejoining process can be optimized, but we skip the details

here.)

3.4.4 Exploratory neighbor sampling

Given that the initial sampling is not perfect (e.g., covering 80% instead of 100% of

all the possible cases) and that wireless link quality varies temporally (e.g., from initial

sampling to actual data transmission), the data-driven adaptation alone may miss using

good links, simply because they were relatively bad when tested earlier and they do not

get chance to be tried out later on. Therefore, we propose exploratory neighbor sampling

in LOF. That is, whenever a node S has consecutively transmitted Ins(R0) number of data

packets using a neighbor R0, S will switch its next-hop forwarder from R0 to another

neighbor R′ with probability Pns(R
′) (so that the link quality to R′ can be sampled). On

the other hand, the exploratory neighbor sampling is optimistic in nature, and it should be

used only for good neighbors. In LOF, exploratory neighbor sampling only considers the

set of neighbors that are not marked as dead.

In what follows, we explain how to determine the sampling probability Pns(R
′) and the

sampling interval Ins(R0). For convenience, we consider a sender S, and let the neighbors

of S be R0, R1, . . . , RN with increasing ranks.

Sampling probability. At the moment of neighbor sampling, a better neighbor should be

chosen with higher probability. In LOF, a neighbor is chosen with the probability of the

neighbor actually being the best next-hop forwarder. We derive this probability in three

steps: the probability Pb(Ri, Rj) of a neighbor Ri being actually better than another one

Rj , the probability Ph(Ri) of a neighbor Ri being actually better than all the neighbors that

49

ranks lower than itself, and the probability Pns(Ri) of a neighbor Ri being actually the best

forwarder. Due to the limitation of space, we relegate the detailed derivation to [101].

Sampling interval. The frequency of neighbor sampling should depend on how good the

current next-hop forwarder R0 is, i.e., the sampling probability Pns(R0). In LOF, we set

the sampling interval Ins(R0) to be proportional to Pns(R0), that is,

Ins(R0) = C × Pns(R0) (3.6)

where C is a constant being equal to (N×K), with N being the number of active neighbors

that S has, and K being a constant reflecting the degree of temporal variations in link

quality. We set K to be 20 in our experiments.

The above method of setting the sampling probability and the sampling interval ensures

that better forwarders will be sampled with higher probabilities, and that the better the cur-

rent forwarder is, the lower the frequency of exploratory neighbor sampling. The sampling

probabilities and the sampling interval are re-calculated each time the next-hop forwarder

is changed.

3.5 Experimental evaluation

Via testbeds and field deployment, we experimentally evaluate the design decisions

and the performance of LOF. First, we present the experiment design; then we discuss the

experimental results.

3.5.1 Experiment design

Network setup. In our indoor testbed as shown in Figure 3.2, we let the Stargate at the

left-bottom corner of the grid be the base station, to which the other Stargates need to find

routes. Then, we let the Stargate S at the upper-right corner of the grid be the traffic source.

50

S sends packets of length 1200 bytes according to the ExScal event trace as discussed in

Section 3.2.1 and Figure 3.3. For each protocol we study, S simulates 50 event runs,

with the interval between consecutive runs being 20 seconds. Therefore, for each protocol

studied, 950 (i.e., 50× 19) packets are generated at S.

We have also tested scenarios where multiple senders generate ExScal traffic simulta-

neously, as well as scenarios where the data traffic is periodic; LOF has also been used in

the backbone network of ExScal. We discuss them in Section 3.5.3, together with other

related experiments.

Protocols studied. We study the performance of LOF in comparison with that of beacon-

based routing, where the latest development is represented by ETX [27, 95] and PRD [83]:

(For convenience, we do not differentiate the name of a routing metric and the protocol implement-

ing it.)

• ETX: expected transmission count. It is a type of geography-unaware distance-vector

routing where a node adopts a route with the minimum ETX value. Since the trans-

mission rate is fixed in our experiments, ETX routing also represents another metric

ETT [31], where a route with the minimum expected transmission time is used. ETT

is similar to MAC latency as used in LOF.

• PRD: product of packet reception rate and distance traversed to the destination. Un-

like ETX, PRD is geography-based. In PRD, a node selects as its next-hop forwarder

the neighbor with the maximum PRD value. The design of PRD is based on the

analysis that assumes geographic-uniformity.

By their original proposals, ETX and PRD use broadcast beacons in estimating the respec-

tive routing metrics. In this chapter, we compare the performance of LOF with that of ETX

51

and PRD as originally proposed in [27] and [83], without considering the possibility of

directly estimating metrics ETX and PRD via data traffic. This is because the firmware of

our SMC WLAN cards does not expose information on the number of retries of a unicast

transmission. (As a part of our future work, we plan to design mechanisms to estimate

ETX and PRD via data traffic and study the corresponding protocol performance.) In our

experiments, metrics ETX and PRD are estimated according to the method originally pro-

posed in [27] and [83]; for instance, broadcast beacons have the same packet length and

transmission rate as those of data packets. Since it has been shown that ETX and PRD per-

form better than protocols based on metrics such as RTT (round-trip-time) and hop-count

[30, 83], we do not study those protocols here.

To verify some important design decisions of LOF, we also study different versions of

LOF as follows:6

• L-hop: assumes geographic-uniformity, and thus uses metric ELR, as specified by

formula (3.3), instead of ELD;

• L-ns: does not use the method of exploratory neighbor sampling;

• L-sd: considers, in exploratory neighbor sampling, the neighbors that have been

marked as dead;

• L-se: performs exploratory neighbor sampling after every packet transmission.

For easy comparison, we have implemented all the protocols mentioned above in Em-

Star [2], a software environment for developing and deploying sensornets.

6Note: we have studied the performance of geography-unaware distance-vector routing using data-driven
estimation trying to minimize the sum of MAC latency along routes, and we found that the performance is
similar to that of LOF, except that more control packets are used.

52

Evaluation criteria. Reliability is one critical concern in convergecast. Using the tech-

niques of reliable transport discussed in [101], all the protocols guarantee 100% packet

delivery in our experiments. Therefore, we compare protocols in metrics other than relia-

bility as follows:

• End-to-end MAC latency: the sum of the MAC latency spent at each hop of a route.

This reflects not only the delivery latency but also the throughput available via a

protocol [27, 31].

• Energy efficiency: energy spent in delivering a packet to the base station.

3.5.2 Experimental results

MAC latency. Using boxplots7, Figure 3.16 shows the end-to-end MAC latency, in mil-

liseconds, for each protocol. The average end-to-end MAC latency in both ETX and PRD

is around 3 times that in LOF, indicating the advantage of data-driven link quality estima-

tion. The MAC latency in LOF is also less than that of the other versions of LOF, showing

the importance of using the right routing metric (including not assuming geographic uni-

formity) and neighbor sampling technique.

To explain the above observation, Figures 3.17, 3.18, 3.19, and 3.20 show the route hop

length, per-hop MAC latency, average per-hop geographic distance, and the coefficient of

7Boxplot is a nice tool for describing the distribution of a data sample:

• The lower and upper lines of the “box” are the 25th and 75th percentiles of the sample. The distance
between the top and bottom of the box is the interquartile range.

• The line in the middle of the box is the sample median.

• The “whiskers”, lines extending above and below the box, show the extent of the rest of the sample.
If there is no outlier, the top of the upper whisker is the maximum of the sample, and the bottom of
the lower whisker is the minimum. An outlier is a value that is more than 1.5 times the interquartile
range away from the top or bottom of the box. An outlier, if any, is represented as a plus sign.

• The notches in the box shows the 95% confidence interval for the sample median.

53

ETX PRD LOF L−hop L−ns L−sd L−se
0

50

100

150

200

250

en
d−

to
−e

nd
 M

A
C

 la
te

nc
y

(m
s)

Figure 3.16: End-to-end MAC latency

ETX PRD LOF L−hop L−ns L−sd L−se

2

4

6

8

10

12

ho
p

le
ng

th
 o

f r
ou

te
s

Figure 3.17: Number of hops in a route

ETX PRD LOF L−hop L−ns L−sd L−se
0

10

20

30

40

50

60

pe
r−

ho
p

M
A

C
 la

te
nc

y
(m

s)

Figure 3.18: Per-hop MAC latency

ETX PRD LOFL−hopL−ns L−sd L−se
0

1

2

3

4

5

av
er

ag
e

pe
r−

ho
p

di
st

an
ce

 (m
et

er
)

Figure 3.19: Average per-hop geographic distance

54

ETX PRD LOFL−hopL−ns L−sd L−se
0

0.2

0.4

0.6

0.8

C
O

V
 o

f p
er

−h
op

 g
eo

−d
is

ta
nc

e

Figure 3.20: COV of per-hop geographic distance in a route

variation (COV) of per-hop geographic distance. Even though the average route hop length

and per-hop geographic distance in ETX are approximately the same as those in LOF, the

average per-hop MAC latency in ETX is about 3 times that in LOF, which explains why the

end-to-end MAC latency in ETX is about 3 times that in LOF. In PRD, both the average

route hop length and the average per-hop MAC latency is about twice that in LOF.

From Figure 3.20, we see that the COV of per-hop geographic distance is as high as

0.4305 in PRD and 0.2754 in L-hop. Therefore, the assumption of geographic uniformity

is invalid, which partly explains why PRD and L-hop do not perform as well as LOF.

Moreover, the fact that the COV value in LOF is the largest and that LOF performs the best

tend to suggest that the network state is heterogeneous at different locations of the network.

Energy efficiency. Given that beacons are periodically broadcasted in ETX and PRD, and

that beacons are rarely used in LOF, it is easy to see that more beacons are broadcasted

in ETX and PRD than in LOF. Therefore, we focus our attention only on the number of

unicast transmissions required for delivering data packets to the base station, rather than

on the broadcast overhead. To this end, Figure 3.21 shows the number of unicast transmis-

sions averaged over the number packets received at the base station. The number of unicast

55

ETX PRD LOFL−hopL−ns L−sd L−se
0

5

10

15

20

of

 u
ni

ca
st

 tr
an

sm
is

si
on

s

Figure 3.21: Number of unicast transmissions per packet received

transmissions per packet received in ETX and PRD is 1.49 and 2.37 times that in LOF re-

spectively, showing again the advantage of data-driven instead of beacon-based link quality

estimation. The number of unicast transmissions per packet received in LOF is also less

than that in the other versions of LOF. For instance, the number of unicast transmissions in

L-hop is 2.89 times that in LOF.

Given that the SMC WLAN card in our testbed uses Intersil Prism2.5 chipset which

does not expose the information on the number of retries of a unicast transmission, Fig-

ure 3.21 does not represent the actual number of bytes sent. Nevertheless, given Figure 3.18

and the fact that MAC latency and energy consumption are positively related (as discussed

in Section 3.3.1), the above observation on the relative energy efficiency among the proto-

cols still holds.

To explain the above observation, Figure 3.22 shows the number of failed unicast trans-

missions for the 950 packets generated at the source. The number of failures in ETX and

PRD is 1112 and 786 respectively, yet there are only 5 transmission failures in LOF. Also,

there are 711 transmission failures in L-hop. Together with Figures 3.19 and 3.5(b), we see

that there exist reliable long links, yet only LOF tends to find them well: ETX also uses

long links, but they are not reliable; L-ns uses reliable links, but they are relatively shorter.

56

ETX PRD LOFL−hopL−ns L−sd L−se
0

200

400

600

800

1000

1200

of

 t
ra

ns
m

is
si

on
 fa

ilu
re

s

Figure 3.22: Number of failed unicast transmissions

3.5.3 Other experiments

Multiple senders and periodic traffic. Besides the scenario of 1 source event traffic

which we discussed in detail in the last subsection, we have performed experiments where

the Stargate at the upper-right corner and its two immediate grid-neighbors simultaneously

generate packets according to the ExScal traffic trace. We have also experimented with

periodic traffic where 1 or 3 Stargates (same as those in the case of event traffic) generate

1,000 packets each, with each packet being 1200-byte long and the inter-packet interval

being 500 milliseconds. In these experiments, we have observed similar patterns in the

relative protocol performance as those in the case of 1 source event traffic. For conciseness,

we only present the end-to-end MAC latency for these three cases, as shown in Figure 3.23.

Distance-vector data-driven routing and network throughput. We have so far focused

on geographic routing in this chapter, so that we do not need periodic control packets at all.

In practice, however, it may not be feasible to have high-precision location information.

In this case, we can adopt the classical distance-vector routing (which is based on the dis-

tributed Bellman-Ford algorithm) with data-driven link estimation. We have implemented

57

ETX PRD LOF
0

50

100

150

200

en
d−

to
−e

nd
 M

A
C

 la
te

nc
y

(m
s)

(a) event traffic, 3 senders
ETX PRD LOF

0

50

100

150

en
d−

to
−e

nd
 M

A
C

 la
te

nc
y

(m
s)

(b) periodic traffic, 1 sender
ETX PRD LOF

0

50

100

150

200

en
d−

to
−e

nd
 M

A
C

 la
te

nc
y

(m
s)

(c) periodic traffic, 3 senders

Figure 3.23: End-to-end MAC latency

the distance-vector data-driven routing protocol L-dv in EmStar, and we have experimen-

tally measured its performance in Kansei. For the case where there is one node generating

data packets according to the ExScal traffic trace, Figure 3.24 shows how the end-to-end

ETX PRD L−dv LOF
0

20

40

60

80

100

120

140

160

en
d−

to
−e

nd
 M

A
C

 la
te

nc
y

(m
ill

is
ec

on
ds

)

Figure 3.24: End-to-end MAC latency: event traffic, 1 sender. (Note: the experiments are
done with a 15×6 subgrid of Kansei.)

MAC latency in L-dv compares with that in other protocols. We see that L-dv has similar

performance as LOF, and L-dv performs better than beacon-driven routing ETX and PRD.

We observe similar patterns in terms of other evaluation metrics (such as energy efficiency)

and experimentation setup (such as multiple senders and periodic traffic).

58

To understand the impact of different protocols on network capacity, we also measure

the network throughput by letting the corner source node generating data packets as fast

as possible. Each data packet contains a payload of 1200 bytes. Figure 3.25 shows the

ETX PRD L−dv LOF
0

2

4

6

8

10

go
od

pu
t (

pa
ck

ts
/s

ec
on

d)

Figure 3.25: Network throughput (Note: the experiments are done with a 15×6 grid of
Kansei.)

throughput in different protocols. We see that LOF and L-dv yield similar network through-

put, and they both significantly improves the network throughput of ETX and PRD (e.g., up

to a factor of 7.78). Our current experimental facility limits the highest achievable one-hop

throughput to be 50 packets/second, thus the highest achievable multi-hop throughput is

7.14 packets/second [62]. We see that both LOF and L-dv achieve a throughput very close

to the highest possible network throughput.

The data presented in Figures 3.24 and 3.25 are for experiments executed on a 15×6

grid of Kansei. When we were executing these experiments, we were unable to access the

complete grid of Kansei due to some maintenance issues. But we believe the observations

will carry over to other network setups including the complete grid of Kansei.

59

Field deployment. Based on its well-tested performance, LOF has been incorporated in

the ExScal sensornet field experiment [12], where 203 Stargates were deployed as the back-

bone network, with the inter-Stargate separation being around 45 meters. LOF successfully

guaranteed reliable and real-time convergecast from any number of non-base Stargates to

the base station in ExScal, showing not only the performance of the protocol but also the

stability of its implementation.

3.6 Summary

Via experiments in testbeds of 802.11b networks, we have demonstrated the difficulties

of precisely estimating unicast link properties via broadcast beacons. To circumvent the

difficulties, we have proposed to estimate unicast link properties via data traffic itself, using

MAC feedback for data transmissions. To this end, we have modified the Linux kernel and

hostap WLAN driver to provide feedback on the MAC latency as well as the status of

every unicast transmission, and we have built system software for reliably fetching MAC

feedbacks. Based on these system facilities, we have demonstrated the feasibility as well

as potential benefits of data-driven routing by designing protocol LOF. LOF mainly used

three techniques for link quality estimation and route selection: initial sampling, data-

driven adaptation, and exploratory neighbor sampling. With its well tested performance and

implementation, LOF has been successfully used to support convergecast in the backbone

network of ExScal, where 203 Stargates have been deployed in an area of 1260 meters by

288 meters.

In this chapter, we have focused on data-driven link estimation and routing in 802.11

networks. But the concept of data-driven link estimation also applies to other sensornets

60

such as those using IEEE 802.15.4 radios [104], since temporal correlation in link prop-

erties also leads to estimation inaccuracy in these networks [21]. Besides saving energy

by avoiding periodic beaconing, LOF facilitates greater extent of energy conservation, be-

cause LOF does not require a node to be awake unless it is generating or forwarding data

traffic. LOF also helps in enhancing network security, since the network is less exposed.

More detailed study of the impact of data-driven routing on energy efficiency and security

is a part of our future work.

61

CHAPTER 4

PACKING-ORIENTED SCHEDULING

In this chapter, we study the ASC (for application-adaptive scheduling) component of

SMA from the perspective of in-network processing using packet packing (i.e., aggregating

shorter packets into longer ones) as an example of in-network processing method. We

first discuss the concept and benefit of packet packing in Section 4.1. In Section 4.2, we

design a scheduling algorithm that improves the degree of in-network packet packing while

satisfying application-specific QoS requirements. We also discuss related implementation

issues In Section 4.2. We evaluate our design in Section 4.3, and we summarize this chapter

in Section 4.4.

4.1 Packet packing

In sensornets, an information unit (e.g., a report after an event detection) from each

sensor is usually short (e.g., less than 10 bytes [14]), and the header overhead of each packet

is relatively high (e.g., up to 31 bytes at the MAC layer of IEEE 802.15.4). Fortunately,

the maximum size of MAC payload is usually much longer than that of each information

unit (e.g., 102 bytes per MAC frame in 802.15.4). Therefore, the MAC frame format

allows for aggregating several short information units into a single MAC frame, which we

62

refer to as packet packing hereafter. Having several information units share the overhead8

of a packet (or frame) transmission, packet packing reduces the amortized overhead of

transmitting each information unit. Packet packing also reduces the number of packets

contending for channel access, hence it reduces the probability of packet collision and

improves information delivery reliability, as we will show in Section 4.3.

4.2 Packing-oriented scheduling

Since packet packing reduces the overhead of packet transmission and channel con-

tention, the objective of packing-oriented scheduling is to schedule packet transmissions

such that as many short packets are packed into long packets as possible, by which the

amortized overhead of packet transmission is reduced. To reflect the overhead of a packet

transmission tx, we define the amortized cost (AC) of the transmission as C0

Ltx
, where Ltx

is the payload length of the packet being transmitted. Then, we can define the utility of a

scheduling action (i.e., transmit or hold a packet) as the expected reduction in the amortized

cost of packet transmissions in the network. Accordingly, whether a short packet should

be held at or be immediately transmitted from a node to its parent depends on the utility of

locally holding the packet and the utility of transmitting the packet.

Since locally holding a packet increases the delay in delivering the packet, the schedul-

ing algorithm should not hold a packet too long to violate the timeliness requirement of

information delivery specified by the application. Therefore, both the timeliness require-

ment of information delivery and application traffic pattern (e.g., spatial and temporal dis-

tributions of data packets) affect packet transmission scheduling in a network. Since the

timeliness requirement and the traffic pattern vary from one application to another and

8The overhead includes not only the number of header bytes transmitted but also the energy taken to wake
up radios, since radios may well be in low-power sleeping state in sensornets.

63

are usually unknown beforehand, the scheduling algorithm should adapt to the timeliness

requirement and traffic pattern on the fly.

In what follows, we first discuss how to calculate the utilities of holding and trans-

mitting a packet in an application-adaptive manner, then we present a scheduling rule that

improves the overall utility.

4.2.1 Utility calculation

For convenience, we define the following notations:

L : maximum payload length per packet;
C0 : overhead of a packet transmission;
ETX.j : expected number of transmissions taken to

transport a packet from node j to its
destination;

p.j : the parent or next-hop of a node j in the
routing tree;

ETX0.j : expected number of transmissions taken to
transport a packet from node j to p.j.

(For simplicity of presentation, we only consider the case where every packet needs to

delivered to be the base station of a sensornet [14]. The algorithm discussed in this chapter

is readily applicable to the case where there are multiple base stations.)

The utilities of holding and transmitting a packet pkt at a node j depend on the follow-

ing parameters related to traffic patterns:

• With respect to j itself and its children:

tl : expected time to receive another packet pkt′

from a child or locally from an upper layer;
sl : expected payload size of pkt′.

• With respect to the parent of j:

tp : expected time till the parent transmits another
packet pkt′′ that does not contain information
units generated or forwarded by j itself;

sp : expected payload size of pkt′′.

64

The utilities of holding and transmitting a packet pkt also depend on the following

constraints posed by application QoS requirement and wireless communication:

• Grace period tf for delivering pkt: the maximum allowable latency in delivering pkt

minus the expected time taken to transport pkt from j to its destination without being

held at any intermediate node along the route.

If tf ≤ 0, pk should be transmitted immediately to minimize the extra delivery

latency.

• Spare packet space sf of pkt: the maximum allowable payload length per packet

minus the current payload length of pkt.

Parameter sf and the size of the packets coming next from an upper layer at j or from

j’s children determine how much pkt will be packed and thus the potential utility of

locally holding pkt.

Then, the utilities of holding and transmitting a packet are calculated as follows.

Utility of holding a packet. When a node j holds a packet pkt, pkt can be packed with

packets from j’s children or from an upper layer at j. Therefore, the utility of holding pkt

at j is the expected reduction in the amortized cost of transmitting pkt after packing pkt.

The utility depends on (a) the expected number of packets that j will receive within tf time

(either from a child or locally from an upper layer), and (b) the expected payload size sl of

these packets. Given that the expected inter-packet interval is tl, the expected number of

packets to be received at j within tf time is tf
tl

. Thus, the expected overall size S ′
l of the

payload to be received within tf time is calculated as follows:

S ′
l =

tf
tl

sl

65

Given the spare space sf in the packet pkt, the expected size Sl of the payload that can be

packed into pkt is calculated as follows:

Sl = min{S ′
l , sf} = min{

tf
tl

sl, sf}

Therefore, the expected amortized cost ACl of transporting the packet to the destination

after anticipated packing is calculated as follows:

ACl =
C0

(L− sf) + Sl

ETX.j

where (L− sf) is the payload length of pkt before packing.

Since the amortized cost AC ′
l of transporting pkt without the anticipated packing is

calculated as

AC ′
l =

C0

L− sf

ETX.j

the utility Ul of holding pkt is calculated as follows:

Ul = AC ′
l − ACl

= C0Sl

(L−sf)(L−sf +Sl)
ETX.j

=
C0ṁin{

tf

tl
sl,sf}

(L−sf)(L−sf +min{
tf

tl
sl,sf})

ETX.j

(4.1)

Utility of immediately transmitting a packet. If node j transmits the packet pkt imme-

diately to its parent p.j when pkt is not yet fully packed, j pays the cost of transmitting a

non-fully-packed packet. Yet the payload carried by pkt can be used to pack the packets

that p.j has received from its children other than j. Therefore, the utility of j transmitting

a non-fully-packed packet pkt comes from the expected reduction in the amortized cost of

packet transmissions at p.j as a result of receiving the payload that pkt carries.

When j transmits pkt to p.j, the grace period of pkt at p.j is still tf , the expected

number of packets that do not contain information units from j and can be packed with

pkt at p.j is tf
tp

. Given the limited payload that pkt carries, it may happen that not all the

66

packets to be transmitted at p.j get packed (to full) via the payload from pkt. Accordingly,

the utility Up of immediately transmitting pkt is calculated as follows:

• If all the parent packets get packed to full via payload from pkt, i.e., tf
tp

(L − sp) ≤

L− sf :

For each of such parent packet, the utility U ′ (or reduction in amortized cost) is

calculated as follows:

U ′ = C0

sp
ETX.(p.j)− C0

L
ETX.(p.j)

= C0(L−sp)
spL

ETX.(p.j)

Then, the overall utility U ′
p is calculated as follows:

U ′
p =

tf
tp

U ′ =
tf
tp

C0(L− sp)

spL
ETX.(p.j) (4.2)

where tf
tp

is the expected number of packets that do not contain information units

from j and can be packed with pkt.

• If not all the parent packets get packed to full via payload from pkt, i.e., tf
tp

(L−sp) >

L− sf :

In this case, bL−sf

L−sp
c number of packets are packed to full, and the corresponding util-

ity is bL−sf

L−sp
cC0(L−sp)

spL
ETX.(p.j) (by Equation 4.2). In addition, there is a packet that

gets partially packed via mod(L− sf , sp) length of payload from pkt, and the corre-
sponding utility is C0mod(L−sf ,sp)

(L−sp)(L−sp+mod(L−sf ,sp))
ETX.(p.j) (by Equation 4.1). Therefore,

the overall utility U ′′
p is the summation of the above two terms as follows:

U ′′
p = (b

L−sf

L−sp
cC0(L−sp)

spL
+

C0mod(L−sf ,sp)
(L−sp)(L−sp+mod(L−sf ,sp)))×

ETX.(p.j)
(4.3)

While immediately transmitting pkt to p.j brings with it the utility discussed above,

immediate transmission pays the cost Cp of transmitting a packet that is not full yet. Ac-

cording to the concept of amortized cost of packet transmission, Cp is calculated as follows:

Cp = C0

L−sf
ETX0.j −

C0

L
ETX0.j

=
C0sf

(L−sf)L
ETX0.j

(4.4)

67

Therefore, the utility Up of immediately transmitting pkt to p.j is calculated as follows:

Up =

{

U ′
p − Cp if tf

tp
(L− sp) ≤ (L− sf)

U ′′
p − Cp otherwise

(4.5)

where U ′
p, U ′′

p , and Cp are defined in Equations 4.2, 4.3, and 4.4 respectively.

4.2.2 Scheduling rule

To reduce the amortized cost of packet transmission, the objective of packing-oriented

scheduling is to maximize the utility of transmission scheduling (including the utilities of

transmitting and holding packets). Since we mainly focus on demonstrating the feasibility

and benefits of application-adaptivity in messaging in this chapter, we only study a greedy

algorithm where each node tries to maximize the local utility of scheduling each packet

transmission, and we relegate the design of globally optimal algorithm as a part of our

future work.

Given a packet to be scheduled for transmission, if the probability that the packet is

immediately transmitted is Pt (0 ≤ Pt ≤ 1), then the expected utility Ut(Pt) is calculated

as follows:

Ut(Pt) = Pt × Up + (1− Pt)Ul

= Ul + Pt(Up − Ul)
(4.6)

where Up and Ul are the utilities of immediately transmitting and locally holding the packet

respectively. To maximize Ut, Pt should be set according to the following rule:

Pt =

{

1 if Up > Ul

0 otherwise

That is, the packet should be immediately transmitted if the utility of immediate transmis-

sion is greater than that of locally holding the packet.

68

Remarks. The framework designed for packing-oriented scheduling is readily applicable

to other in-network processing methods such as data compression, since the impact of in-

network processing (no matter how it is achieved) can be modeled by the concept of utility.

Detailed discussion of this, however, is beyond the scope of this chapter.

4.2.3 Implementation

From the discussion in Section 4.2.1, a node j needs to obtain the following parameters

when calculating the utilities of holding and transmitting a packet:

• On messaging structure: ETX.j, p.j, and ETX0.j;

• On traffic pattern: tl, sl, tp, sp, and L.

Parameters related to messaging structure can be provided by component TLR or AST

depending on the software architecture in a given system platform. On parameters related to

traffic pattern, j can estimate by itself the parameters tl and sl, and L is readily available and

fixed for each specific platform. To enable each node j to obtain parameters tp and sp, every

node k in the network estimates the expected interval t.k in transmitting two consecutive

packets at k itself and the expected size s.k of these packets. Then, every node k shares

with its neighbors the parameters t.k and s.k by piggybacking these information onto data

packets or other control packets in the network. When a node j overhears parameter t.(p.j)

and s.(p.j) from its parent p.j, j can approximate tp and sp with t.(p.j)×t.j×s.(p.j)
t.j×s.(p.j)−t.(p.j)×s.k

and

s.(p.j) respectively. The derivation is as follows.

Approximation of tp and sp: Since information units generated or forwarded by the children

of node p.j are treated in the same manner (without considering where they are from), the

expected size of the packet being transmitted by p.j does not depend on whether the packet

69

contains information units generated or forwarded by j. Thus, j can simply regard s.(p.j)

as sp, the expected size of the packet transmitted by p.j that does not contain information

units coming from j.

Now we derive tp as follows. Since the amount of payload transmitted by p.j per unit

time is 1
t.(p.j)

s.(p.j) and the amount of payload transmitted by j is 1
t.j

s.j per unit time,

the amount of payload lp that are transmitted by p.j but are not from j per unit time is

calculated as: lp = s.(p.j)
t.(p.j)

− s.j

t.j
. Thus, the expected rate rp that p.j transmits packets that do

not contain information units from j is calculated as: rp = lp/s.(p.j) = 1
t.(p.j)

− s.j

t.j×s.(p.j)
.

Therefore, the expected interval tp between p.j transmitting two consecutive packets that

do not contain information units from j is as follows: tp = 1
rp

= t.(p.j)×t.j×s.(p.j)
t.j×s.(p.j)−t.(p.j)×s.j

.

2

4.3 Performance evaluation

We have implemented packing-oriented scheduling in TinyOS [5]. The implementation

takes 40 bytes of RAM (plus the memory required for regular packet buffers) and 4814

bytes of ROM. To evaluate the performance of packing-oriented scheduling, we use the

routing component MintRoute [95] that is readily available in TinyOS to form the routing

structure. We are currently implementing the routing protocol Learn on the Fly (LOF) [102]

in TinyOS, to provide the service for traffic-adaptive link estimation and routing (TLR) in

the messaging architecture SMA. Packing-oriented scheduling is readily interoperable with

LOF, but the detailed study is beyond the scope of this chapter.

To understand the benefits of application-adaptive packet packing, we implement and

compare the performance of the following messaging methods:

• noPacking: packets are delivered without being packed in the network.

70

• simplePacking: packets are packed if they are in the same queue, but there is not

packing-oriented scheduling.

• intelliPacking: schedule packet transmissions so that packets are packed as much as

possible while satisfying application requirement on the timeliness of information

delivery, i.e., employ packing-oriented scheduling as discussed in Section 4.2).

In evaluating messaging performance, we consider the case of convergecast where every

information unit is transported to a singe destination — the base station which acts as the

interface between a sensornet and the rest of the world. For each method, its performance

is evaluated according to the following metrics:

• Packing ratio: the average number of information units within each transmitted

packet.

• Energy efficiency: the number of packet transmissions and receptions required to

deliver a single information unit to the base station.

• Information delivery reliability: the ratio of the number of unique information units

received at the base station to the number of unique information units generated in

the network.

In what follows, we first evaluate the performance of different messaging methods via

simulation. Then we evaluate their performance via experimentation with Tmote Sky sen-

sor nodes [6], to corroborate our observations in simulation.

4.3.1 Simulation study

We use the simulator TOSSIM [61] that comes with TinyOS. In the simulation, 100

nodes are deployed in a 10×10 grid where each node can reliably communicate with nodes

71

3 grid-hops away. The traffic pattern is such that the base station is at one corner of the

grid, and nodes in the farthest 4×4 subgrid from the base station periodically generate

information units, with the interval between two consecutive information units uniformly

distributed between 5 seconds and 15 seconds. The length of each information unit is 16

bytes, including information such as the node ID and timestamp at the source.

In the simulation, we first study a typical scenario where the maximum payload length

is 102 bytes, and the application QoS requirement is specified such that the maximum

allowable latency in delivering information units is 10 seconds [14, 12]. Then we study

the impact of maximum allowable information delivery latency and payload length on the

performance of intelliPacking.

A typical scenario. For the scenario where the maximum payload length is 102 bytes and

the maximum allowable information delivery latency is 10 seconds, Figure 4.1 shows the

noPacking simplePacking intelliPacking
0

0.5

1

1.5

2

P
ac

ki
ng

 ra
tio

Figure 4.1: Packing ratio

packing ratio in the three messaging methods. The packing ratio is 1, 1.02, and 1.63 for

noPacking, simplePacking, and intelliPacking respectively. We can see that, compared with

simplePacking, intelliPacking significantly improves the packing ratio. This is because

72

intelliPacking dynamically estimates traffic pattern and schedules packet transmissions so

that the degree of in-network packet packing is improved.

As a result of the improved in-network packet packing, intelliPacking also improves en-

ergy efficiency in delivering information, as shown in Figure 4.2 Compared with noPack-

noPacking simplePacking intelliPacking
0

2

4

6

8

N
um

be
r o

f t
ra

ns
m

is
si

on
s

(a) Number of transmissions
noPacking simplePacking intelliPacking

0

1

2

3

4

5

6

N
um

be
r o

f r
ec

ep
tio

ns

(b) Number of receptions

Figure 4.2: Average number of transmissions and receptions per information unit received

ing, intelliPacking reduces the average number of transmissions and receptions required

for delivering an information unit by a factor of 2.33 and 2.35 respectively; compared with

simplePacking, intelliPacking also reduces the average number of transmissions and recep-

tions required for delivering an information unit by a factor of 1.59 and 1.56 respectively.

Since intelliPacking reduces the number packet transmissions, it reduces the degree of

channel contention in the network and thus improves reliability in delivering information,

as shown in Figure 4.3 which presents the network-wide average information delivery re-

liability, as well as the average reliability based on the distance (measured in grid-hops)

from the source to the base station. Compared with noPacking and simplePacking, intelli-

Packing improves reliability by 8.98% and 1.87% respectively. (We will see a little bit later

73

noPacking simplePacking intelliPacking
0

20

40

60

80

100

In
fo

rm
at

io
n

de
liv

er
y

re
lia

bi
lit

y
(%

)

(a) Network-wide average
12 13 14 15 16 17 18

86

88

90

92

94

96

98

Grid distance to the base station

In
fo

rm
at

io
n

de
liv

er
y

re
lia

bi
lit

y
(%

)

noPacking
simplePacking
intelliPacking

(b) Distance-based

Figure 4.3: Information delivery reliability

that the improvement in information delivery reliability is even much higher in real-world

hardware based experiments.)

Impact of maximum allowable latency. To study the impact of application properties

on intelliPacking, we vary the maximum allowable latency in information delivery from 3

seconds to 25 seconds and measure the corresponding performance of intelliPacking.

Figure 4.4 shows how the packing ratio increases as the maximum allowable informa-

5sec 10sec 15sec 20sec 25sec
0

1

2

3

4

P
ac

ki
ng

 ra
tio

Figure 4.4: Packing ratio

74

tion delivery latency increases. As the allowable latency increases from 5 seconds to 25

seconds, the packing ratio increases from 1.09 to 3.17 and by a factor of 2.9.

As the packing ratio increases, the energy efficiency increases by a factor up to 3.27, as

shown in Figure 4.5. In the mean time, the messaging reliability increases by a factor up

5sec 10sec 15sec 20sec 25sec
0

1

2

3

4

5

6

N
um

be
r o

f t
ra

ns
m

is
si

on
s

(a) Number of transmissions
5sec 10sec 15sec 20sec 25sec

0

1

2

3

4

5

N
um

be
r o

f r
ec

ep
tio

ns

(b) Number of receptions

Figure 4.5: Average number of transmissions and receptions per information unit received

to 3% as the channel contention decreases due to increased packing ratio. This is shown in

Figure 4.6.

5sec 10sec 15sec 20sec 25sec
0

20

40

60

80

100

In
fo

rm
at

io
n

de
liv

er
y

re
lia

bi
lit

y
(%

)

(a) End-to-end
12 13 14 15 16 17 18

92

93

94

95

96

97

98

99

100

Grid distance to the base station

In
fo

rm
at

io
n

de
liv

er
y

re
lia

bi
lit

y
(%

) 5sec
10sec
15sec
20sec
25sec

(b) Distance-based

Figure 4.6: Information delivery reliability

75

Impact of maximum payload length. Since the maximum packet payload length deter-

mines the maximum number of information units that can be packed into a single packet,

it affects the degree of in-network packet packing. Setting the maximum information de-

livery latency to the typical value of 10 seconds, we vary the maximum payload length

from 40 bytes to 104 bytes and measure the corresponding performance of intelliPacking.

Figures 4.7, 4.8, and 4.9 present the data on packing ratio, energy efficiency, and reli-

40b 56b 72b 88b 104b
0

0.5

1

1.5

2
P

ac
ki

ng
 ra

tio

Figure 4.7: Packing ratio

40b 56b 72b 88b 104b
0

1

2

3

4

5

N
um

be
r o

f t
ra

ns
m

is
si

on
s

(a) Number of transmissions
40b 56b 72b 88b 104b

0

1

2

3

4

5

N
um

be
r o

f r
ec

ep
tio

ns

(b) Number of receptions

Figure 4.8: Average number of transmissions and receptions per information unit received

ability respectively. From these figures, we see that increased maximum payload length

76

40b 56b 72b 88b 104b
0

20

40

60

80

100

In
fo

rm
at

io
n

de
liv

er
y

re
lia

bi
lit

y
(%

)

(a) End-to-end
12 13 14 15 16 17 18

50

60

70

80

90

100

Grid distance to the base station

In
fo

rm
at

io
n

de
liv

er
y

re
lia

bi
lit

y
(%

)

40b
56b
72b
88b
104b

(b) Distance-based

Figure 4.9: Information delivery reliability

improves the overall network performance, even though the improvement is not prominent

given the tight information delivery latency (which in turns bounds from above the packing

ratio). Note that, when the maximum payload length is 40 bytes, each packet can carry at

most 2 information units, and a packet is immediately transmitted or forwarded after each

packing. As a result, compared with scenarios of longer payload length, packet transmis-

sions are more bursty (and less spread temporally) when the maximum payload length is

40 bytes, and thus the messaging reliability is relatively lower.

Having studied the benefits and the influence factors of application-adaptive in-network

packet packing in simulation, we corroborate our findings via experimentation in the next

subsection.

4.3.2 Experimental study

To understand the performance of the different messaging methods in real-world envi-

ronment, we evaluate their performance via experimentation with Tmote Sky sensor nodes.

These sensor nodes use CC2420 radios which are compatible with IEEE 802.15.4 standard.

We deploy 18 Tmote Sky sensor nodes in a 3×6 grid with every two closest nodes separated

77

by 1.5 feet. The sensor grid is placed in an office environment as shown in Figure 4.10.

By experimenting with real-world radios and environment, we can capture the impact of

Figure 4.10: Tmote Sky sensor node grid

channel fading and channel contention, as well as the impact of temporal link properties

(which did not discuss in Section 4.1).

We set the transmission power level of the sensor nodes to be 2 (out of a range from 1 to

31) such that every node can reliably communicates its immediate grid-neighbors. Similar

to the typical scenario studied in simulation, the base station is at one corner of the grid, and

nodes in the farthest 3×3 subgrid from the base station periodically generate information

units, with the inter-unit interval uniformly distributed between 5 seconds and 15 seconds.

The length of each information unit is 16 bytes, the maximum payload length is 102 bytes,

and the maximum allowable information delivery latency is 10 seconds.

Figure 4.11 shows the packing ratio in different messaging methods. Compared with

noPacking and simplePacking, intelliPacking improves the packing ratio by a factor of 5.25

and 3.5 respectively.

78

noPacking simplePacking intelliPacking
0

1

2

3

4

5

P
ac

ki
ng

 ra
tio

Figure 4.11: Packing ratio

noPacking simplePacking intelliPacking
0

5

10

15

20

25

30

N
um

be
r o

f t
ra

ns
m

is
si

on
s

(a) Number of transmissions
noPacking simplePacking intelliPacking

0

5

10

15

20

N
um

be
r o

f r
ec

ep
tio

ns

(b) Number of receptions

Figure 4.12: Average number of transmissions and receptions per information unit received

noPacking simplePacking intelliPacking
0

20

40

60

80

100

In
fo

rm
at

io
n

de
liv

er
y

re
lia

bi
lit

y
(%

)

(a) End-to-end
3 4 5 6 7

30

40

50

60

70

80

90

Grid distance to the base station

In
fo

rm
at

io
n

de
liv

er
y

re
lia

bi
lit

y
(%

)

noPacking
simplePacking
intelliPacking

(b) Distance-based

Figure 4.13: Information delivery reliability

79

Accordingly, intelliPacking significantly improves the energy efficiency, as shown in

Figure 4.12. Compared with noPacking and simplePacking, intelliPacking reduces the

number of transmissions required for delivering an information unit by a factor of 3.07 and

1.71 respectively, and intelliPacking reduces the number of receptions per information unit

received by a factor of 3.22 and 1.85 respectively.

Because intelliPacking reduces the number of packet transmissions in the network, it

reduces the degree of channel contention. Accordingly, it improves messaging reliability

as shown in Figure 4.13. Compared with noPacking and simplePacking, intelliPacking

improves the messaging reliability by 12.92% and 12.77% respectively.

From the above study, we see that the experiments corroborate our observations in

simulation, even strengthening the observations by showing higher degree of improvement

in packing ratio, energy efficiency, and information delivery reliability.

4.4 Summary

Taking packet packing as an example of in-network processing, we studied application-

adaptive scheduling in detail. Based on the concept of scheduling utility, the algorithmic

framework for packing-oriented scheduling is generically applicable to other in-network

processing methods. Through simulation and experimentation, we have shown that our

design improves both energy efficiency and reliability in sensornet messaging.

While we have application-adaptive scheduling from the perspective of packet packing,

we believe our effort is only the first step toward application-adaptive scheduling in sensor-

nets. As applications evolve, we hope to enrich our design by taking into account other in-

network processing methods (e.g., information fusion) and application requirements (e.g.,

packet delivery reliability).

80

CHAPTER 5

RELIABLE AND REAL-TIME DATA TRANSPORT

In this chapter, we study the ASC (for application-adaptive scheduling) component of

SMA from the perspective of application QoS requirements. More specifically, we study

transport control for event-detection applications, and we present the protocol Reliable

Bursty Convergecast (RBC) for reliable and real-time data transport.

5.1 Motivation

A typical application of wireless sensor networks is to monitor an environment (be it

an agricultural field or a classified area) for events that are of interest to the users. Usually,

the events are rare. Yet when an event occurs, a large burst of packets is often generated

that needs to be transported reliably and in real-time to a base station. One exemplary

event-driven application is demonstrated in the DARPA NEST field experiment “A Line in

the Sand” (simply called Lites hereafter) [14]. In Lites, a typical event generates up to 100

packets within a few seconds and the packets need to be transported from different network

locations to a base station, over multi-hop routes.

The high-volume bursty traffic in event-driven applications poses special challenges for

reliable and real-time packet delivery. The large number of packets generated within a short

81

period leads to high degree of channel contention and thus a high probability of packet col-

lision. The situation is further exacerbated by the fact that packets travel over multi-hop

routes: first, the total number of packets competing for channel access is increased by a fac-

tor of the average hop-count of network routes; second, the probability of packet collision

increases in multi-hop networks due to problems such as hidden-terminals. Consequently,

packets are lost with high probability in bursty convergecast. For example, with the default

radio stack of TinyOS [7], around 50% of packets are lost for most events in Lites.

For real-time packet delivery, hop-by-hop packet recovery is usually preferred over end-

to-end recovery [86, 89]; and this is especially the case when 100% packet delivery is not

required (for instance, for bursty convergecast in sensor networks). Nevertheless, we find

issues with existing hop-by-hop control mechanisms in bursty convergecast. Via experi-

ments with a testbed of 49 MICA2 motes and with traffic traces of Lites, we observe that

the commonly used link-layer error control mechanisms do not significantly improve and

can even degenerate packet delivery reliability. For example, when packets are retransmit-

ted up to twice at each hop, the overall packet delivery ratio increases by only 6.15%; and

when the number of retranmissions increases, the packet delivery ratio actually decreases,

by 11.33%.

One issue with existing hop-by-hop control mechanisms is that they do not schedule

packet retransmissions appropriately; as a result, retransmitted packets further increase the

channel contention and cause more packet loss. Moreover, due to in-order packet deliv-

ery and conservative retransmission timers, packet delivery can be significantly delayed

in existing hop-by-hop mechanisms, which leads to packet backlogging and reduction in

network throughput. (We examine the details in Section 5.3.)

82

On the other hand, the new network and application models of bursty convergecast in

sensor networks offer unique opportunities for reliable and real-time transport control:

• First, the broadcast nature of wireless channels enables a node to determine, by

snooping the channel, whether its packets are received and forwarded by its neigh-

bors.

• Second, time synchronization and the fact that data packets are timestamped relieve

transport layer from the constraint of in-order packet delivery, since applications can

determine the order of packets by their timestamps.

Therefore, techniques that take advantage of these opportunities and meet the challenges

of reliable and real-time bursty convergecast are desired. To this end, we design the proto-

col Reliable Bursty Convergecast (RBC) for reliable and real-time data transport in event-

detection applications.

In the remainder of this chapter, we describe our testbed and discuss the experiment

design in Section 5.2. In Section 5.3, we study the limitations of existing hop-by-hop

control mechanisms. We present the detailed design of RBC in Section 5.4, then we present

the experimental results in Section 5.5. We discuss how to extend the basic design to

support continuous event convergecast and to deal with queue congestion in Section 5.6.

We summarize this chapter in Section 5.7.

5.2 Testbed and experiment design

Towards characterizing the issues in making bursty convergecast both reliable and

timely, we conduct an experimental study. We choose experimentation as opposed to simu-

lation in order to gain higher fidelity and confidence in the observations. Before presenting

our study, we first describe our testbed and the experiment design.

83

Testbed. We setup our testbed to reflect the field sensor network of Lites, and we use the

traffic trace for a typical event in Lites as the basis of our experiments.

The testbed consists of 49 MICA2 motes deployed in a grass field, as shown in Fig-

ure 5.1(a), where the grass is 2-4 inches tall.The 49 motes form a 7×7 grid with a 5-feet

(a) Environment (b) Grid topology

Figure 5.1: The testbed

separation between neighboring grid points, as shown in Figure 5.1(b) where each grid

point represents a mote. The mote at the left-bottom corner of the grid is the base station

to which all the other motes send packets. The 7×7 grid imitates a subgrid in the sensor

network of Lites.

The traffic trace (simply called Lites trace hereafter) corresponds to the packets gener-

ated in a 7×7 subgrid of the Lites network when a vehicle passes across the middle of the

Lites network. When the vehicle passes by, each mote except for the base station detects

the vehicle and generates two packets, which correspond to the start and the end of the

event detection respectively and are separated 5-6 seconds on average. Overall, 96 packets

are generated each time the vehicle passes by.9 The cumulative distribution of the number

9We could have chosen a traffic trace where fewer number packets are generated (e.g., when a soldier
with a gun passes by), but that would not serve as well in showing the challenges posed by huge event traffic
bursts.

84

of packets generated during the event is shown in Figure 5.2. (Interested readers can find

the detailed description of the traffic trace in [8].)

0 5 10 15
0

20

40

60

80

100

Time (seconds)

N
um

be
r o

f p
ac

ke
ts

 g
en

er
at

ed

Figure 5.2: The distribution of packets generated in Lites trace

If we define the burst rate up to a moment in the event as the number of packets

generated so far divided by the time since the first packet is generated, the highest burst

rate in Lites trace is 14.07 packets/second. Given that the highest one-hop throughput is

about 42.93 packets/second for MICA2 motes with B-MAC (the latest MAC component

of TinyOS) and that, in multi-hop networks, even an ideal MAC can only achieve 1
4

of the

throughput that a single-hop transmission can achieve [62], the burst rate of Lites trace far

exceeds the rate at which the motes can push packets to the base station. Therefore, it is

a challenging task to deliver packets reliably and in real time in such a heavy-load bursty

traffic scenario.

Experiment design. To reflect the multi-hop network of Lites, we let each mote transmit

at the minimum power level by which two motes 10 feet apart are able to reliably commu-

nicate with each other, and the power level is 9 (out of a range between 1 and 255). We

85

use the routing protocol LGR [24] in our testbed.10 LGR uses links that are reliable in the

presence of bursty traffic, and LGR spreads traffic uniformly across different paths to re-

duce wireless channel contention. Therefore, LGR provides a reliable and uniform packet

delivery service in bursty convergecast [24]. In our testbed, the number of hops in a path is

up to 6 and is 3.3 on average.

For each protocol we evaluate, we run the Lites trace 10 times and measure the average

performance of the protocol by the following metrics:

• Event reliability (ER): the number of unique packets received at the base station in

an event divided by the number packets generated for the event.

Event reliability reflects how well an event is reported to the base station.

• Packet delivery delay (PD): the time taken for a packet to reach the base station from

the node that generates it.

• Event goodput (EG): the number of unique packets received at the base station di-

vided by the interval between the moment the first packet is generated and the mo-

ment the base station receives any packet the last time.

Event goodput reflects how fast the traffic of an event is pushed from the network

to the base station. By definition, the optimal event goodput for Lites trace is 6.66

packets/second, which corresponds to the case where the packet delivery delay is 0

and all the packets are received by the base station.

• Node reliability (NR): the number of unique packets that are generated by a node and

received by the base station divided by the number of packets generated at the node.

10To focus on transport issues,we disable the “base-snooping” in LGR so that the base station does not
accept packets snooped over the channel.

86

(Remark: The study in this chapter applies to cases where network topologies other than

grid and routing protocols other than LGR are used, since the protocols studied are appli-

cable to other network topologies and routing protocols.)

5.3 Limitations of two hop-by-hop packet recovery mechanisms

Two widely used hop-by-hop packet recovery mechanisms in sensor networks are syn-

chronous explicit ack and stop-and-wait implicit ack. We study their performance in bursty

convergecast as follows.

5.3.1 Synchronous explicit ack (SEA)

In SEA, a receiver switches to transmit-mode and sends back the acknowledgment im-

mediately after receiving a packet; the sender immediately retransmits a packet if the cor-

responding ack is not received after certain constant time. Using our testbed, we study the

performance of SEA when used with B-MAC [78, 7] and S-MAC [98]. B-MAC uses the

mechanism of CSMA/CA (carrier sense multiple access with collision avoidance) to con-

trol channel access; S-MAC uses CSMA/CA too, but it also employs RTS-CTS handshake

to reduce the impact of hidden terminals.

SEA with B-MAC. The event reliability, the average packet delivery delay, as well as the

event goodput is shown in Table 5.1, where RT stands for the maximum number of retrans-

Metrics RT = 0 RT = 1 RT = 2
ER (%) 51.05 54.74 54.63

PD (seconds) 0.21 0.25 0.26
EG (packets/sec) 4.01 4.05 3.63

Table 5.1: SEA with B-MAC in Lites trace

87

missions for each packet at each hop (e.g., RT = 0 means that packets are not retransmitted).

The distribution of the number of unique packets received at the base station along time is

shown in Figure 5.3.

0 5 10 15
0

20

40

60

80

100

Time (seconds)

N
um

be
r o

f u
ni

qu
e

pa
ck

et
s

re
ce

iv
ed

RT = 0
RT = 1
RT = 2

Figure 5.3: The distribution of packet reception in SEA with B-MAC

Table 5.1 and Figure 5.3 show that when packets are retransmitted, the event reliability

increases slightly (i.e., by up to 3.69%). Nevertheless, the maximum reliability is still

only 54.74%, and, even worse, the event reliability as well as goodput decreases when the

maximum number of retransmissions increases from 1 to 2. (The above data is for B-MAC

with its default contention window size. We have conducted the experiment with different

contention window size of B-MAC, and we found that the performance pattern remains the

same.)

SEA with S-MAC. Unlike B-MAC, S-MAC uses RTS-CTS handshake for unicast trans-

missions, which reduces packet collisions. We evaluate SEA when it is used with S-MAC,

and the performance data is shown in Table 5.2 and Figure 5.4.

88

Metrics RT = 0 RT = 1 RT = 2
ER (%) 72.6 74.79 70.1

PD (seconds) 0.17 0.183 0.182
EG (packets/sec) 5.01 4.68 4.37

Table 5.2: SEA with S-MAC in Lites trace

0 5 10 15
0

20

40

60

80

100

Time (seconds)

N
um

be
r o

f u
ni

qu
e

pa
ck

et
s

re
ce

iv
ed RT = 0

RT = 1
RT = 2

Figure 5.4: The distribution of packet reception in SEA with S-MAC

89

Compared with B-MAC, RTS-CTS handshake improves the event reliability by about

20% in S-MAC. Yet packet retransmissions still do not significantly improve the event

reliability and can even decrease the reliability.

Analysis. We find that the reason why retransmission does not significantly improve —

and can even degenerate — communication reliability is that, in SEA, lost packets are re-

transmitted while new packets are generated and forwarded, thus retransmissions, when

not scheduled appropriately, only increase channel contention and cause more packet col-

lision.11 The situation is further exacerbated by ack-loss (with a probability as high as

10.29%), since ack-loss causes unnecessary retransmission of packets that have been re-

ceived. To make retransmission effective in improving reliability, therefore, we need a re-

transmission scheduling mechanism that ameliorates retransmission-incurred channel con-

tention.

5.3.2 Stop-and-wait implicit ack (SWIA)

SWIA takes advantage of the fact that every node, except for the base station, forwards

the packet it receives and the forwarded packet can act as the acknowledgment to the sender

at the previous hop [70]. In SWIA, the sender of a packet snoops the channel to check

whether the packet is forwarded within certain constant threshold time; the sender regards

the packet as received if it is forwarded within the threshold time, otherwise the packet is

regarded as lost. The advantage of SWIA is that acknowledgment comes for free except

for the limited control information piggybacked in data packets.

11This is not the case in wireline networks and is due to the nature of wireless communications.

90

We evaluate SWIA only with B-MAC, given that the implementation of S-MAC is not

readily applicable for packet snooping. The performance results are shown in Table 5.3 and

in Figure 5.5.

Metrics RT = 0 RT = 1 RT = 2
ER (%) 43.09 31.76 46.5

PD (seconds) 0.35 8.81 18.77
EG (packets/sec) 3.48 2.58 1.41

Table 5.3: SWIA with B-MAC in Lites trace

0 10 20 30
0

20

40

60

80

100

Time (seconds)

N
um

be
r o

f u
ni

qu
e

pa
ck

et
s

re
ce

iv
ed

RT = 0
RT = 1
RT = 2

Figure 5.5: The distribution of packet reception in SWIA with B-MAC

We see that the maximum event reliability in SWIA is only 46.5%, and that the reliabil-

ity decreases significantly when packets are retransmitted at most once at each hop. When

packets are retransmitted up to twice at each hop, the packet delivery delay increases, and

the event goodput decreases significantly despite the slightly increased reliability.

91

Analysis. We find that the above phenomena are due to the following reasons. First, the

length of data packets is increased by the piggybacked control information in SWIA, thus

the ack-loss probability increases (as high as 18.39% in our experiments), which in turn in-

creases unnecessary retransmissions. Second, most packets are queued upon reception and

thus their forwarding is delayed. As a result, the piggybacked acknowledgments are de-

layed and the corresponding packets are retransmitted unnecessarily. Third, once a packet

is waiting to be acknowledged, all the packets arriving later cannot be forwarded even if the

communication channel is free. Therefore, channel utilization as well as system through-

put decreases, and network queuing as well as packet delivery delay increases. Fourth,

as in SEA, lack of retransmission scheduling allows retransmissions, be it necessary or

unnecessary, to cause more channel contention and packet loss.

5.4 Protocol RBC

To address the limitations of SEA and SWIA in bursty convergecast, we design protocol

RBC. In RBC, we design a window-less block acknowledgment scheme to increase channel

utilization and to reduce the probability of ack-loss. We also design a distributed contention

control scheme that schedules packet retransmissions and reduces the contention between

newly generated and retransmitted packets. Moreover, we design mechanisms to address

the challenges of bursty convergecast on timer-based retransmission (such as varying ack-

delay and timer-incurred delay).

Given that the number of packets competing for channel access is less in implicit-ack

based schemes than in explicit-ack based schemes, we design RBC based on the paradigm

of implicit-ack (i.e., piggybacking control information in data packets). We elaborate on

92

RBC as follows. (Even though the mechanisms used in RBC can be applied in the explicit-

ack paradigm, we relegate the detailed study as our future work.)

5.4.1 Window-less block acknowledgment

In traditional block acknowledgment [20], a sliding-window is used for both duplicate

detection and in-order packet delivery.12 The sliding-window reduces network throughput

once a packet is sent but remains unacknowledged (since the sender can only send up to

its window size once a packet is unacknowledged), and in-order delivery increases packet

delivery delay once a packet is lost (since the lost packet delays the delivery of every packet

behind it). Therefore, the sliding-window based block acknowledgment scheme does not

apply to bursty convergecast, given the real-time requirement of the latter.

To address the constraints of traditional block acknowledgment in the presence of un-

reliable links, we take advantage of the fact that in-order delivery is not required in bursty

convergecast. Without considering the order of packet delivery, by which we only need to

detect whether a sequence of packets are received without loss in the middle and whether

a received packet is a duplicate of a previously received one. To this end, we design, as

follows, a window-less block acknowledgment scheme which guarantees continuous packet

forwarding irrespective of the underlying link unreliability as well as the resulting packet-

and ack-loss. For clarity of presentation, we consider an arbitrary pair of nodes S and R

where S is the sender and R is the receiver.

Window-less queue management. The sender S organizes its packet queue as (M + 2)

linked lists, as shown in Figure 5.6, where M is the maximum number of retransmis-

sions at each hop. For convenience, we call the linked lists virtual queues, denoted as

12Note that SWIA is a special type of block acknowledgment where the window size is 1.

93

a b ...

c d ...

f ...

...

.

.

.

Q0

QM+1

QM

Q1
.
.
.

head

e

occupied
free

tail

Figure 5.6: Virtual queues at a node

Q0, . . . , QM+1. The virtual queues are ranked such that a virtual queue Qk ranks higher

than Qj if k < j.

Virtual queues Q0, Q1, . . ., and QM buffer packets waiting to be sent or to be acknowl-

edged, and QM+1 collects the list of free queue buffers. The virtual queues are maintained

as follows:

• When a new packet arrives at S to be sent, S detaches the head buffer of QM+1, if

any, stores the packet into the queue buffer, and attaches the queue buffer to the tail

of Q0.

• Packets stored in a virtual queue Qk (k > 0) will not be sent unless Qk−1 is empty;

packets in the same virtual queue are sent in FIFO order.

• After a packet in a virtual queue Qk (k ≥ 0) is sent, the corresponding queue buffer

is moved to the tail of Qk+1, unless the packet has been retransmitted M times13 in

which case the queue buffer is moved to the tail of QM+1.

13Due to block-NACK, to be discussed in Section 5.4.3, a packet having been retransmitted M times may
be in a virtual queue other than QM .

94

• When a packet is acknowledged to have been received, the buffer holding the packet

is released and moved to the tail of QM+1.

The above rules help identify the relative freshness of packets at a node (which is used in the

differentiated contention control in Section 5.4.2); they also help maintain without using

sliding windows the order in which unacknowledged packets have been sent, providing

the basis for window-less block acknowledgment. Moreover, newly arrived packets can

be sent immediately without waiting for the previously sent packets to be acknowledged,

which enables continuous packet forwarding in the presence of packet- and ack-loss.

Block acknowledgment & reduced ack-loss. Each queue buffer at S has an ID that is

unique at S. When S sends a packet to the receiver R, S attaches the ID of the buffer

holding the packet as well as the ID of the buffer holding the packet to be sent next. In

Figure 5.6, for example, when S sends the packet in buffer a, S attaches the values a and b.

Given the queue maintenance procedure, if the buffer holding the packet being sent is the

tail of Q0 or the head of a virtual queue other than Q0, S also attaches the ID of the head

buffer of QM+1, if any, since one or more new packets may arrive before the next enqueued

packet is sent in which case the newly arrived packet(s) will be sent first. For example,

when the packet in buffer c of Figure 5.6 is sent, S attaches the values c, d, and f .

When the receiver R receives a packet p0 from S, R learns the ID n′ of the buffer

holding the next packet to be sent by S. When R receives a packet pn from S next time,

R checks whether pn is from buffer n′ at S: if pn is from buffer n′, R knows that there is

no packet loss between receiving p0 and pn from S; otherwise, R detects that some packets

are lost between p0 and pn.

For each maximal sequence of packets pk, . . . , pk′ from S that are received at R without

any loss in the middle, R attaches to packet pk′ the 2-tuple 〈qk, qk′〉, where qk and qk′ are

95

the IDs of the buffers storing pk and pk′ at S. We call 〈qk, qk′〉 the block acknowledgment

for packets pk, . . . , pk′ . When S snoops the forwarded packet pk′ later, S learns that all

the packets sent between pk and pk′ have been received by R. Then S releases the buffers

holding these packets. For example, if S snoops a block acknowledgment 〈c, e〉 when its

queue state is as shown in Figure 5.6, S knows that all the packets in buffers between c and

e in Q1 have been received, and S releases buffers between c and e, including c and e.

One delicate detail in processing the block acknowledgment 〈qk, qk′〉 is that after re-

leasing buffer qk, S will maintain a mapping qk ↔ qk′′ , where qk′′ is the buffer holding the

packet sent (or to be sent next) after that in qk′ . When S snoops another block acknowl-

edgment 〈qk, qn〉 later, S knows, by qk ↔ qk′′ , that packets sent between those in buffers

qk′′ and qn have been received by R; then S releases the buffers holding these packets, and

S resets the mapping to qk ↔ qn′′ , where qn′′ is the buffer holding the packet sent (or to

be sent next) after that in qn. S maintains the mapping for qk until S receives a block-

NACK [n′, n) (to be discussed in Section 5.4.3) or a block acknowledgment 〈q, q ′〉 where

q 6= qk, in which case S maintains the mapping for n or q respectively. Via the buffer

pointer mapped as above, the node S can process the incoming block acknowledgments

and block-NACKs. For convenience, we call the buffer being mapped to the anchor of

block acknowledgments. In the examples discussed above, buffers qk′′ and qn′′ have been

anchors once. We also call the packet in an anchor buffer an anchor packet. (The concepts

of anchor and anchor packet will be used in Section 5.6.)

In the above block acknowledgment scheme, the acknowledgment for a received packet

is piggybacked onto the packet itself as well as the packets that are received consecutively

96

after the packet without any loss in the middle. Therefore, the acknowledgment is repli-

cated and the probability for it to be lost decreases significantly, by a factor of 2.07 in Lites

trace as analyzed in Appendix A.

Duplicate detection & obsolete-ack filtering. Since it is impossible to completely prevent

ack-loss in lossy communication channels, packets whose acknowledgments are lost will

be retransmitted unnecessarily. Therefore, it is necessary that duplicate packets be detected

and dropped.

To enable duplicate detection, the sender S maintains a counter for each queue buffer,

whose value is incremented by one each time a new packet is stored in the buffer. When S

sends a packet, it attaches the current value of the corresponding buffer counter. For each

buffer q at S, the receiver R maintains the counter value cq piggybacked in the last packet

from the buffer. When R receives another packet from the buffer q later, R checks whether

the counter value piggybacked in the packet equals to cq: if they are equal, R knows that

the packet is a duplicate and drops it; otherwise R regards the packet as a new one and

accepts it. The duplicate detection is local in the sense that it only requires information

local to each queue buffer instead of imposing any rule involving different buffers (such as

in sliding-window) that can degenerate system performance.

For the correctness of the above duplicate detection mechanism, we only need to choose

the domain size C for the counter value such that the probability of losing C packets in

succession is negligible. For example, for the high per-hop packet loss probability 22.7%

in the case of Lites trace, C could still be as small as 7, since the probability of losing 7

packets in succession is only 0.003%. (Given the small domain size for the counter value

as well as the usually small queue size at each node, the duplicate detection mechanism

does not consume much memory. For example, it only takes 36 bytes in the case of Lites.)

97

In addition to duplicate detection, we also use buffer counter to filter out obsolete ac-

knowledgment. Despite the low probability, packet forwarding at R may be severely de-

layed, such that the queue buffers signified in a block acknowledgment have been reused

by S to hold packets arriving later. To deal with this, R attaches to each forwarded packet

the ID as well as the counter value of the buffer holding the packet at S originally; when S

snoops a packet forwarded by R, S checks whether the piggybacked counter value equals

to the current value of the corresponding buffer: if they are equal, S regards as valid the

piggybacked block acknowledgment; otherwise, S regards the block acknowledgment as

obsolete and ignores it.

Aggregated-ack at the base station. In sensor networks, the base station usually forwards

all the packets it receives to an external network. As a result, the children of the base

station (i.e., the nodes that forward packets directly to the base station) are unable to snoop

the packets the base station forwards, and the base station has to explicitly acknowledge

the packets it receives. To reduce channel contention, the base station aggregates several

acknowledgments, for packets received consecutively in a short period of time, into a single

packet and broadcasts the packet to its children. Accordingly, the children of the base

station adapt their control parameters to the way the base station handles acknowledgments.

5.4.2 Differentiated contention control

In wireless sensor networks where per-hop connectivity is reliable, most packet losses

are due to collision in the presence of severe channel contention. To enable reliable packet

delivery, lost packets need to be retransmitted. Nevertheless, packet retransmission may

cause more channel contention and packet loss, thus degenerating communication reliabil-

ity. Also, there exist unnecessary retransmissions due to ack-loss, which only increase

98

channel contention and reduce communication reliability. Therefore, it is desirable to

schedule packet retransmissions such that they do not interfere with transmissions of other

packets.

The way the virtual queues are maintained in our window-less block acknowledgment

scheme facilitates the retransmission scheduling, since packets are automatically grouped

together by different virtual queues. Packets in higher-ranked virtual queues have been

transmitted less number of times, and the probability that the receiver has already received

the packets in higher-ranked virtual queues is lower (e.g., 0 for packets in Q0). Therefore,

we rank packets by the rank of the virtual queues holding the packets, and higher-ranked

packets have higher-priority in accessing the communication channel. By this rule, packets

that have been transmitted less number of times will be (re)transmitted earlier than those

that have been transmitted more, and interference between packets of different ranks is

reduced.

Window-less block acknowledgment already handles packet differentiation and

scheduling within a node, thus we only need a mechanism that schedules packet trans-

mission across different nodes. To reduce interference between packets of the same rank

and to balance network queuing as well as channel contention across nodes, inter-node

packet scheduling also takes into account the number of packets of a certain rank so that

nodes having more such packets transmit earlier.

To implement the above concepts, we define the rank rank(j) of a node j as 〈M −

k, |Qk|, ID(j)〉, where Qk is the highest-ranked non-empty virtual queue at j, |Qk| is the

number of packets in Qk, and ID(j) is the ID of j. rank(j) is defined such that 1) the

first field guarantees that packets having been transmitted fewer number of times will be

(re)transmitted earlier, 2) the second field ensures that nodes having more packets enqueued

99

get chances to transmit earlier, and 3) the third field is to break ties in the first two fields. A

node with a larger rank value ranks higher. Then, the distributed transmission scheduling

works as follows:

• Each node piggybacks its rank to the data packets it sends out.

• Upon snooping or receiving a packet, a node j compares its rank with that of the

packet sender k. j will change its behavior only if k ranks higher than j, in which

case j will not send any packet in the following w(j, k)× Tpkt time. Tpkt is the time

taken to transmit a packet at the MAC layer, and w(j, k) = 4 − i, when rank(j)

and rank(k) differ at the i-th element of the 3-tuple ranks. w(j, k) is defined such

that the probability of all waiting nodes starting their transmissions simultaneously is

reduced, and that higher-ranked nodes tend to wait for shorter time. Tpkt is estimated

by the method of Exponentially Weighted Moving Average (EWMA).

• If a sending node j detects that it will not send its next packet within Tpkt time

(i.e., when j knows that, after the current packet transmission, it will rank lower

than another node), j signifies this by marking the packet being sent, so that the

nodes overhearing the packet will skip j in the contention control. (This mechanism

reduces the probability of idle waiting, where the channel is free but no packet is

sent.)

5.4.3 Timer management in window-less block acknowledgment

In window-less block acknowledgment, a sender S starts a retransmission timer after

sending a packet, and S retransmits the packet if S has not received the corresponding

ack when the timer times out. Retransmission timers directly affect the reliability and the

delay in packet delivery: large timeout values of timers tend to increase packet delivery

100

delay, whereas small timeout values tend to cause unnecessary retransmissions and thus

decrease packet delivery reliability. To provide reliable and real-time packet delivery, we

design mechanisms to manage the timers in window-less block acknowledgment as fol-

lows. (Again, we consider a sender S and a receiver R.)

Dealing with varying ack-delay

When the receiver R receives a packet m from the sender S, R first buffers m in Q0.

The delay in R forwarding m depends on the number of packets in front of m in Q0. Since

the number of packets enqueued in Q0 keeps changing, the delay in forwarding a received

packet by R keeps changing, which leads to varying delay in packet acknowledgment.

Therefore, the retransmission timer at the sender S should adapt to the queuing condition

at R; otherwise, either lost packets are unnecessarily delayed in retransmission (when the

retransmission timer is too large) or packets are unnecessarily retransmitted even if they

are received (when the retransmission timer is too small).

To adaptively setting the retransmission timer for a packet, the sender S keeps track of,

by snooping packets forwarded by R, the length sr of Q0 at R, the average delay dr in R

forwarding a packet after the packet becomes the head of Q0, and the deviation d′
r of dr.

When S sends a packet to R, S sets the retransmission timer of the packet as

(sr + C0)(dr + 4d′
r)

where C0 is a constant denoting the number of new packets that R may have received since

S learned sr the last time (C0 depends on the application as well as the link reliability, and

C0 is 3 in our experiments). The reason why we use the deviation d′
r in the above formula

is that dr varies a lot in wireless networks in the presence of bursty traffic, in which case

the deviation improves estimation quality [49].

101

At a node, each local parameter α (such as dr for node R) and its deviation α′ are

estimated by the method of EWMA as follows:

α← (1− γ)α + γα′′

α′ ← (1− γ′)α′ + γ′|α′′ − α|

where γ and γ ′ are weight-factors, and α′′ is the latest observation of α. Empirically, we

set γ = 1
8

and γ′ = 1
4

in RBC.

Alleviating timer-incurred delay

The packet retransmission timer calculated as above is conservative in the sense that it is

usually greater than the actual ack-delay [49]. This is important for reducing the probability

of unnecessary retransmissions, but it introduces extra delay and makes network resources

under-utilized [105].

To alleviate timer-incurred delay, we design the following mechanisms to expedite nec-

essary packet retransmissions and to improve channel utilization:

• Whenever the receiver R receives a packet m from buffer n of the sender S while R

is expecting (in the absence of packet loss) to receive a packet from buffer n′ of S, R

learns that packets sent between those in buffers n′ and n at S, including the one in

n′, are lost. In this case, R piggybacks a block-NACK [n′, n) onto the next packet it

forwards, by which the block-NACK can be snooped by S immediately.

When S learns the block-NACK [n′, n) from R, S resets the retransmission timers

to 0 for the packets sent between those in n′ and n (including the one in n′), and for

each of these packets, S moves the corresponding buffer to the tail of Qk−1 if the

102

buffer is currently at Qk. Therefore, packets that need to be retransmitted are put into

higher-ranked virtual queues and are retransmitted quickly.14

• Whenever S learns that the virtual queue Q0 of R becomes empty, S knows that R

has forwarded all the packets it has received. In this case, S resets the retransmission

timers to 0 for those packets still waiting to be acknowledged, since they will not be

(due to either packet-loss or ack-loss).

Similarly, when S snoops the acknowledgment for a packet m, S resets the retrans-

mission timer to 0 for those packets that are sent before m but are still waiting to be

acknowledged.

• When a network channel is fully utilized, it should be busy all the time. Therefore,

if the sender S has packets to send, and if S notices that no packet is sent by any

neighboring node in a period of C1 × Tpkt time, S sends out the packet at the head

of its highest-ranked non-empty virtual queue, without considering the retransmis-

sion timer even if the packet is to be acknowledged. C1 is a constant reflecting the

desired degree of channel utilization and Tpkt is the time taken to transmit a packet

at the MAC layer. (This mechanism improves channel utilization without introduc-

ing unnecessary retransmissions because of the “differentiated contention control” in

RBC.)

5.5 Experimental results

We have implemented protocol RBC in TinyOS using B-MAC. In the implementa-

tion, the control logic takes 185 bytes of RAM when each node maintains a buffer capable

14The movement of NACKed packets affect the buffering order required by block-acknowledgment. There-
fore, NACKed packets are specially marked so that they are not mistakenly regarded as having been received;
the mark for a NACKed packet is reset after the packet is transmitted once more.

103

of holding 16 packets, and the control information piggybacked in data packets takes 14

bytes.15 RBC has successfully provided reliable and real-time data transport in the sen-

sor network field experiment ExScal [12] where around 1,200 Mica2/XSM motes were

deployed to detect, track, and classify intruders.

We have also evaluated RBC in our testbed. In what follows, we discuss the perfor-

mance of RBC, compare RBC with SEA and SWIA, discuss the impact of the individual

components (i.e., window-less block acknowledgment and differentiated contention con-

trol) of RBC, and analyze the timing-shift of packet delivery in RBC.

Performance of RBC. Table 5.4 shows the performance results of RBC, and Figure 5.7

Metrics RT = 0 RT = 1 RT = 2
ER (%) 56.21 83.16 95.26

PD (seconds) 0.21 1.18 1.72
EG (packets/sec) 4.28 5.72 6.37

Table 5.4: RBC in Lites trace

shows the distribution of packet reception in RBC. From Table 5.4 and Figure 5.7, we

observe the following properties of RBC:

• The event reliability keeps increasing, in a significant manner, as the number of re-

transmissions increases. The increased reliability mainly attributes to reduced unnec-

essary retransmissions (by reduced ack loss and adaptive retransmission timer) and

retransmission scheduling.

15Comparatively, the control logic of SEA uses 150 bytes of RAM when each node maintains a buffer
capable of holding 16 packets, and each explicit ack packet takes 16 bytes for the MICA2 radio, including
the preamble, the synchronization-code, and the ack-code; the control logic of SWIA uses 68 bytes of RAM
when the packet buffer size is 16, and the control information piggybacked in data packets takes 8 bytes.

104

0 5 10 15
0

20

40

60

80

100

Time (seconds)

N
um

be
r o

f u
ni

qu
e

pa
ck

et
s

re
ce

iv
ed

RT = 0
RT = 1
RT = 2

Figure 5.7: The distribution of packet reception in RBC

• Compared with SWIA which is also based on implicit-ack, RBC reduces packet de-

livery delay significantly. This mainly attributes to the ability of continuous packet

forwarding in the presence of packet- and ack-loss and the reduction in timer-incurred

delay.

• The rate of packet reception at the base station and the event goodput keep increasing

as the number of retransmissions increases. When packets are retransmitted up to

twice at each hop, the event goodput reaches 6.37 packets/second, quite close to the

optimal goodput — 6.66 packets/second — for Lites trace.

Compared with SWIA, RBC improves reliability by a factor of 2.05 and reduces aver-

age packet delivery delay by a factor of 10.91. Compared to SEA with B-MAC (simply

referred to as SEA hereafter), RBC improves reliability by a factor of 1.74, but the average

packet delivery delay increases by a factor of 6.61 in RBC. Interestingly, however, RBC

still improves the event goodput by a factor of 1.75 when compared with SEA. The reason

is that, in RBC, lost packets are retransmitted and delivered after those packets that are

generated later but transmitted less number of times. Therefore, the delivery delay for lost

105

packets increases, which increases the average packet delivery delay, without degenerating

the system goodput. The observation shows that, due to the unique application models in

sensor networks, metrics evaluating aggregate system behaviors (such as the event good-

put) tend to be of more relevance than metrics evaluating unit behaviors (such as the delay

in delivering each individual packet).

RBC compared with SEA and SWIA. To further understand protocol behaviors in the

presence of packet retransmissions, we conduct, as follows, a comparative study of RBC,

SEA, and SWIA for the case where packets are retransmitted up to twice at each hop.

Figure 5.8 compares the distribution of packet generation in Lites trace with the dis-

0 10 20 30 40
0

20

40

60

80

100

Time (seconds)

N
um

be
r o

f u
ni

qu
e

pa
ck

et
s

Lites trace
SEA
SWIA
RBC

Figure 5.8: The distributions of packet generation and reception

tributions of packet reception in SEA, SWIA, and RBC. We see that the curve for packet

reception in RBC smooths out and almost matches that of packet generation. In contrast,

many packets are lost in SEA despite the fact that the rate of packet reception in SEA is

close to that in RBC; packet delivery is significantly delayed in SWIA, in addition to the

high degree of packet loss.

Based on the grid topology as shown in Figure 5.1(b), Figures 5.9(a)-(c) show the node

106

0.91

0.96

0.76

0

0.76

0.66

0.4

0.96

0.96

0.1

0.76

0.56

0.76

0.96

0.86

0.81

0.61

0.81

0.56

0

0.56

0.66

0.45

0.56

0.71

0.35

0

0.86

0.56

0.4

0.56

0.4

0.71

0.4

0.45

0.71

0.61

0.45

0.51

0.2

0.71

0.3

0.25

0.35

0.45

0.35

0.56

0

(a) SEA

0.75

0.63

0.61

0.44

0.5

0.44

0.6

0.61

0.56

0.58

0.38

0.39

0.29

0.64

0.71

0.64

0.64

0.39

0.5

0.39

0.58

0.64

0.43

0.56

0.53

0.36

0.31

0.47

0.64

0.38

0.36

0.25

0.5

0.28

0.61

0.42

0.53

0.44

0.28

0.47

0.44

0.36

0.42

0.36

0.47

0.34

0.33

0.45

(b) SWIA

1

1

1

1

0.95

1

1

1

1

1

1

1

1

1

1

0.95

1

0.95

1

1

1

1

1

1

0.95

1

0.95

1

1

0.95

1

1

1

0.82

1

1

1

0.95

0.95

0.95

0.95

0.95

1

1

0.38

1

0.25

0.88

(c) RBC

Figure 5.9: Node reliability

reliability in SEA, SWIA, and RBC respectively. Figure 5.10 shows the cumulative distri-

0 20 40 60 80 100
0

20

40

60

80

100

Percentage of nodes

N
od

e
re

lia
bi

lit
y

(%
)

SEA
SWIA
RBC

Figure 5.10: Distribution of node reliability

bution of node reliability in SEA, SWIA, and RBC. We see that node reliability improves

significantly in RBC: only 4.17% of nodes have a node reliability less than 80% in RBC;

yet in SEA and SWIA, above 80% of nodes have a node reliability less than 80%.

Figure 5.11 shows the average node reliability in SEA, SWIA, and RBC as the number

107

1 2 3 4 5 6
0

20

40

60

80

100

Number of hops to the base station

N
od

e
re

lia
bi

lit
y

(%
)

SEA
SWIA
RBC

Figure 5.11: Node reliability as a function of routing hops

of routing hops (to the base station) increases. We see that the node reliability in RBC

is much higher than that in SEA and SWIA at every routing hop, and that the reliability

at the farthest hop in RBC is even greater than that at the closest hop in SEA and SWIA.

(Note that, in RBC, the reason why nodes 5 hops away from the base station have lower

average delivery rate than nodes 6 hops away can be due to the specific traffic pattern and

the difference among nodes’ hardware.)

Breakdown of RBC. To understand the individual impact of window-less block acknowl-

edgment and differentiated contention control in RBC, we evaluate the performance of

RBC without using differentiated contention control (i.e., RBC with window-less block ac-

knowledgment only). Table 5.5 shows the performance results. Comparing Table 5.5 with

Metrics RT = 0 RT = 1 RT = 2
ER (%) 54.90 77.19 82.29

PD (seconds) 0.22 1.12 1.52
EG (packets/sec) 4.04 4.13 4.12

Table 5.5: RBC without differentiated contention control

108

Table 5.4, we observe the following:

• Differentiated contention control improves packet delivery performance even when

there is no retransmission (i.e., RT = 0). This is because the contention control re-

duces channel contention by prioritizing channel access according to the degree of

queue accumulation at different nodes.

• Without differentiated contention control, packet delivery reliability also improves

significantly when RT (maximum number of per-hop retransmissions) increases from

0 to 1, but the improvement becomes far less when RT increases from 1 to 2. This is

because differentiated contention control plays an increasingly important role when

RT (thus channel contention) increases.

Comparing Table 5.5 with Tables 5.1 and 5.3, we see that, with window-less block ac-

knowledgment alone, RBC significantly improves the packet delivery performance of SEA

and SWIA. The reasons are as follows:

• Compared with SEA, the channel contention is less in window-less block acknowl-

edgment because no explicit acknowledgment packet is generated (thus reducing the

number of packets in the network). Moreover, the intra-node packet prioritization

(via the queue management) in window-less block acknowledgment also improves

the packet delivery reliability.

• Compared with SWIA, window-less block acknowledgment improves packet deliv-

ery reliability by reducing ack-loss probability (and thus reducing unnecessary packet

retransmissions) and employing intra-node packet prioritization. Window-less block

acknowledgment also significantly reduces packet delivery delay by careful timer

109

management and by enabling continuous packet transmission in the presence of

packet- and ack-loss.

Timing-shift of packet delivery. In this chapter, we focus on scenarios where packets

are timestamped and thus we do not need to precisely preserve the relative timing between

packets as it is when they are generated. Nevertheless, to characterize how RBC affects the

relative timing of packets, we measure the timing-shift of packet delivery as follows:

Given a packet P1 received at the base station, the timing-shift for P1 is calculated

as

|(R1 − R0)− (S1 − S0)|

where R1 denotes the time when P1 is received at the base station, R0 denotes the

time when a packet P0 is received at the base station immediately before P1, S1

denotes the time when P1 is generated at some node in the network, and S0 denotes

the time when P0 is generated at some node in the network.16 For convenience, we

set the timing-shift to 0 for the first packet received at the base station.

Based on the above definition, we find that the average timing-shift is 1.0035 second for

the packets received in the case of RBC, and that the average timing-shift is around 0.1698

second in both SEA and SWIA. Even though the timing-shift in RBC is predictably greater

than those in SEA and SWIA, it is still small enough for real-time event-driven applications

such as Lites and ExScal [12] where high-level decisions are based on data in the order of

seconds. (Note that, if need be, the timing-shift in packet delivery can be reduced by tuning

the queue management policy in window-less block acknowledgment. But the detailed

study is beyond the scope of this chapter.)

16In this definition, we do not consider the packets that are lost, only calculating the relative timing-shift
between packets that are received at the base station.

110

5.6 Discussion

In this section, we discuss how to extend the basic design of RBC to support continuous

event convergecast, and how to avoid queue overflow via flow control.

5.6.1 Continuous event convergecast

In event-driven applications, events are mostly rare and well-separated in time. But it

may happen (though with relatively low probability) that several events happen continu-

ously during a period of time. In what follows, we first analyze the potential issues of the

basic RBC in supporting continuous event convergecast, then we extend RBC to solve the

challenges.

Starvation of orphan packets. In RBC, window-less block acknowledgment and differ-

entiated contention control ensures that packets having been transmitted fewer number of

times will be (re)transmitted earlier. This works without any problem in the case of single

event convergecast. In continuous event convergecast, however, fresh packets can be gener-

ated continuously as long as events keep occurring. Therefore, if RBC was applied without

any adaptation, packets that need to be retransmitted might be delayed in transmission or

never get the chance for channel access, since there might exist fresh packets at the node

itself or its neighbors most of the time; that is, the packets requiring retransmission may

starve in channel access.

On the other hand, not all queued packets will starve. To understand this, we divide the

queued packets into two categories (according to the order of their transmission relative to

the anchor packet17) as follows:

• Orphan packets: the packets sent earlier than the anchor packet.

17Defined in Section 5.4.1.

111

We regard these packets as orphans in the sense that their acknowledgments or

NACKs have been lost. In the window-less block acknowledgment, orphan pack-

ets will not be acknowledged by the receiver any more, and they may starve if fresh

packets keep arriving.

• Awaiting packets: the packets sent later than the anchor packet.

We regard these packets as awaiting in the sense that they are yet to be ACKed

or NACKed, but the corresponding acknowledgment packet has not been received.

Given that nodes having fresh packets tend to have higher priority in channel access,

and that the probability of losing several ACK or NACK packets in succession is low

(e.g., 5.15% for losing 2 packets in Lites), the number of awaiting packets tend to be

small. Moreover, awaiting packets will either be quickly acknowledged or quickly

become orphan. If an awaiting packet is acknowledged, it will be released or moved

to Q0 for retransmission. Therefore, awaiting packets will not starve even if fresh

packets keep arriving.

Given that only orphan packets may starve in the case of continuous event convergecast,

we only need to adapt the packet scheduling of RBC to avoid starving orphan packets.

Probabilistic scheduling of orphan packets. One simple way to avoid starving orphan

packets is to always put them in Q0 once they become orphan. Nevertheless, one short-

coming of this approach is that the detection of new events may be delayed, because the

delivery of new packets is delayed. This becomes undesirable especially in the case of

incremental event detection where the first few packets related to an event should be deliv-

ered as soon as possible. Moreover, an orphan packet may have already been received (if

the packet becomes orphan because of ack loss).

112

Therefore, we first analyze the importance of orphan packets in terms of the new infor-

mation they may carry (since there is no need to transmit an orphan packet if it has already

been received). To this end, we calculate the probability Ploss that an orphan packet has

not been received as follows: (Interested readers can check the detailed derivation in Ap-

pendix B.)

Ploss =

{

(1− (P ′
rbc)

k) p

p+P ′

rbc

if k > 0
p

p+P ′

rbc

if k = 0

where k is the number of times that an orphan packet has been retransmitted due to timeout

of retransmission timers, p is the packet loss rate, and P ′
rbc = p − p(1−3p+4p2−2p3)

1−p+p2 . In the

case of Lites [8], p = 22.7%. Then, Ploss is 71.86% and 65.47% for k = 0 and k = 1

respectively. Therefore, the probability that an orphan packet has been lost in previous

transmissions is high (e.g., up to 71.86% in Lites).

To take into account the probability that an orphan packet carrying new information,

we adapt the intra-node and inter-node packet scheduling of RBC as follows:

• Intra-node scheduling. In short, the scheduling is adapted so that an orphan packet

is regarded as a fresh packet with the probability that the packet has been lost. More

specifically, the adaptation is as follows:

– If the head packet pkt0 of the highest ranked non-empty virtual queue Qk (0 ≤

k ≤ M) is ready for (re)transmission,18 the node S selects the head of the

orphan packets19 to transmit with the probability Ploss that the packet has not

been received. Accordingly, S selects packet pkt0 to transmit with probability

(1− P ′
loss).

18A packet is ready for transmission if it is in Q0 or if the retransmission timer associated with the packet
is 0.

19The orphan packets are organized as an ordered list via the window-less queue management. Moreover,
by the way RBC operates, the retransmission timers for orphan packets are 0.

113

– If the head packet pkt0 of the highest ranked non-empty virtual queue Qk (0 ≤

k ≤ M) is not ready for (re)transmission, S selects the head orphan packet to

transmit with probability 1.

• Inter-node scheduling. This relates to the distributed contention control in RBC.

Similar to intra-node scheduling, the definition of the node rank is adapted to regard

an orphan packet as one in Q0 with certain probability. More specifically, if a node

S has M orphan packets, then, in calculating its node rank, S regards these orphan

packets as (
∑M

i=1 Pi) number of packets in Q0, where Pi denotes the probability that

the i-th orphan packet has not been received.

Via the above adaptation to intra-node scheduling, we have

Theorem 1 (Freedom of packet accumulation) The orphan packets at a node do not ac-

cumulate indefinitely, as long as the packet loss rate along a link is less than 49.14%.

(Interested readers can check Appendix C for the proof.)

For routing in wireless sensor networks, reliable links are usually chosen (especially

for heavy-load bursty convergecast). In Lites, for instance, the average per-hop packet

delivery rate is still as high as 77.3 % despite the high channel contention. Therefore, it is

reasonable to assume that routing links do have packet delivery rate greater than 50.86%

(i.e., (100 - 49.14)%) in practice. Thus, the adpated intra-node scheduling not only prevents

orphan packets from starving but also guarantees that orphan packets do not accumulate

indefinitely. (In the worst case when some routing links happen to have reliability lower

than 50.86%, the mechanisms to be discussed in the next subsection can deal with the

problem of queue accumulation.)

114

We have implemented the above extensions to RBC, and experimentally evaluated the

performance of the extended RBC in our testbed by injecting Lites traffic trace in succes-

sion. We observe the following:

• The performance (e.g., in event reliability and packet delivery delay) of the extended

RBC in continuous event convergecast is very similar to that of the basic RBC in

single event convergecast. Moreover, there are very few orphan packets (no more

than 1 per node on average) and they do not accumulate.

• In the case of single event convergecast, the extension does not degenerate the per-

formance of RBC. For instance, the difference between the extended and the basic

version of RBC in average event reliability is within 2%.

5.6.2 Flow control

In the presence of high traffic load, the packet queue at a node may accumulate and

overflow if the corresponding senders transmit too many packets in a short time. This issue

can be avoided by proper flow control, and has been well studied in [90, 47]. We have

implemented a simple hop-by-hop flow control mechanism (to work with RBC) as follows:

• When forwarding packets, a node piggybacks the number of free queue buffers at its

place.

• Whenever a sender S detects that the number Lr of free queue buffers at the receiver

R is below a threshold L, S will stop sending any packet in the following (L−Lr)×

de,R time. L is a constant chosen such that the probability of losing L packets in

succession is negligible (by which the sender will not fail to detect the congestion

state at the receiver), and de,R is the average interval between R releasing one buffer

115

and the next one while there are packets enqueued at R. (R estimates de,R by the

method of EWMA.)

• After learning the number Lr of free buffers at the receiver R each time, the sender

S will send at most Lr packets to R in the following Lr × de,R time unless S snoops

another packet forwarded by R.

• To help relieve queue congestion, the nodes having less than L queue buffers are not

subject to the differentiated contention control.

Via testbed-based experiments and outdoor deployment in ExScal [12], the above mecha-

nism has been proved to be highly effective in avoiding queue overflow.

5.7 Summary

Unlike most existing literature on reliable transport in sensor networks that focuses on

periodic traffic, we have focused on bursty convergecast where the key challenges are reli-

able and real-time error control and the resulting contention control. To address the unique

challenges, we have proposed the window-less block acknowledgment scheme which im-

proves channel utilization and reduces ack-loss as well as packet delivery delay; we have

also designed mechanisms to schedule packet retransmissions and to reduce timer-incurred

delay, which are critical for reliable and real-time transport of bursty traffic. With its well-

tested support for reliable and real-time transport of bursty traffic, RBC has been applied

in the sensor network field experiment ExScal [12] where about 1,200 Mica2/XSM motes

were deployed.

From protocol RBC, we see that bursty convergecast not only poses challenges for re-

liable and real-time transport control, it also provides unique opportunities for protocol

116

design. Tolerance of out-of-order packet delivery enables the window-less block acknowl-

edgment, which not only guarantees continuous packet delivery in the presence of packet-

and ack-loss but also facilitates retransmission scheduling. Overall, the unique network as

well as application models in sensor networks offer opportunities for new methodologies

in protocol engineering and are interesting areas for further exploration.

In designing RBC, we have focused on reliable bursty convergecast in event-driven

applications. Nevertheless, we believe some techniques of RBC (e.g., differentiated con-

tention control) can be applied to the case where data traffic is periodic or continuous.

Detailed study of this is beyond the scope of this chapter, and we regard it as a part of the

future work.

117

CHAPTER 6

LOCALLY-STABILIZING SHORTEST PATH ROUTING

Having focused on addressing the challenges of wireless communication, resource con-

straints, and application diversity in the previous four chapters, we now turn our attention

to studying the challenges of complex faults and large system scale in sensornets. More

specifically, we study the modeling and algorithmic design issues related to scalable de-

pendability in the presence of complex faults and large system scale.

6.1 Motivation

A well-known ideal in networking is the ability to withstand failure or compromise of

one or more regions in a network without impacting a large part of the network. Yet, in

many instances, we find that even a small fault-perturbed region impacts a large part of

the network, as the effects of the faults propagate to and contaminate far away nodes. An

example is inter-domain routing in the Internet by the Border Gateway Protocol (BGP),

where faults at some edge routers can propagate across the whole Internet [59, 92].

Unbounded fault propagation decreases not only the availability of a network but also

its stability and scalability. Therefore, in large-scale networks such as the Internet and

the emerging wireless sensor networks [73, 92, 99], it is desirable that faults be contained

locally around the regions where they have occurred, and that the time taken for a system

118

to stabilize is a function F of the size of the fault-perturbed regions instead of the size of

the system. We call this property F -local stabilization.

Local stabilization in routing. One problem where F -local stabilization is critical but

remains unsolved is the basic problem of shortest path routing in networks. Generally

speaking, there are two categories of routing protocols: link-state and distance-vector. In

link-state protocols, each node maintains the topological information of a whole network,

and F -local stabilization is impossible, since every single change in the network topology

has to be propagated to every node in the network. In distance-vector protocols, each node

only maintains the distance of and the next-hop on its shortest path to each destination in

the network. Thus, F -local stabilization is conceivable in distance-vector protocols.

Distance-vector (and its variant, path-vector) protocols for the Internet, such as Routing

Information Protocol (RIP) and BGP, have long been studied [46]. Distance-vector proto-

cols for mobile ad hoc networks, such as Destination Sequenced Distance-Vector (DSDV)

and Ad hoc On-Demand Distance-Vector (AODV), have also been proposed [74]. In de-

signing these protocols, researchers have typically concentrated on how to avoid routing

loops and the count-to-infinity problem. Local stabilization is not guaranteed: small-scale

local perturbations (such as memory overflow) can propagate globally across a whole net-

work, due to the diffusing nature of these protocols [92], and result in severe instability

[58, 92]. Moreover, the fault model has been typically limited to node and link faults such

as crash, repair, and congestion; state corruption is not considered. However, several kinds

of state corruption do arise as a result of misconfiguration and faulty software, and are

known to be major causes for routing instability [59, 84, 92]. And theoretically speaking,

even simple faults such as node crash and message loss, can drive a network into arbitrary

119

states [52]. Therefore, F -local stabilization is desirable, and not only in the presence of

node/link crash, repair, and congestion but also in the presence of state corruption.

In the remainder of this chapter, we present the system, fault, and computation model

in Section 6.2. In Section 6.3, we define local stabilization, and analyze the properties

of locally stabilizing systems. We present our LSRP protocol that solves the problem of

local stabilization in shortest path routing in Section 6.4, and analyze its properties in Sec-

tion 6.5. In Section 6.6, we discuss the impact of network topology on local stabilization.

We summarize the chapter in Section 6.7.

6.2 Preliminaries

In this section, we present the system model, protocol notation, fault model, and com-

putation model adopted in our work.

System model. A system G is a connected undirected graph (V, E, W), where V and E

are the set of nodes and the set of edges in the system respectively, and W is a positive

function that defines the weight of each edge in E. (W is also called the weight function

hereafter.) Each node in the system has a unique ID. If nodes i and j can communicate

with each other directly, then edge (i, j) is in E. For each edge (i, j) ∈ E, its weight is

denoted by w.i.j.

There is a clock at each node. The ratio of clock speeds between any two neighboring

nodes in the system is bounded from above by α, but no extra constraint on the absolute

values of clocks is enforced.

Message transmission between nodes is reliable, and message passing delay along an

edge is bounded from above and from below by U and L respectively.

120

Protocol notation. We write protocols using a variant of the Abstract Protocol notation

[41]. At each node, the protocol consists of a finite set of variables and actions. Each

action consists of three parts: guard, guard hold-time, and statement. For convenience, we

associate a unique name with each action. Thus, an action has the following form:

〈name〉 :: 〈guard〉
d

−−−−→ 〈statement〉

The guard is either a boolean expression over the protocol variables of the node or a mes-

sage reception operation, d is the guard hold-time (d ≥ 0), and the statement updates zero

or more protocol variables of the node and/or sends out some message(s). If d = 0, we

write the action in the following form:

〈name〉 :: 〈guard〉 −→ 〈statement〉

For an action whose guard is a message reception operation, its guard hold-time must be 0.

For an action named a, its guard hold-time is denoted by d.a. An action a is enabled

at time t if the guard of a evaluates to true at t. An action a is executed at time t only if

a is continuously enabled from time (t − d.a) to t. To execute an action, its statement is

executed atomically.

Fault model. A node or an edge is up if it functions correctly, and it is down if it fail-stops.

In a system, nodes and edges that are up can fail-stop, nodes and edges that are down can

become up and join the system, the state of a node, i.e., the values of all the variables of the

node, can be corrupted, and the weight function can change.

The protocol actions of a node cannot be corrupted.

Computation model. The topology of a system G is the subgraph G′(V ′, E ′) of G(V, E)

such that V ′ = {i : i ∈ V ∧ i is up} and E ′ = {(i, j) : i ∈ V ′ ∧ j ∈ V ′ ∧ (i, j) ∈

121

E ∧ (i, j) is up}. Due to faults, the system topology G′(V ′, E ′) may change in the sense

that the set of up nodes V ′ or the set of up edges E ′ changes over time. For example,

node i is removed from V ′ when node i fail-stops. To reflect changes in system topology

as well as weight function, we regard the state of G as the union of the current system

topology, the current weight function, the state of all the up nodes, and the message(s)

in the up edges (i.e., the messages that are sent but not yet received). At a system state

q, the system topology, the weight function, and the state of an up node i are denoted as

G.q(V.q, E.q), W.q, and q(i) respectively. Given a system topology G.q(V.q, E.q) and a

problem specification, there exist a set of legitimate system states, denoted as Ql(G.q).

A system computation β is either a finite sequence q0, (a1, t1), q1, (a2, t2), . . . , qn, or

an infinite sequence q0, (a1, t1), q1, (a2, t2), . . . , qr−1, (ar, tr), qr, . . . , of alternating system

states (i.e. q0, q1, . . .) and protocol actions (i.e. a1, a2, . . .), where (i) for every k ≥ 1,

tk ≤ tk+1, and each state transition qk−1, (ak, tk), qk means that the execution of action ak

at time tk changes the system state from qk−1 to qk; and (ii) for any two pairs (ak, tk) and

(ak′, tk′) in β (k 6= k′), if ak and ak′ are actions of the same node, then tk 6= tk′ (i.e., at

most one action can be executed at a node at any time). β is a finite sequence only if it

ends with a state qn, and there is no enabled action at qn. A subsequence γ of β is called a

computation segment if γ starts and ends with a state.

A system computation β can also be regarded as a sequence of rounds. A round is a

minimal computation segment γ that starts at a state qk (k ≥ 0) and, in γ, (i) every up node

that has an action a continuously enabled from some time t′ to (t′ + d.a), where t′ ≤ tk

and (t′ + d.a) ≥ tk, executes at least one action, and (ii) if a message is sent to a node i,

the action that receives the message must be executed at i. (We assume t0 is the time when

β starts.)

122

6.3 Local stabilization: concepts and properties

In this section, we first define concepts related to local stabilization, which are generic

for networking and distributed computing problems, and then we present some notable

properties of F -local stabilizing systems.

6.3.1 Concepts related to local stabilization

In a distributed system, the variables that each node needs to maintain depend both on

the problem and on the protocol being used; some are inherent in the problem itself and

independent of the protocol being used, while others are dependent on the protocol. In the

problem of shortest path routing, for instance, every node has to maintain the distance and

the next-hop on its chosen shortest path to each destination: maintaining the distance is

necessary for a node to coordinate with others to find its shortest path to the destination,

and maintaining the next-hop is necessary for a node to forward packets to the destina-

tion. Therefore, the variables used to record the distance and the next-hop are inherent in

the problem of shortest path routing. We call variables that are inherent in the problem

problem-specific variables. At a system state q, the value of the set of problem-specific

variables at a node i is denoted as q(i.p).

Dependency among nodes & edges. Given a problem, a node may depend on another

node or edge in a distributed system, because, when faults occur to the latter, the former

may have to change the values of its problem-specific variables in order for the system

to converge to a legitimate state (i.e., to stabilize), no matter which protocol is used. For

example, in the problem of shortest path routing, every node whose only shortest path to a

destination goes through a node i or an edge e depends on i or e because it would have to

change the next-hop on its shortest path to the destination if i or e fail-stopped.

123

In general, if some up nodes in a system have to adapt the values of their problem-

specific variables in order for the system to stabilize (irrespective of the state to which the

system stabilizes) after a set of nodes and edges fail-stop while the system is at a legitimate

state, we regard these up nodes as dependent upon the fail-stopped nodes and edges. Simi-

larly, if some existing nodes in a system have to adapt the values of their problem-specific

variables after a set of nodes and edges newly join the system while it is at a legitimate state,

we regard these existing nodes as dependent upon the newly-joining nodes and edges; for

convenience, we also regard the newly-joining nodes as dependent on themselves, since

they need to adapt the values of their problem-specific variables too.

Formally, given a set of nodes V ′, a set of edges E ′, and a legitimate state q, we define

the dependent set of V ′ and E ′ at q, denoted by Dq(V
′, E ′), as:

{k : k ∈ V.q ∧ (∀q′ : q′ ∈ Ql(G−)⇒ q′(k.p) 6= q(k.p))}
if V ′ ⊆ V.q and E ′ ⊆ E.q;

{k : k ∈ V.q ∧ (∀q′ : q′ ∈ Ql(G+)⇒ q′(k.p) 6= q(k.p))}∪
V ′

if V ′ ∩ V.q = E ′ ∩ E.q = ∅.

where G− is the system topology after V ′ and E ′ have fail-stopped, and G+ is the system

topology after V ′ and E ′ newly join the system, i.e., G− = (V.q \ V ′, E.q \ E ′), G+ =

(V.q ∪ V ′, E.q ∪ E ′).20 By definition, the dependent set Dq(V
′, E ′) denotes the minimum

set of nodes that are affected when the set of nodes V ′ and the set of edges E ′ fail-stop or

newly join the system while it is at state q. (Note that the definition also applies to changes

in link weight, since the weight change at a link can be regarded as the fail-stop of the link

with the old weight followed by the join of the link with the new weight.)

Considering the problem of shortest path routing, for example, Figure 6.1 represents a

legitimate state q. If node v11 and edge (v2, v12) fail-stop at q, all the other nodes except

20The node set V ′ and edge set E′ should be such that G− and G+ are valid graphs.

124

0

V11

2V

4

V

7V

3V 8V

6V

1V

4V

10V

5V

5
9

V14

V12
1

V13

2

3

4

5

1

3

2

4

5

6

In the figure, each circle represents a node
in the system, the string in a circle repre-
sents the ID of the node, node v2 is a des-
tination node, and the number besides each
circle represents the distance from that node
to v2. A directed edge < vi, vj > means
that vj is the next-hop on the chosen shortest
path from vi to v2, and an undirected dashed
edge (vi, vj) means that vi and vj are neigh-
bors in the system, but neither is vj on the
chosen shortest path from vi to v2, nor is vi

on the chosen shortest path from vj to v2.
For clarity of presentation, we assume that
the weight of each edge is 1.

Figure 6.1: A legitimate system state

for v2 in the system need to invalidate their distance values as well as their next-hops

on their paths to v2, since there exists no route from any node to v2 any more. Thus,

Dq({v11}, {(v12, v2)}) = {v1, v3, . . . , v10, v13, v14}. Similarly, if the edge (v2, v8) joins at

q, node v9 and the nodes in the subtree rooted at v8 need to change their distance values.21

Thus, Dq(∅, {(v2, v8)}) = {v8, v6, v5, v9, v1, v10, v4}.

Perturbation size. Therefore, a node j can be affected by a fault in two ways irrespective

of the protocols used: j is directly affected by a state corruption which occurs to j itself,

and j is indirectly affected by a non-state-corruption fault (such as fail-stop) which occurs

to a node or an edge that j depends on. Then, corresponding to each set of faults that leads

a system to an illegitimate state q, there is a set of nodes in V.q that are affected either

directly or indirectly by the faults, and the number of affected nodes denotes the degree

of perturbation by the faults. Given an illegitimate state q, it could have been reached in

21Note that nodes v8 and v9 also need to change their next-hops.

125

different ways (i.e., from different legitimate states by different sets of faults), thus the

number of affected nodes at q depends on how the system reaches q by certain faults.

To characterize the minimum amount of work required to recover from the perturbation

at q, we define the perturbation size at q as the minimum number of affected nodes at q

considering all the possible ways q could have been reached. Formally,

Definition 1 (Perturbation size) The perturbation size at a system state q, denoted as

P (q), is minq′∈Ql
|Aq′ ∪ Bq′| where

Ql is the set of all possible legitimate system states,
Aq′ = {i : i ∈ (V.q ∩ V.q′) ∧ q(i) 6= q′(i)},
Bq′ = {i : i ∈ V.q ∧ (i ∈ V.q′ ⇒ q(i) = q′(i)) ∧

i ∈ (Dq′(V.q′ \ V.q, E.q′ \ E.q)∪
Dq′(V.q \ V.q′, E.q \ E.q′))}

If q is reached from a legitimate state q′ by some faults, Aq′ in the above definition de-

notes the set of nodes where state corruption occurred, and Bq′ denotes the set of nodes that

depend on some other nodes where certain non-state-corruption faults occurred. Intuitively,

the perturbation size at q equals to the minimum number of nodes in V.q whose states ei-

ther have been corrupted by some transient faults or the values of whose problem-specific

variables have to be changed in order for the system to stabilize. Thus, it also reflects the

minimum amount of work needed to correct a perturbation.

Given an illegitimate state q, there may exist two legitimate states q1 and q2 such that

|Aq1
∪Bq1

| = |Aq2
∪Bq2

| = P (q). Consider a consensus problem where all the nodes in a

system need to take the same value, for instance, at a state q where one half of the nodes in

the system take 3 and the other half take 4, there exist two legitimate states q1 and q2 such

that every node takes 3 at q1, every node takes 4 at q2, and |Aq1
∪ Bq1

| = |Aq2
∪ Bq2

| =

P (q) = k
2
, where k is the number of nodes in the system. To reflect the above situation,

126

we define the set of potentially perturbed sets of nodes at state q, denoted by PP (q), as

{Aq′ ∪ Bq′ : q′ ∈ Ql ∧ |Aq′ ∪ Bq′| = P (q)}.

To illustrate the concept of perturbation size for the problem of shortest path routing,

let us consider scenarios when different faults occur while a system is at a legitimate state

q′ as shown in Figure 6.1:

• If a state corruption occurs to node v8, then the perturbation size at the state after the

corruption is 1 and the set of potentially perturbed set of node is {{v8}}, since only

v8 needs to change its state in order for the system to stabilize to the legitimate state,

and at least one node in the system needs to change its state in order for the system

to stabilize.

• If node v8 fail-stops, then the perturbation size is 3 and the set of potentially perturbed

set of nodes is {{v6, v5, v10}}, since nodes v6, v5, and v10 have to change their next-

hop on their shortest paths to v2, while all the other nodes in the system don’t need

to.

Local stabilization. Based on the protocol-independent concept of perturbation size which

reflects the minimum amount of work required for a system to stabilize from a state, we

define the concept of F -local stabilization which reflects the properties of protocols in the

presence of faults.

Definition 2 (F -local stabilization) A system G is F -local stabilizing if and only if

Starting at an arbitrary state q, every computation of G reaches a legitimate
state within F(P (q)) time, where F is a function and P (q) is the perturbation
size at state q.

If a system is F -local stabilizing and F is a linear function, we say that the system is

locally stabilizing (for simplicity).

127

Given an F -local stabilizing system and a system computation β that starts at a state

q and reaches a legitimate state q′, the perturbed set of nodes at q, denoted as PN(q), is

defined as the maximal set of nodes that are in the same potentially perturbed set of nodes

at q and that change state from q to q′. Formally, PN(q) = {i : i ∈ V.q∧q(i) 6= q′(i)}∩S’,

where S’ ∈ PP (q) and |S’ ∩ {i : i ∈ V.q ∧ q(i) 6= q′(i)}| = maxS∈PP (q)|S ∩ {i : i ∈

V.q ∧ q(i) 6= q′(i)}|.

A node i is perturbed at q if i ∈ PN(q), otherwise, it is healthy at q. A node is

contaminated if it is healthy at q and if the node executes at least one protocol action

during stabilization. Then, the range of contamination, denoted by Rc(q), is defined as

the the maximum hop-distance from the set of contaminated nodes to the perturbed set of

nodes PN(q). That is,

Rc(q) = maxi∈Sc
hops(i, PN(q))

where
Sc = {i : i ∈ V.q ∧ i is healthy at q ∧ some protocol

action is executed at i during stabilization},
hops(i, PN(q)) = minj∈PN(q) hops(i, j, G.q),
hops(i, j, G.q) = the number of hops in the shortest

path between i and j in G.q.

By definition, the range of contamination Rc(q) denotes the distance to which the pertur-

bation at q propagates during stabilization, thus Rc(q) should be 0 ideally or be a function

of the perturbation size at q in practice.

6.3.2 Properties of F -local stabilizing systems

A set of nodes S are contiguous at a system state q if S ⊆ V.q and the subgraph of

G.q(V.q, E.q) on S is connected, i.e., the graph G′(V ′, E ′) is connected, where V ′ = S

and E ′ = {(i, j) : i ∈ S∧ j ∈ S∧ (i, j) ∈ E.q}. A maximal set of perturbed nodes that are

128

contiguous is called a perturbed region. Then the following properties hold for a F -local

stabilizing system G:

• Starting at an arbitrary state q, the maximum distance that faults can propagate out-

ward from the perturbed regions is O(F(P (q))), i.e., the range of contamination is

O(F(P (q))). Therefore, every node that is ω(F(P (q))) hops away from the per-

turbed regions at state q will not be contaminated by the perturbation. (This claim

comes from the observation that the time taken for a distributed algorithm to stabilize

is at least proportional to the distance information propagates in the algorithm.)

• Starting at an arbitrary state q where the perturbed regions are ω(F(P (q))) hops

away from one another, the stabilization of one perturbed region is independent of

and concurrent with that of the other perturbed regions, and the time taken for the

system to stabilize only depends on the size of the largest perturbed region.

• The availability of an F -local stabilizing system is high in the sense that it stabi-

lizes quickly after perturbations and the impact of perturbations is contained locally

around where they occur.

6.4 Protocol LSRP

In this section, we first specify the problem of local stabilization in shortest path routing.

Then we explain the limitations of existing distance-vector routing protocols, present the

protocol concepts underlying LSRP, and finally present the design of LSRP.

129

6.4.1 Problem statement

The problem is to design a protocol that, given a system G(V, E, W) and a destination

node r ∈ V , constructs and maintains a spanning tree TG (called shortest path tree) of G

that meets the following requirements:

• Node r is the root of the shortest path tree TG;

• (∀i : i ∈ V ⇒ dist(i, r, TG) = dist(i, r, G)), where dist(i, r, TG) and dist(i, r, G)

are the minimum distance between nodes i and r in TG and G respectively; (that is,

the path from every node i to r in TG is a shortest path between i and r in G.)

• The system G is F−local stabilizing.

6.4.2 Fault propagation in existing distance-vector protocols

Existing distance-vector routing protocols are based on the distributed Bellman-Ford

algorithm [46, 67]. In these protocols, each node i maintains the distance, denoted as d.i,

of and the next-hop, denoted as p.i, on its shortest path to each destination. For a destination

r, if node j is a neighbor of i and d.j = min{d.k : k is a neighbor of i}, i will choose j as

the next hop on its shortest path to r (i.e., set p.i to j) and set d.i to d.j +w.i.j. However, in

these protocols, faults cannot be contained around where they have occurred, and F -local

stabilization is not guaranteed, which results in routing instability.

One example is shown in Figure 6.2. For the same system in Figure 6.1, Figure 6.2(a)

represents a system state where the state of node v8 is corrupted such that d.v8 = 1. Ide-

ally, v8 should correct its state such that d.v8 = 3, and all the other nodes in the sys-

tem remain unaffected by the state corruption at v8. However, in existing distance-vector

routing protocols, it is possible that nodes v6 and v5 detect the change of d.v8 before v8

130

0
2V

4

V

7V 6V

1V

4V

10V

5V

9

3V 8V
1

14V 13V

2

12V 11V

11

2

3

4

5 5

4

5

6

(a)

0
2V

4

9V

7V 6V

1V

4V

10V

5V2
2

33

4

3

3 1
3V 8V

14V 13V
2 2

12V 11V
1 1

(b)

Figure 6.2: Example of fault propagation in existing distance-vector routing protocols

corrects its state. Then both v6 and v5 will change their state correspondingly such that

d.v6 = d.v5 = d.v8 + 1 = 2. And the same happens at nodes v9, v1, v10, and v4. Therefore,

the fault at v8 propagates to nodes v6, v5, etc., and the perturbed system state after the fault

propagation from v8 is shown in Figure 6.2(b). Even though the system will stabilize to a

legitimate state later, nodes far away from v8, such as v4 and v9, have been contaminated

by the state corruption at v8, and the time taken for the system to stabilize depends on the

diameter of the system instead of the perturbation size. Furthermore, node v9 has changed

its route to destination v2 because of the fault propagation, which leads to route flapping, a

severe kind of routing instability.

6.4.3 Protocol concepts

In the example shown in Figure 6.2, the state corruption at v8 can propagate far away

until it reaches the leaves of the shortest path tree, and the time taken for the system to

131

stabilize depends on its diameter instead of the perturbation size. The reasons for the

unbounded fault propagation and slow stabilization are as follows:

• First, the distance value of v8 (i.e., d.v8) is corrupted to be smaller than it should be

at any legitimate state;

• Second, before v8 corrects its corrupted state, v6 as well as v5 detects that d.v8 de-

creases. Because neither v6 nor v5 knows that the new state of v8 is a corrupted one,

both v6 and v5 update their state according to the corrupted state of v8, and the state

corruption at v8 propagates to its neighbors v6 and v5. Then, the same thing that has

happened to v6 and v5 happens to the neighboring nodes of v6 and v5, and so on.

• Third, after detecting that its state has been corrupted, v8 corrects its state (i.e., sets

d.v8 to 3). Then, its neighbors v6 and v5 correct their corrupted states, and so on.

However, this “correction” action is unable to catch up with the “fault propagation”

action that propagates the initial corruption at v8. Therefore, the initial corruption at

v8 is propagated far away until it reaches the leaves of the shortest path tree, hence

the time taken for the system to stabilize depends on the system diameter instead of

the perturbation size at the initial state.

In short, the reason why faults propagate and local stabilization is violated is that the

“correction” action always lags behind the “fault propagation” action. Therefore, one ap-

proach to contain faults locally and achieve local stabilization is to guarantee that the node

that is the source of fault propagation (for example, node v8) will detect the existence of

fault propagation, and initiate a “containment” action that can catch up with and stop the

“fault propagation” action before faults propagate far away. We develop this approach as

follows.

132

Layering of diffusing waves. In shortest path routing, the system computation is a diffus-

ing computation by which nodes in the system learn their routes to a destination gradually.

To achieve local stabilization, we design our protocol LSRP by layering the diffusing com-

putation into three diffusing waves: the stabilization wave, the containment wave, and the

super-containment wave (see Figure 6.3). Faults in a stabilization wave are contained by

Stabilization Wave

Containment Wave

Super−containment Wave

Figure 6.3: Layering of diffusing waves in shortest path routing

a containment wave, faults in a containment wave are contained by a super-containment

wave, and each super-containment wave self-contains. To enable the above fault contain-

ment, containment waves propagate faster than stabilization waves, and super-containment

waves propagate faster than containment waves.

The stabilization wave is a diffusing computation that implements the basic distributed

Bellman-Ford algorithm with some changes to cooperate with the containment wave. A

stabilization wave can propagate the “correction” action that enables a system to converge

to a legitimate state, but a mistakenly initiated stabilization wave can propagate faults far

away from where they initially occurred, as shown in Figure 6.2. To prevent a mistakenly

initiated stabilization wave from propagating faults unboundedly, the containment wave is

introduced.

133

Containing the stabilization wave. To enable fault containment and local stabilization,

the source of fault propagation should detect the existence of the propagation and initiate a

containment wave to stop it. In shortest path routing, each node chooses as its next-hop the

neighbor that offers the least distance to the destination. Therefore, only “small distance

value” propagates in distance-vector routing: if the distance value of a node is corrupted to

be less than it could have been (via the distance value offered by the neighbors of the node),

it is highly likely that a neighboring node will propagate the corrupted value by choosing

the corrupted node as its next-hop; in contrast, if the distance value of a node is corrupted

to be greater than it could have been, it is less likely that a neighboring node will propagate

the corrupted value.

Therefore, we regard a node as a “potential source of fault propagation” (simply called

source of fault propagation hereafter) if its distance value is less than what its neighboring

nodes could have provided. Formally, a node i is a source of fault propagation if, for every

neighboring node j of i that is not involved in any containment wave, d.j + w.i.j > d.i

holds, and either i is not the destination node, or d.i is not equal to 0. For example, node v8

in Figure 6.2(a) is a source of fault propagation.

Whenever a node detects itself being a source of fault propagation, the node initiates a

containment wave to stop the stabilization wave, if any, which has propagated the corrupted

state of the node. The containment wave propagates along the same path as that by the

stabilization wave. Since the containment wave propagates faster than the stabilization

wave, it is able to catch up with and stop the stabilization wave.

Nevertheless, a containment wave can be mistakenly initiated due to state corruption.

For example, in Figure 6.1, if the state of v11 is corrupted such that d.v11 = 2, node v13

will become a source of fault propagation and a containment wave will be initiated by v13.

134

To prevent a mistakenly initiated containment wave from propagating unboundedly, the

super-containment wave is introduced.

Fault tolerance of the containment wave. A node that has mistakenly initiated a con-

tainment wave will detect that it should not have initiated the containment wave after the

perturbed regions have stabilized. Then it will initiate a super-containment wave that

propagates along the same paths as those by the mistakenly initiated containment wave.

Since the super-containment wave propagates faster than the containment wave, the super-

containment wave will catch up with and stop the containment wave.

For the above wave-layering approach to work, the super-containment wave must self-

stabilize itself locally upon perturbations; otherwise, there would be no end to the layering

procedure. This is achieved by ensuring that the super-containment wave only uses vari-

ables defined for the stabilization wave and containment wave, and no extra variable is

introduced for the super-containment wave.

Loop freedom. In the basic distributed Bellman-Ford algorithm, loops can form during

stabilization, which leads to the bouncing effect and count-to-infinity problem [46] that

delay the stabilization of a system and violate the time constraint of local stabilization.

Therefore, in order to circumvent these two problems, our protocol avoids forming loops

during stabilization, which, together with local fault containment, guarantees that the sta-

bilization time is a function of the perturbation size in the worst case. Interestingly, loops

can be avoided during stabilization just via the containment wave. The intuition is that a

node that can select one of its descendants as its new parent (i.e. its next-hop) in the ba-

sic distributed Bellman-Ford algorithm becomes a source of fault propagation according

to our definition. Therefore, a containment wave will be initiated at such a node, which

guarantees loop freedom because no loop is formed in any containment wave.

135

6.4.4 The design of LSRP

The protocol LSRP (Locally Stabilizing shortest path Routing Protocol) is shown in

Figure 6.4, where the constants, variables, and protocol actions for each node i in a system

are presented.

Constants. LSRP uses five constants: r, ds, dc, dsc, and dsyn. r is the ID of the destination

node in a system to which all the other nodes in the system need to find the shortest path; ds,

dc, and dsc are used to control the propagation speed of the stabilization wave, containment

wave, and super-containment wave respectively; and Isyn is used to control the frequency

of information update between neighboring nodes.

Variables. As in existing distance-vector routing protocols, each node i maintains the two

variables d.i and p.i, where d.i records the distance from i to r, and p.i records the next-

hop on the shortest path from i to r (i.e., the parent of i in the shortest path tree rooted at

r). (Note that, by definition, d.i and p.i are the only problem-specific variables for a node

i in LSRP.) To achieve local stabilization, each node i also maintains a boolean variable

ghost.i. ghost.i is true if node i is being involved in a containment wave.

To enable inter-node coordination, i maintains “mirror” variables d.i′.i, p.i′.i, and

ghost.i′.i for each neighbor i′, which denote i’s knowledge of the latest values of d.i′,

p.i′, and ghost.i′ respectively. (For convenience in presentation, we also regard d.i.i as

d.i, p.i.i as p.i, and ghost.i.i as ghost.i.) To control the frequency of information update

between neighboring nodes, variable t.i is used to denote the time when i broadcasts the

values of d.i, p.i, and ghost.i last time.

136

Protocol LSRP.i

Constant r : node-id
ds, dc, dsc, Isyn : real

Var d.i, d.i′.i (i′ ∈ N.i) : integer
p.i, p.i′.i (i′ ∈ N.i) : node-id
ghost.i, ghost.i′.i (i′ ∈ N.i) : boolean
t.i : real
k : node-id

Parameter j : node-id
Actions
〈S1〉 :: MP.i ∧ p.i 6= i −→ p.i := i;

t.i := CLK.i; send m(p.i) to N.i

[]

〈S2〉 :: SW.i.j ∧ ¬ghost.j.i
ds−−−−−→ d.i, p.i := d.j.i + w.i.j, j;

ghost.i := false;
t.i := CLK.i; send m(d.i, p.i, ghost.i) to N.i

[]
∗ ∗ ∗

〈C1〉 :: ¬ghost.i ∧ (SP.i ∨ CW.i)
dc−−−−−→ ghost.i := true;

if SP.i → p.i := i fi;
t.i := CLK.i; send m(p.i, ghost.i) to N.i

[]
〈C2〉 :: ghost.i ∧ ¬(∃k : k ∈ N.i ∧ p.k.i = i ∧ d.k.i = d.i + w.i.k) −→

ghost.i := false;
if i = r → d.i, p.i := 0, i

[]
i 6= r ∧ PS.i.j → d.i, p.i := d.j.i + w.i.j, j

[]
i 6= r ∧ ¬(∃k : PS.i.k) → d.i, p.i :=∞, i

fi;
t.i := CLK.i; send m(d.i, p.i, ghost.i) to N.i

[]
∗ ∗ ∗

〈SC〉 :: ghost.i ∧ SCW.i
dsc−−−−−→ ghost.i := false;

if p.i = i →
do d.k.i + w.i.k = d.i ∧ SW.i.k → p.i := k od;

fi;
t.i := CLK.i; send m(ghost.i) to N.i

[]
∗ ∗ ∗
〈SYN1〉 :: (t.i + Isyn ≤ CLK.i) ∨ (t.i > CLK.i) −→ t.i := CLK.i; send m(d.i, p.i, ghost.i) to N.i

[]
〈SYN2〉 :: rcv m from j −→ update d.j.i, p.j.i, and/or ghost.j.i accordingly

Figure 6.4: LSRP: local stabilization in shortest path routing

137

For clarity of presentation, we let N.i be the set of neighboring nodes of i, we let CLK.i

be the clock value of i, and we let w.i.i be∞ (i.e., there is no self-loop). A dummy variable

k is also used.

Protocol actions. As discussed in Section 6.4.3, the diffusing computation in LSRP con-

sists of three diffusing waves: the stabilization wave, the containment wave, and the super-

containment wave. These diffusing waves are implemented in LSRP as follows:

• Actions S1 and S2 implement the stabilization wave. More specifically, S2 imple-

ments the distributed Bellman-Ford algorithm; S1 guarantees that the next-hop of a

node i (i.e., p.i) is consistent with the information within its neighborhood (i.e., S1 is

introduced to guarantee self-stabilization).

• Actions C1 and C2 implement the containment wave. To enable a super-containment

wave to trace a mistakenly initiated containment wave by the parent-child relation-

ship between neighboring nodes, each containment wave is a round procedure con-

sisting of a phase of propagating outward and a phase of shrinking back. Action

C1 implements the phase of propagating outward which is to stop the corresponding

stabilization wave, and action C2 implements the phase of shrinking back after the

stabilization wave has been stopped.

• Action SC implements the super-containment wave. The super-containment wave

propagates along the path signified by the parent-child relationship maintained in the

corresponding containment wave.

The propagation speed of a diffusing wave is controlled by the guard hold-time of the

actions implementing the wave. To guarantee that containment waves propagate faster than

stabilization waves and that super-containment waves propagate faster than containment

138

waves in the presence of clock drift as well as message passing delay, the guard hold-time

ds, dc, and dsc used in LSRP should be such that ds > α · (dc + U), dc > α · (dsc + U), and

dsc ≥ 0. (For clarity of presentation, we relegate the detailed reasoning to [16].)

To update information between neighboring nodes, actions SYN1 and SYN2 are used.

We further elaborate on the protocol actions as follows.

Stabilization wave. By implementing the distributed Bellman-Ford algorithm with some

changes to cooperate with containment wave, the stabilization wave guarantees that a sys-

tem eventually stabilizes to a legitimate state.

Action S1: if node i is a minimal point (i.e., MP.i = true) but p.i 6= i, it sets p.i to i. Then,

i sets t.i to its current clock value, and broadcasts the new value of p.i to its neighbors.

MP.i is defined as

(i = r ∧ d.i = 0) ∨ (ghost.i ∧ SP.i), where SP.i =
true if i is a source of fault propagation.

That is, a node i is a minimal point if it is the destination node and d.i = 0, or if it has

initiated a containment wave that has not finished.

Action S2: if node i should propagate a stabilization wave from node j (i.e., SW.i.j =

true) that is not being involved in any containment wave, and this condition continuously

held in the past ds time, then i sets j as its parent, and sets d.i, ghost.i to d.j.i + w.i.j,

false respectively. Also, i sets t.i to its current clock value, and broadcasts the new values

of d.i, p.i, and ghost.i to its neighbors.

SW.i.j is defined as

j ∈ N.i ∧ d.j.i + w.i.j ≤ d.i ∧
(∀k : k ∈ N.i⇒ d.j.i + w.i.j ≤ d.k.i + w.i.k) ∧
((j 6= p.i ∧ (p.i ∈ N.i ∧ ¬ghost.(p.i).i⇒

d.j.i + w.i.j < d.(p.i).i + w.i.(p.i)))
∨
(j = p.i ∧ d.i 6= d.j.i + w.i.j))

139

That is, node i should propagate a stabilization wave from node j if

◦ j is the neighbor of i via which the distance value of i is the smallest; and

◦ if j is not the current parent of i, then the distance value of i via j is less than that via

p.i unless p.i is not a neighbor of i or is involved in a containment wave; if j is the

current parent of i, then the distance value of i is not equal to that of j plus w.i.j.

However, node i should not propagate any stabilization wave from j if j is being in-

volved in a containment wave, since the state of any node being involved in a containment

wave is corrupted.

Containment wave. The containment wave prevents a stabilization wave from propagating

faults far away from where they have occurred.

Action C1: if node i is not being involved in any containment wave (i.e., ghost.i = false),

but it is either a source of fault propagation (i.e., SP.i = true) or it should propagate a

containment wave from its parent (i.e., CW.i = true), and this condition continuously held

in the past dc time, then i sets ghost.i to true in order to initiate or propagate a containment

wave. Moreover, if i is a source of fault propagation, it sets p.i to i.22 Then, i sets t.i to its

current clock value, and broadcasts the new values of p.i and ghost.i to its neighbors.

SP.i is defined as

(∀j : j ∈ N.i ∧ ¬ghost.j.i⇒ d.j.i + w.i.j > d.i) ∧
((i 6= r ∧ d.i 6=∞∧ d.i 6= d.(p.i).i + w.i.(p.i)) ∨
(i = r ∧ d.i 6= 0))

That is, a node i is a source of fault propagation if none of its neighbors that are not involved

in any containment wave can offer i a distance value that is no greater than what i currently

22Conceptually, when i is a source of fault propagation, it is a local minimum in terms of distance values
and no neighbor can act as its next-hop by providing a smaller distance to the destination. Therefore, i sets
p.i to i. By this design, the destination node r can “stabilize” p.r to r when d.r 6= 0; a node i that is in a loop
(e.g., due to state corruption) can break the loop within constant time by setting p.i to itself.

140

has, and either i is not the destination node and its distance value is not consistent with that

of its parent, or i is the destination node and its distance value is not 0.

CW.i is defined as

p.i ∈ N.i ∧ ghost.(p.i).i ∧ d.i = d.(p.i).i + w.i.(p.i) ∧
¬(∃k : k ∈ N.i ∧ ¬ghost.k.i ∧ d.k.i + w.i.k ≤ d.i)

That is, a node i should propagate a containment wave from its parent p.i if p.i is a neighbor

of i and is involved in a containment wave, i has copied the corrupted distance value of p.i

(i.e., d.i = d.(p.i).i + w.i.(p.i)), and i does not have a neighbor k that is not involved in

any containment wave and can offer i a distance value smaller than what i currently has.

Action C2: if node i is involved in a containment wave, but i has no child k that is perturbed

due to the state corruption at i (i.e., p.k.i = i and d.k.i = d.i + w.i.k), then i sets ghost.i

to false, and

◦ if i is the destination node, then i sets d.i and p.i to 0 and i respectively;

◦ if i is not the destination node, then i sets d.i and p.i to d.j.i+w.i.j and j respectively,

if there exists a parent substitute j of i (i.e., PS.i.j = true); otherwise, i sets d.i and

p.i to∞ and i respectively to guarantee loop freedom during stabilization.

PS.i.j is defined as

j ∈ N.i ∧ ¬ghost.j.i ∧ p.j.i 6= i ∧
d.j.i + w.i.j ≤ d.i ∧
(∀k : k ∈ N.i ∧ ¬ghost.k.i⇒

d.j.i + w.i.j ≤ d.k.i + w.i.k)

That is, node j is a parent substitute of i if j is not a child of i, and, among all the

neighbors of i that are not involved in any containment wave, j offers i the smallest

distance value that is no greater than what i currently has.

141

Also, i sets t.i to its current clock value, and broadcasts the new values of d.i, p.i, and

ghost.i to its neighbors.

Action C2 guarantees that a containment wave will shrink back to its initiator after the

containment wave has caught up with and stopped the stabilization wave that propagates

the faults which initially occurred at the initiator of the containment wave.

Super-containment wave. The super-containment wave prevents a mistakenly initiated

containment wave from propagating unbounded, and corrects faults in the containment

wave.

Action SC: if node i is involved in a containment wave (i.e., ghost.i = true), but it should

initiate or propagate a super-containment wave from its parent (i.e., SCW.i = true), and

this condition continuously held in the past dsc time, then i sets ghost.i to false. Moreover,

if i has set p.i to itself because it was a source of fault propagation, i recovers its parent

immediately. Then, i sets t.i to its current clock value, and broadcasts the new value of

ghost.i to its neighbors.

SCW.i is defined as

(i = r ∧ d.i = 0) ∨
(i 6= r ∧ ¬SP.i ∧ (p.i 6= i⇒ ¬ghost.(p.i).i))

That is, i should initiate or propagate a super-containment wave if

◦ it is the destination node and d.i = 0; or

◦ it is not the destination node, and neither is it a source of fault propagation nor is its

parent involved in any containment wave.

Information update. Actions SYN1 and SYN2 guarantee that the values of mirror variables

d.i′.i, p.i′.i, and ghost.i′.i at node i stabilize to those of d.i′, p.i′, and ghost.i′ for every

neighbor i′ of i.

142

Action SYN1: if i did not broadcast the values of d.i, p.i, and ghost.i in the past Isyn time

(i.e., t.i + Isyn ≤ CLK.i) or if variable t.i is corrupted to be greater than the current clock

value of i, i sets t.i to its current clock value, and broadcasts the values of d.i, p.i, and

ghost.i to its neighbors.

Action SYN2: when i receives the latest values of d.j, p.j, and/or ghost.j from its neighbor

j, i records the values to variables d.j.i, p.j.i, and/or ghost.j.i respectively.

6.4.5 Examples revisited

To illustrate how LSRP behaves in the presence of faults, we reconsider the examples

discussed in previous sections. For simplicity of presentation, we assume that α = 1, link

delay is a constant u, processing delay is negligible, containment waves propagate twice as

fast as stabilization waves (i.e, ds = 2dc +u), and super-containment waves propagate four

times as fast as containment waves (i.e., dc = 4dsc + 3u).

We first study the case where d.v8 is corrupted to 1 and nodes v6 and v5 have learned

the corrupted value when the system is at the state as shown in Figure 6.1. The system

behavior after the state corruption at v8 is shown by the space-time diagram in Figure 6.5:

t

V

5V

6

0 cd + u

8V

cd

1C remains enabled

remains enabledS
2

2
executes SYN , then

is disabled2S

1executes C , then C 2

Figure 6.5: System behavior after d.v8 is corrupted to 1.

143

• First, the guard for action C1 evaluates to true at v8 (because v8 is a source of fault

propagation, by definition), and the guard for action S2 evaluates to true at v6 and

v5. Therefore, C1 becomes enabled at v8 and S2 becomes enabled at v6 and v5. For

convenience, we regard this moment as time 0.

• C1 remains enabled at v8 until time dc, when v8 executes C1. After the execution of

C1, C2 becomes enabled at v8 and is executed immediately, since the guard hold-time

for C2 is zero. The execution of C2 corrects d.v8 to 3.

• C2 remains enabled at v6 and v5 until time dc + u, when v6 and v5 receive messages

from v8 reflecting its new state. Therefore, action SYN2 is executed twice (processing

the two messages from v8) at v6 and v5 at time dc + u, which disables S2 at v6 and

v5. At this moment, the system reaches a legitimate state.

In the above process, only actions C1 and C2 are executed at v8, and no action is executed

elsewhere. Therefore, no other nodes in the system is affected by the state corruption at v8,

which is the ideal result achievable.

Faults may not be ideally contained in all cases, but they are always contained locally

around where they occur in LSRP. To illustrate this, we consider the case where d.v11 is

corrupted to 2 and v13 has learned the corrupted value when the system is at the state as

shown in Figure 6.1. The system behavior after the state corruption at v11 is shown in

Figure 6.6:

• First, action S2 becomes enabled at v11, and action C1 becomes enabled at v13. For

convenience, we regard this moment as time 0.

• At time dc, v13 executes C1 and sends its new state to v8 (by which the containment

wave propagates from v13 to v8).

144

executes S 2:
executes SC

executes C 1

executes SYN 2
C1 is disabled

2d + 4u + 2c dsc

:

:
:

d + uc

t0

c

8

sc2d + 2u + c

5

c

V

V6

cd
cc

cc2d + u

V

2d + 2u

11V

dsc2d + 3u + 2cc
d

V

sc2d + 3u + cc
d

13

Figure 6.6: System behavior after d.v11 is corrupted to 2.

• The new state of v13 reaches v8 at time dc + u, when action SYN2 is enabled and

executed immediately at v8. As a result, action C1 becomes enabled at v8 at time

dc + u.

• Then, v8 executes C1 and v11 executes S2 at time 2dc + u. u time later, v6 and v5

receive the new state of v8, and v13 learns the new state of v11. Consequently, C1

becomes enabled at v6 and v5, and SC becomes enabled at v13.

• At time 2dc +2u+ dsc, v13 executes SC and sends its corrected state to v8 (by which

the super-containment wave propagates from v13 to v8). As a result, SC becomes

enabled at v8 at time 2dc + 2u + dsc.

• dsc time later, v8 executes SC and sends its new state to v6 and v5 (by which the

super-containment wave propagates to v6 and v5).

145

• At time 2dc + 4u + 2dsc, action SYN2 becomes enabled and is executed immediately

at v6 and v5, which in turn disables C1 at v6 and v5. As a result, the system reaches

its legitimate state.

In the above process, only nodes v11, v13, and v8 execute one or more protocol actions, while

the rest of the system remain unaffected. Therefore, the impact of the state corruption at

v11 is contained locally (i.e., within 2 hops in the above case).

6.5 Protocol analysis

In this section, we present the property of local stabilization in a system where LSRP

is used. We also present the properties of loop freedom during stabilization and quick loop

removal in LSRP, which are not only necessary for local stabilization in routing, but also

critical for improving network resource utilization and quality of communication. (For clar-

ity of presentation, we relegate the proofs of all the theorems and lemmas in this chapter

to the appendix D and [16]).

6.5.1 Property of local stabilization

Given a system topology G′(V ′, E ′), we define predicate L as

(∀i : i ∈ V ′ ⇒ ¬ghost.i ∧ LH.i) ∧
(∀e : e ∈ E ′ ⇒ there is no message in e)

where LH.i is defined as

(i = r ⇒ d.i = 0 ∧ p.i = i) ∧
(i 6= r ⇒ d.i = d.(p.i) + w.i.(p.i) ∧ p.i ∈ N.i ∧

(∀k : k ∈ N.i⇒ d.(p.i) + w.i.(p.i) ≤ d.k + w.i.k))

Then, every state in L is a legitimate system state where the shortest path tree rooted at

the destination node r is formed (by variable p.i at every node i in the system), and every

146

node i has learned the distance and the next-hop on its shortest path to r. For LSRP, we

have

Theorem 2 (Self-stabilization) Starting at an arbitrary state, every computation of a sys-

tem where LSRP is used is guaranteed to reach a state in L. 2

From Theorems 2, we know that LSRP guarantees the formation of the shortest path

tree in a system when it starts at an arbitrary state.

Furthermore, local stabilization is guaranteed in LSRP. The analysis is as follows.

When there is only one perturbed region at the initial state, we have

Lemma 1 Starting at an arbitrary state q0 where there is only one perturbed region, every

system computation reaches a state in L within O(P (q0)) time, and the range of contami-

nation is O(P (q0)). 2

When the set of perturbed nodes are not contiguous, there are multiple perturbed re-

gions (denoted as S0, S1, . . . , Sm, m ≥ 1) in the system. For each perturbed region Si,

we define its containment region CRi as the union of Si and the set of nodes that are con-

taminated during stabilization because of the existence of Si. Two containment regions

CRi and CRj are disjoint if there do not exist any two neighboring nodes k and k ′ such

that k ∈ CRi and k′ ∈ CRj , otherwise, they are adjoining. Multiple containment re-

gions CR0, CR1, . . . , CRm (m ≥ 1) are disjoint if there do not exist any two containment

regions CRi and CRj (i 6= j) that are adjoining. Then, we have

Lemma 2 Starting at an arbitrary state q0 where the perturbed regions are S0, S1, . . . , Sm

and their containment regions are disjoint, every system computation reaches a state in L

within O(maxi∈0..m |Si|) time, and the range of contamination is O(maxi∈0..m |Si|). 2

147

Given any two perturbed regions Si and Sj (i 6= j) at a state q, the half-distance between

Si and Sj is half of the minimum distance from a node in Si to another node in Sj , that is,

mink∈Si,k′∈Sj
bdist(k,k′,G.q)

2
c, where dist(k, k′, G.q) denotes the minimum distance between

node k and k′ in graph G.q. Then, Lemma 2 implies

Corollary 1 Starting at an arbitrary state q0 where the perturbed regions are

S0, S1, . . . , Sm and the half-distance between any two of them is ω(maxi∈0..m |Si|), ev-

ery system computation reaches a state in L within O(maxi∈0..m |Si|) time, and the range

of contamination is O(maxi∈0..m |Si|). 2

Multiple containment regions CR0, CR1, . . . , CRm (m ≥ 1) are adjoining if, for any

two containment regions CRi and CRj (i 6= j), either CRi and CRj are adjoining or there

exist a sequence of containment region CRk0
, CRk1

, . . . , CRkt
such that CRi are adjoining

with CRk0
, CRkn

are adjoining with CRkn+1
(n = 0, . . . , t − 1), and CRkt

are adjoining

with CRj . Then, we have

Lemma 3 Starting at an arbitrary state q0 where the perturbed regions are S0, S1, . . . , Sm

and their containment regions are adjoining, every system computation reaches a state in

L within O(
∑m

i=0 |Si|) time, but the range of contamination is still O(maxi∈0..m |Si|). 2

Lemmas 2 and 3 imply

Corollary 2 Starting at an arbitrary state q0 where the perturbed regions are

S0, S1, . . . , Sm, every system computation reaches a state in L within O(P (q0)) time, and

the range of contamination is O(maxi∈0..m |Si|) (which is o(P (q0))). 2

Lemma 1 and Corollary 2 imply

148

Theorem 3 (Local stabilization) Starting at an arbitrary state q0, every system compu-

tation reaches a state in L within O(P (q0)) time, and the range of contamination is

O(MAXP), where MAXP denotes the number of nodes in the largest perturbed region

at q0 and is o(P (q0)). That is, the system is F -local stabilizing, where F is a linear func-

tion. 2

By Theorem 3, we see that LSRP solves the shortest path routing problem in a linear-

local stabilizing manner.

6.5.2 Properties of loop freedom and quick loop removal

Theorem 4 (Loop freedom) Starting at an arbitrary state where there is no loop, every

system computation reaches a state in L, and there is no loop at any state along the com-

putation. 2

From Theorem 4, we see that there is no loop in the system during stabilization if the

only possible fault in a system is node fail-stop, because no loop can be formed just by

node fail-stop, and there is no loop at any initial state of a system computation if the only

fault is node fail-stop.

Theorem 5 (1-round loop breakage) Starting at an arbitrary state where there exists at

least one loop, every system computation reaches a state where there is no loop after at

most one round of computation. 2

Theorems 4 and 5 imply

Corollary 3 Starting at an arbitrary state where there exists at least one loop, every system

computation reaches a state where there is no loop after at most (ds + U) time. 2

149

6.6 Discussion

In this section, we discuss the impact of network topology on local stabilization, and

we discuss issues related to the application of LSRP.

6.6.1 Impact of network topology on local stabilization

For the problem of shortest path routing, the network topology of a system can affect

the perturbation size, the range of contamination, and the self-stabilization time in the sense

that higher edge density is conducive to local stabilization.

Given a system topology G.q0(V.q0, E.q0) at state q0, if we add some edges to G.q0

and obtain another system topology G.q ′0(V.q′0, E.q′0) at state q′0 with denser edges (i.e.

E.q0 ⊂ E.q′0), then for every node that is both in G.q0 and in G.q′0, the number of different

shortest paths to the destination node in G.q0 will be no more than that in G.q′0. Then,

if the same node i fail-stops in both G.q0 and G.q′0, and G.q0, G.q′0 transit to G.q, G.q′

respectively, the number of nodes that are perturbed due to the fail-stop of i in G.q will be

no less than that in G.q′. More generally, if the same faults occur when the system is at q0

and at q′0, and the system reaches q and q′ respectively after the faults, the perturbation size

at state q will be no less than that at q′. Moreover, even if the perturbation sizes at q and q ′

are the same, a mistakenly initiated containment wave, if any, will propagate no farther in

G.q′ than in G.q Therefore, the time taken for the system to stabilize from q and the range

of contamination during stabilization are no less than that with respect to q ′. Formally,

Proposition 1 Given a system G and two system states q and q ′ such that V.q = V.q′,

E.q ⊆ E.q′, and (∀i : i ∈ V.q ⇒ q(i) = q′(i)), then P (q) ≥ P (q′), Rc(q) ≥ Rc(q
′), and

the time taken for G to stabilize from q is no less than that with respect to q ′. 2

One example is shown in Figure 6.7. Figure 6.7(a) and (b) represent system topology G.q0

150

0
2V

3
3

V

7V 6V

1V

4V

10V

5V

3

9

3V 8V

22

12V 11V

11

4 4 4

5

(a) System topol-
ogy G.q0

0
2V

3
3

V

7V 6V

1V

4V

10V

5V

3

9

3V 8V

22

12V 11V

11

4 4 4

5

(b) System topol-
ogy G.q′0

0
2V

4

3

9V

7V 6V

1V

4V

10V

5V

32
3V 8V

12V 11V
11

3 3

4 4

5

(c) Perturbed state
in G.q0

0
2V

4

3

9V

7V 6V

1V

4V

10V

5V

32
3V 8V

12V 11V
11

3 3

4 4

5

(d) Perturbed state
in G.q′0

Figure 6.7: An example where denser edges reduce the perturbation size and range of
contamination upon perturbations in the system

and G.q′0 at legitimate states q0 and q′0 respectively. The only difference between G.q0 and

G.q′0 is that edge (v6, v10) is not in G.q0 but is in G.q′0. Then,

• If node v8 fail-stops at both state q0 and q′0, and the system reaches state q and q ′

respectively, then the perturbation size at state q is 4 (i.e., nodes v6, v5, v4, and v10

have to change their next-hops), whereas the perturbation size at q ′ is 3 (i.e., nodes

v6, v5, and v10 have to change their next-hops, but v4 does not);

• If the state of v8 is corrupted in both G.q0 and G.q′0 such that d.v8 = 3, then the

perturbed states in G.q0 and G.q′0 during stabilization can be those as shown in Fig-

ure 6.7(c) and (d) respectively, by which we can see that the range of contamination

in G.q0 can be 3, whereas the range of contamination in G.q ′0 can only be 2 at most.

The reason for this is that action S2 is enabled at v10 in G.q′0 and the mistakenly ini-

tiated containment wave from v5 will not propagate beyond v10. Similarly, the time

taken to stabilize in G.q′0 is no more than that in G.q0.

151

In wireless networks, especially in wireless sensor networks [99], the edges tend to be

dense because of dense node distribution and wireless transmission property (i.e., nodes

within transmission range of one another are connected with one another). Our conclusion,

therefore, is that wireless (sensor) networks with higher edge density are likely to contain

faults more tightly and to stabilize faster.

6.6.2 Issues related to the application of LSRP

Accommodating continuous faults. In a distributed system, faults may keep occurring

in certain regions of the system with some frequencies or for certain periods of time. For

example, congestion-induced route flapping may keep occurring at network edge routers

for a certain period of time in Internet inter-domain routing [92]. Due to its property of local

stabilization, LSRP also accommodates these kinds of faults, to an extent depending on the

perturbation size, while still guaranteeing local fault containment and local stabilization.

We elaborate on this as follows.

Theorem 3 implies

Corollary 4 If a transient fault that drives a system G to state q0 keeps occurring, but the

interval between two consecutive occurrences of the fault is ω(P (q0)), then the range of

contamination is O(MAXP), where MAXP denotes the number of nodes in the largest

perturbed region at q0 and is o(P (q0)). 2

From Corollary 4, we see that when a fault keeps occurring, the impact of the fault

is still locally contained as long as the interval between two consecutive occurrences is

asymptotically greater than the perturbation size of the fault.

Moreover, we have

152

Theorem 6 Starting at an arbitrary state q0 at time t0, if only transient faults occur, they

occur only inside containment regions, and no fault occurs after time t0 + T (T ≥ 0), then

every system computation reaches a state in L within O(P (q0)+T) time, and the range of

contamination is O(P (q0) + T). 2

From Theorem 6, we see that, starting at q0, the time taken for a system to stabilize and

the range of contamination are still O(P (q0)), if faults stop occurring in the containment

regions O(P (q0)) time after the system computation starts and no faults occur to nodes

outside the containment regions.

Speed of diffusing waves. In LSRP, parameters ds, dc, and dsc control the propagation

speed of stabilization waves, containment waves, and super-containment waves respec-

tively. Therefore, the relationship between these three parameters determines the degree

of fault containment in the presence of faults. Especially, we need to choose ds and dc

carefully: on one hand, the larger the ratio ds

dc
is, the more tightly a mistakenly initiated sta-

bilization wave is contained; on the other hand, the smaller the ratio ds

dc
is, the more tightly

a mistakenly initiated containment wave tends to be contained (since the corresponding

super-containment wave will not be initiated until certain stabilization wave is executed,

as shown in Figure 6.6). In practice, we should consider the probabilities of stabilization

or containment waves being mistakenly initiated and the degree of fault containment we

expect in choosing the parameters.

Control overhead. The impact of faults is locally contained in LSRP, therefore the con-

trol overhead (e.g., the number of control messages) is also a function of the perturbation

size, instead of the system size. Consequently, LSRP asymptotically reduces the control

overhead when compared with non-locally-stabilizing protocols such as DUAL and LPA.

153

Moreover, the diffusing computation involved in stabilization and containment waves

of LSRP also (implicitly) exists in other routing protocols (such as DUAL and LPA) to

guarantee convergence as well as loop freedom. Therefore, stabilization and containment

waves in LSRP do not introduce much more overhead except for the bit used to encode the

variable ghost. Of course, the overhead associated with super-containment waves exists

only in LSRP and not in other protocols; but this overhead is low because it only needs one

bit to encode the variable ghost, and it is local in the sense that it is bounded from above

by a function of the perturbation size.

6.7 Summary

To formally characterize properties of local stabilization in networked and distributed

systems, we formulated the concepts of perturbation size, F -local stabilization, and range

of contamination. These concepts are generically applicable to networked and distributed

systems, and are thus interesting in their own right.

For the problem of local stabilization in shortest path routing, we designed LSRP. LSRP

guarantees both local stabilization and loop freedom during stabilization. In LSRP, we in-

troduced delays in action execution to control the propagation speeds of diffusing waves.

This does not slow down the convergence of a system, because the stabilization time is

only a linear function of the perturbation size instead of the system size, which is espe-

cially desirable in large-scale systems where faults generally occur only at a small part of

the system. Moreover, the method of introducing delays in action execution is also com-

monly used in Internet routing in order to reduce control overhead and routing flaps. For

example, timer MinRouteAdvertisementInterval is used in BGP to control the frequency

of route exchange between BGP peers. The timer is similar to the delay introduced for

154

the stabilization wave in LSRP. In implementing LSRP, we only need to introduce smaller

timers for the containment wave and super-containment wave.

We observed that higher edge density in a system can reduce the perturbation size,

the range of contamination, and the self-stabilization time. This leads to the interesting

question of how to design or self-configure a network such that the perturbation size, the

range of contamination, and the self-stabilization time are minimized.

In the literature of network routing protocol design [46], formation of routing loops is

regarded as problematic, and a variety of schemes have been proposed to avoid forming

loops, such as those used in EIGRP, OSPF, and BGP. However, fault propagation and rout-

ing instability remain as problems in OSPF and BGP. The root cause appears to be that

these protocols are not designed to tolerate such faults as misconfiguration and persistent

congestion, which are special cases of state corruption. In LSRP, state corruption is dealt

with by way of local stabilization. As a result, looping is implicitly avoided by taking

loop-formation as a kind of state corruption, without introducing special mechanisms to

deal with potential loops. By local stabilization, LSRP prevents faults from propagating far

away and increases the stability as well as availability of a system. Therefore, the question

of whether we should take various kinds of faults as state corruption and deal with them by

way of (local) stabilization deserves further exploration.

155

CHAPTER 7

RELATED WORK

In this chapter, we discuss the literature related to the topics considered in this disserta-

tion, that is, messaging architecture, wireless link estimation and routing, packing-oriented

scheduling, transport control, and local stabilization.

7.1 Messaging architecture

Sensornet protocol SP [77] provides a unified link layer abstraction for sensornets. Fo-

cusing on the interface between link and network layers, SP is complementary to our focus

on higher layer architecture issues, and SP can be incorporated into the SMA architecture.

Woo et al. [96] discussed networking support for query processing in sensor networks. Is-

sues such as query-oriented routing, efficient rendezvous for storage and correlation, and

unified in-network system have been discussed. While focusing on query processing, [96]

does not concentrate on the architectural and algorithmic issues to support a broader range

of applications such as distributed signal processing and computing. To adapt the commu-

nication protocol to the changing network conditions and application requirements, Impala

[65] used the Adaptation Finite State Machine (AFSM) to control the adaptation of com-

munication protocols. To provide application-specific QoS in ubiquitous environments,

Nahrstedt et al. [71] proposed a framework for QoS specification and compilation, QoS

156

setup, and QoS adaptation. Our work complements those in [65] and [71] by focusing on

issues such as application-adaptive link estimation, structuring, and scheduling which are

autonomous without human in the loop.

Mechanisms have been proposed in [25] and [64] for directing data queries to where in-

formation is via information-directed routing. Our work complements [64] by considering

the architectural issues in application-adaptive messaging as well as the algorithmic issues

in application-adaptive structuring and scheduling.

In the Internet, the concepts of Application Oriented Networking (AON) [9] and

Application-driven Networking [48, 35] have been being explored to enable coordination

among disparate applications, to enforce application-specific policies, to improve visibil-

ity of information flow, and to enhance application optimization and QoS. While these

concepts are generic enough to be applied to wireless sensor networks, the techniques em-

ployed in and the problems faced by the Internet are quite different from those in sensor

networks, due to the differences in both technologies and application domains. For in-

stance, the extreme resource (e.g., computation, communication, and energy) constraints

are unique to sensor networks and are not the major issues in the Internet.

For customized resource provisioning to different applications, Darwin [23] has been

proposed for run-time resource management in the Internet. To match application require-

ments to communication protocols, DANCE [79] has been proposed to provide a service-

oriented view to communication services, thus to avoid the inflexibility that results from a

fixed binding between an application and a specific protocol stack. Active networks [88]

have also been proposed to enable functionalities such as application-specific multicast,

information fusion, and other services leveraging network-based computing and storage.

157

7.2 Link estimation and routing

Link properties in 802.11b mesh networks and dense wireless sensor networks have

been well studied in [10], [56], and [107]. They have observed that wireless links assume

complex properties, such as wide-range non-uniform packet delivery rate at different dis-

tances, loose correlation between distance and packet delivery rate, link asymmetry, and

temporal variations. Our study on link properties complements existing works by focusing

on the differences between broadcast and unicast link properties, as well as the impact of

interference pattern on the differences.

Differences between broadcast and unicast and their impact on the performance of

AODV have been discussed in [66] and [22]. Our work complements [66] and [22] by

experimentally studying the differences as well as the impact of environment, distance,

and interference pattern on the differences, which were not the focus of [66] and [22].

[22] mentioned the difficulty of getting MAC feedback and thus focused on the method

of beacon-based link estimation. Our work complements [22] by developing techniques

for reliably fetching MAC feedback, which build the foundation for data-driven link esti-

mation and routing. To improve the performance of AODV, [66] and [22] also discussed

reliability-based mechanisms (e.g., RSSI- and SNR-based ones) for blacklisting bad links.

Since it has been shown that reliability-based blacklisting does not perform as well as ETX

[40, 27, 95], we do not directly compare LOF to [66] and [22], instead we compare LOF to

ETX.

Recently, great progress has been made regarding routing in wireless sensor networks

as well as in mesh networks. Routing metrics such as ETX [27, 95] and ETT/WCETT [31]

have been proposed and shown to perform well in real-world wireless networks [30]. The

geography-based metric PRD [83] has also been proposed for energy-efficient routing in

158

wireless sensor networks. Nevertheless, unicast link properties were still estimated using

broadcast beacons in these works. Our work differs from existing approaches by exper-

imentally demonstrating the difficulty of precisely estimating unicast link properties via

those of broadcast beacons, and proposing the data-driven protocol LOF where unicast link

properties are estimated via the data traffic itself.

Similar to LOF, SPEED [42] also used MAC latency and geographic information in

route selection. In parallel with our work, [60] proposed NADV which also uses informa-

tion from MAC layer. While focusing on real-time packet delivery and a general frame-

work for geographic routing, [42] and [60] did not focus on the protocol design issues

in data-driven link estimation and routing. They did not study the differences between

broadcast and unicast link properties. They did not consider the importance of appropriate

exploratory neighbor sampling either. SPEED switches next-hop forwarders after every

packet transmission (as in L-se), and NADV does not perform exploratory neighbor sam-

pling (as in L-ns), both of which degenerate network performance as shown in Section 3.5.

Complementary to SPEED and NADV, moreover, we have analyzed the small sample size

requirement in LOF, which shows the feasibility of data-driven link estimation. While [42]

and [60] have evaluated their methods via simulation, we have studied the systems issues in

reliably fetching MAC feedback and evaluated LOF via experiments in real networks with

realistic traffic trace. Finally, [60] did not compare the performance of NADV with that of

ETX and PRD.

The problem of local minimum or geographic void has been dealt with in routing proto-

cols such as GPSR [53]. In this dissertation, therefore, we have not considered this problem

since it is independent of our major concerns — data-driven link estimation and routing. As

a part of our future work, we plan to incorporate techniques of dealing with geographic void

159

into LOF, by adapting the definition of “effective geographic progress” (in Section 3.3.1)

and routing around void. The impact of localization errors on geographic routing has been

studied in [82]. In LOF, we adopted a separate software component that fine tunes the GPS

readings to reduce localization inaccuracy, as also used in the field experiment ExScal [12].

7.3 Packing-oriented scheduling

In the past years, query processing in sensor networks has drawn a lot of attention

[68, 97, 69, 72, 29, 28, 63, 43]. TinyDB [68] and Cougar [97] are two exemplary sensor

network database systems which regard data collection as a database query process and

then design mechanisms (such as semantic query forwarding and in-network aggregation)

to execute the query efficiently. Mechanisms for efficient and robust in-network aggrega-

tion for query processing have also been proposed in [69] and [72]. Nonetheless, existing

work in sensornet query processing has not focused on the QoS requirement of different

applications, nor did they focus on the generic application-adaptive messaging in sensor-

nets.

Unlike the query-oriented data modeling and data processing, another aspect in mod-

eling data in sensor networks is to investigate the correlation among them and then take

advantage of the correlation in reducing the cost of data collection. [57, 76, 75]. To this

end, [57], [76], and [75] studied the problem of finding the best aggregation tree given the

data sources and the correlation structure between the data sources. Our work complements

[57], [76], and [75] by not assuming a priori knowledge of the data sources and their corre-

lation, such that the algorithms are more generically applicable. Also, we study the general

architecture for application-adaptive messaging, which is not the focus of the above works.

160

As a simple form of data aggregation, packet packing has been studied in [50] and

[3], where several short packets are packed into a long data packet to reduce the overhead

per bit of data delivered. It has been shown that packet packing can improve network

throughput significantly. While focusing on IEEE 802.11-type networks of devices such as

rechargeable laptops, energy consumption is not a focus of these works, and they did not

study the problem of dynamically tune the packing policy as application QoS requirement

changes. Nagle’s algorithm [41] is also used in TCP to pack short data segments into longer

ones, but it was not designed to be application-adaptive either.

7.4 Reliable and real-time data transport

The performance of packet delivery in dense sensor networks has been studied in [106].

The results show that, in the presence of heavy channel load, a commonly used loss recov-

ery scheme at link layer (i.e., lost packets are retransmitted up to 3 times) does not mask

packet loss, and more than 50% of the links observe 50% packet loss. The observation

shows the challenge of reliable communication over multi-hop routes, since the reliability

decreases exponentially as the number of hops increases.

The limitations of timers in TCP retransmission control have been studied in [105]. The

author analyzes the intrinsic difficulties in using timers to achieve optimal performance and

argues that additional mechanisms should be used. Despite its focus on TCP, the study also

applies to retransmission control in sensor networks.

Block acknowledgment [20] has been proposed for error as well as flow control in the

Internet. It considers the problem of in-order packet delivery. Therefore, a lost packet

blocks the delivery of all the packets that are behind the lost one but have reached the

receiver, as a result of which packet delivery delay is increased. Moreover, a sender can

161

send packets at most up to its window size once a packet is sent but unacknowledged,

thus the channel resource may be under-utilized.23 Block acknowledgment also uses timers

without addressing their limitations, which can render additional delay in packet delivery.

For packet-loss detection and retransmission control, DFRF [70] uses stop-and-wait im-

plicit ack (SWIA). Yet DFRF does not address the issue of retransmission-incurred channel

contention. Moreover, the retransmission timers in DFRF do not adapt to the varying ack-

delay, which can introduce more retransmission or delay than necessary. To reduce the

number of packet transmissions, DFRF uses raw data aggregation where multiple short

packets are concatenated to form a longer packet. In the type of bursty convergecast as

experienced by Lites and ExScal [12], it is more difficult to perform data aggregation at

the mote level because motes detecting an event can be multiple hops away from one an-

other and the length of a single sensor data entry is more than half of the packet length.

Therefore, the current implementation of RBC is based on the paradigm of implicit-ack to

reduce the number of packets competing for channel access. On the other hand, we believe

that the methodologies developed in RBC (e.g., window-less block acknowledgment and

differentiated contention control) can also be applied when there is data aggregation, in

which case we can use explicit-ack packets to send out control information. The detailed

study on this is a part of our future work.

RMST [86] and PSFQ [89] have shown the importance of hop-by-hop packet recovery

in sensor networks. Yet RMST and PSFQ do not focus on bursty convergecast. There-

fore, they do not cope with retransmission-incurred channel contention, they do not design

mechanisms to alleviate delay incurred by retransmission timers (whose timeout values

23The situation is worsened by the fact that the window size is less than half of the buffer size in block
acknowledgment and the fact that the buffer size is usually small (e.g., 16) in wireless sensor networks due
to limited RAM.

162

are conservatively chosen to reduce unnecessary retransmissions), and they do not design

mechanisms to reduce the probability of ack-loss. Our work complements theirs by iden-

tifying issues with existing hop-by-hop mechanisms in bursty convergecast and proposing

approaches to address the issues.

CODA [90] and ESRT [81] have studied congestion control in sensor networks. They

consider a traffic model where multiple sources are continuously or periodically generating

packets. Therefore, they do not focus on real-time packet delivery in bursty convergecast,

and they do not consider retransmission-incurred delay as well as channel contention. Re-

cent work in [47] and [33] has studied different techniques for mitigating congestion and

guaranteeing fairness in wireless sensor networks. Our work complements theirs by focus-

ing on retransmission-based error control and retransmission scheduling. Several transport

protocols, such as ATP [87] and WTCP [85], are also proposed for wireless ad hoc net-

works. Again, they do not face the challenges of reliable bursty convergecast.

7.5 Local stabilization

The concept of fault containment is proposed in [38], [18], and [73]. Nevertheless, [38]

and [18] only consider fault containment for the major part of system states, which is not

strict enough to guarantee that the amount of work (for example, the number of protocol

actions executed) needed for a system to stabilize is a function of the perturbation size;

[73] only considers the case where the impact of every fault is within constant distance

from where it occurs, which is too strict to be applied to problems such as routing, where

the locality of the problem24 is not constant.

24We regard the locality of a problem as the maximum minimum distance between any two nodes that have
to be involved in the definition of the problem.

163

A locally stabilizing protocol GS3 is proposed in [99] for clustering as well as shortest

path routing in wireless sensor networks where nodes are densely distributed. To achieve

local stabilization, GS3 takes advantage of the high node distribution density and the geo-

graphic information on node distribution; the sensor network model assumed by GS3 makes

it inapplicable to other general networks such as the Internet. In [38], algorithms are pro-

posed to contain a single state-corruption during stabilization of a spanning tree, but these

algorithms do not deal with multiple faults and the fail-stop of nodes.

In [18], a broadcast protocol is proposed to contain externally observable variables in

the presence of state corruptions, but the protocol allows for global propagation of internal

variables. In [39], a fault-containing self-stabilizing algorithm is proposed for a consensus

problem, but it only considers linear network topologies and the distance faults propagate

can be exponential in the perturbation size; and the algorithm does not apply to the problem

of shortest path routing.

Loop-free distance-vector protocols DUAL [36] and LPA [37] are proposed for Internet

routing. Nonetheless, neither DUAL nor LPA guarantees local stabilization: faults can

propagate globally in DUAL as well as in LPA when local transient perturbations, such as

congestion and state corruption, occur. This phenomenon becomes worse when networks

are under stress, with transient faults happening more frequently for some period of time

[92]. Furthermore, the time taken to break a loop which has already formed (e.g., due to

state corruption) is not constant in DUAL and LPA; instead it is proportional to the length

of the loop.

164

CHAPTER 8

CONCLUDING REMARKS

In this dissertation, we have studied the challenges that wireless communication, re-

source constraints, and application diversity pose to the architecture and protocol design

of sensornet messaging. To address the challenges, we proposed the sensornet messaging

architecture SMA that decomposes the messaging service into three components — traffic-

adaptive link estimation and routing (TLR), application-adaptive structuring (AST), and

application-adaptive scheduling (ASC) — at different levels of abstraction. For each com-

ponent of the architecture (especially TLR and ASC), we proposed protocol(s) to perform

its associated functionalities. More specifically, we proposed data-driven link estimation

and routing to form the basic messaging structure in a traffic-adaptive manner, we pro-

posed a distributed algorithm that schedules packet transmissions to improve the utility of

in-network processing, and we proposed window-less block acknowledgment and differen-

tiated contention control to provide reliable and real-time data transport. The architecture

and the associated component instantiations have been verified via simulation, experimen-

tation, and field sensornet deployments.

We have also studied the challenges that complex faults and large system scale pose

to the design of fault-tolerant messaging protocols. To address the challenges, we pro-

posed the concept of local stabilization that characterizes the desirable spatial and temporal

165

properties of large scale fault-tolerant systems. For the basic messaging task of routing,

we proposed a locally stabilizing protocol LSRP that guarantees local containment of fault

impact and quick stabilization after fault occurrence. The properties of LSRP have been an-

alytically proved, and its concepts have also been applied to building dependable sensornet

messaging software.

Future work. Despite the fact that we and the community as a whole have made significant

progress toward building the architecture and components for dependable messaging in

sensornets, we are still at the infant stage of ubiquitous and dependable networked sensing.

The ever-developing application domains and technologies will continuously challenge the

design of systems services (including messaging) while bringing new opportunities to sci-

ence, engineering, and our daily life.

In the context of messaging, there is still no consensus on what the right architecture

for sensornets is, or whether we might ever have a unified architecture for such diversi-

fied application domains and systems technologies. We need to explore the broad options

and verify the effectiveness of different messaging architectures through case studies in

typical application domains. We also need to identify typical messaging patterns (e.g.,

convergecast, broadcast, and anycast) in sensornets, and study their impact on the design

of messaging architecture.

Algorithmically speaking, there is still a rich set of foundational and systems issues.

How to model a single wireless link and the whole dynamic sensornet systems? What are

the capacity limits of different scheduling and structuring algorithms? How to provide dif-

ferentiated QoS to different applications in resource constrained and dynamic sensornets?

Answers to these questions will provide deeper understanding and better systems design

for sensornet systems.

166

To fulfill their potential, sensornets need to be and are increasingly being integrated

with existing pervasive systems (e.g., cell phones and sensor-rich vehicles) and the In-

ternet. Among others, this trend raises questions in terms of both the architecture for the

integrated systems and algorithmic design to guarantee QoS across the end-to-end systems.

Answers to these questions will facilitate the application of networked sensing to help solve

scientific, engineering, and societal issues in our world.

167

APPENDIX A

RBC: ACK-LOSS PROBABILITY IN RBC

For convenience, we define the following notations:

p : the probability of losing a single (data) packet;
N : the number of packets received in succession

without any loss in the middle;
N ′ : the number of packets lost in succession;
B : the number of packets received in succession

without any loss in the middle, after a packet
is already received;

A : the number of times that the acknowledgment
for a packet is received at the sender.

Assuming that packet losses are independent of one another, we have the probability

mass functions for random variables N and N ′ as follows.

P [N = k] = p(1− p)k

P [N ′ = k] = (1− p)pk

In RBC, when a packet m is received at a receiver R, the acknowledgment for m can

reach back to the sender S in two ways: S snoops m when it is forwarded by R later, with

probability Pself ; or S does not snoop m but snoops a packet whose block acknowledgment

acknowledges the reception of m, with probability Pba. Therefore, the probability Prbc of

168

S receiving the acknowledgment for m can be derived as follows:

Pself = 1− p

Pba = p
∑∞

k=0 P [B = k]P [A ≥ 1|B = k]
= p

∑∞
k=0 P [B = k](1 − P [A = 0|B = k])

= p
∑∞

k=0 P [N = k + 1](1 − P [N ′ = k])

= p(1−3p+4p2−2p3)
1−p+p2

Prbc = Pself + Pba

= 1− p + p(1−3p+4p2−2p3)
1−p+p2

Then, the probability P ′
rbc of losing the acknowledgment for a packet in RBC is 1− Prbc.

In the case of Lites trace and implicit-ack, p = 22.7%. Therefore P ′
rbc = 8.89%,

reducing the ack-loss probability of SWIA by a factor of 2.07.

169

APPENDIX B

RBC: PROBABILITY THAT AN ORPHAN PACKET HAS NOT
BEEN RECEIVED

According to the analysis in Appendix A, if the probability of losing a single data packet

is p, then the probability P ′
rbc of losing an ACK for a packet is calculated as follows:

P ′
rbc = p−

p(1− 3p + 4p2 − 2p3)

1− p + p2
(B.1)

Thus, if a packet has been retransmitted k (k > 0) times not due to NACK (but due to

retransmission timer timeout), then the probability that the packet has been received by the

receiver is (P ′
rbc)

k.

Given that the NACK for a lost packet is piggybacked onto a data packet only once, the

probability Pnack of losing a NACK for a lost packet is simply calculated as:

Pnack = p (B.2)

Therefore, if an orphan packet has been retransmitted k (k ≥ 0) times not due to NACK,

the probability Ploss that the packet has not been received can be calculated as follows:

Ploss =

{

(1− (P ′
rbc)

k) Pnack

Pnack+P ′

rbc

if k > 0
Pnack

Pnack+P ′

rbc

if k = 0

Therefore,

Ploss =

{

(1− (P ′
rbc)

k) p

p+P ′

rbc

if k > 0
p

p+P ′

rbc

if k = 0
(B.3)

170

APPENDIX C

RBC: PROOF OF THEOREM 1

Theorem 1 (Freedom of packet accumulation) The orphan packets at a node do not

accumulate indefinitely, as long as the packet loss rate along a link is less than 49.14%.

Proof : We first compute the probability Porph that an enqueued packet becomes an orphan

packet. According to the definition of orphan packet, a packet becomes orphan when either

of the following hold: it has been received, but the corresponding ACK is lost; it has been

lost, but the corresponding NACK is lost. Therefore, we calculate Porph as follows:

Porph = (1− p)× P ′
rbc + p× Pnack (C.1)

where p is packet loss rate along a link.

To assure that orphan packets do not accumulate indefinitely even if fresh packets keep

arriving, we only need to ensure that Porph is less than Ploss, the probability that an orphan

packet will be transmitted.

From Formula B.3, we see that Ploss is minimum when k = 1, that is, min(Ploss) =

(1−P ′

rbc
)Pnack

Pnack+P ′

rbc

. To guarantee that Porph is less than Ploss, we only need Porph < min(Ploss),

that is,

(1− p)× P ′
rbc + p× Pnack <

(1− P ′
rbc)Pnack

Pnack + P ′
rbc

Solving this inequality, we get p < 49.14%.

171

More intuitively, Figure C.1 shows the relationship between Porph and min(Ploss), as p

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P
orph

min(P
loss

)

Figure C.1: Porph vs. min(Ploss)

changes.

2

172

APPENDIX D

LSRP: PROOF OF LEMMA 1

In this appendix, we present the proof sketch for Lemma 1. Due to limitation of space,

the complete proofs of all the theorems and lemmas in Chapter 6 are relegated to [16].

Lemma 1: Starting at an arbitrary state q0 where there is only one perturbed region,

every system computation reaches a state in L within O(P (q0)) time, and the range of

contamination is O(P (q0)).

Proof : Let p be the perturbation size P (q0) for the system at state q0.

Let Rp be the perturbed region.25 The set of nodes that are not in Rp is called the healthy

region Rh
26. A node i in Rp is called a perturbed boundary node if it has a neighbor j that

is in Rh, and node j is called a healthy boundary node correspondingly. Given Rp and Rh

at q0, we let Pd = max{hops(i, Rh) : i ∈ Rp}, where hops(i, Rh) = min{hops(i, j, G′) :

j ∈ Rh} and hops(i, j, G′) = the number of hops in the shortest path between nodes i and

j in G′.

There are three major variables (i.e., d.i, p.i, and ghost.i) maintained at each node i in

the system. According to the protocol, the corruption of p.i at node i does not contami-

nate any neighbor j of i, therefore the corruption of p.i at any node i does not propagate.

25In shortest path routing, the number of nodes in the perturbed region is equal to P (q0).
26The subgraph of G on Rh can be disconnected.

173

However, the corruption of d.i or ghost.i at i can contaminate the neighbors of i, thus it

can propagate. Since the corruption of d.i is more complicated (we can see this later in the

proof) than that of ghost.i, we use it as the major theme leading the proof here. (Moreover,

the effect of the corruption of mirror variables is the same as the corruption of ghost.i, ex-

cept that the former adds constant factor Isyn to the asymptotic expression of the theorems

in Chapter 6. Thus, for simplicity of presentation, we skip it here.)

When a single perturbed region occurs in the system, there are two cases: (i) the “dis-

tance value” of every perturbed node is no less than what all the healthy boundary nodes

can offer, i.e., (∀i, j : i ∈ Rp ∧ j is a healthy boundary node⇒ d.i ≥ d.j + min{w.j.k :

k ∈ Rp ∧ (j, k) ∈ E ′}); (ii) the “distance value” of some or all perturbed nodes is less than

what some or all healthy boundary nodes can offer. Due to limitation of space, here we

only present the proof sketch for case (i). (The proof method for case (ii) is similar, and the

proof is relegated to [16].)

For case (i), here we only consider the subcase where there exists at least one perturbed

node l where d.l is corrupted at state q0. Then, it is possible that there exists no healthy

boundary node that is a source of fault propagation at state q0; it is also possible that there

exist some healthy boundary nodes that are sources of fault propagation at q0. Due to

limitation of space, we only analyze the latter case here.

When there are some non-root healthy boundary nodes that are sources of fault prop-

agation at state q0, containment waves can be initiated at those nodes, and the perturbed

region Rp can expand outward to the healthy region Rh. But this expansion is bounded.

Also, here we only consider the case where there is only one such non-root healthy bound-

ary node i that is a source of fault propagation at q0 (see Figure D.1). Then, the parent of

i must be perturbed at q0 (i.e., p.i ∈ Rp) because otherwise node i would not be a source

174

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

j

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

p

i

k

SCW
CW

R

(a)

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������

j

1

��
��
��
��
��
��
��

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

k

i

SCW
CW

k

k’

Rp

(b)

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

j

i

O(p)

Rp

(c)

Figure D.1: The “distance value” of every perturbed node is no less than what all the
healthy boundary nodes can offer, and there are some sources of fault propagation. In the
figure, SW , CW , and SCW stand for stabilization wave, containment wave, and super-
containment wave respectively.

of fault propagation. Action C1 is the only action that is enabled at node i at q0, and the

execution of C1 at i will initiate a containment wave that is propagated toward the subtree

rooted at node i, by the execution of action C1 at every node involved in this containment

wave. Thus, the perturbed region Rp expands outward to the healthy region Rh. However,

this containment wave will not propagate unbounded because of the following facts:

(I) If action C2 has not been executed at node i before the moment that is one round after

all the nodes in S, the original set of perturbed nodes at state q0, have converged to

a legitimate state (see Figure D.1(a)(b)), the farthest distance (in terms of hops) the

containment wave can propagate is O(p), and the system reaches a state in L in O(p)

amount of time. The reasoning is as follows.

(a) Starting at state q0, it takes O(p) amount of time for all the nodes in S to con-

verge to a legitimate state.

We first show that starting at state q0, the system reaches a state q′0where (∀k :

k ∈ V ′ ⇒ ¬ghost.i ∧ ¬SP.k) holds within O(p) amount of time. The reason

175

is as follows. Because the “distance value” of every perturbed node is no less

than that of all healthy boundary nodes, no action except C1 can be enabled at a

healthy boundary node i′ that is not a source of fault propagation at q0, but the

execution of C1 at i′ can only add i′ to the containment tree rooted at another

healthy boundary node that is a source of fault propagation at state q0 (in this

case, it is node i). As for node i, no action except C1 can be enabled at it. But

the execution of C1 at i only adds node i to a containment tree rooted at itself.

Before action C2 is executed at node i, actions S2 that can set i as the parent of

its neighbor j in S will not be executed at j because ghost.i = true. Therefore,

no node in S will be involved in the containment wave initiated at i, and actions

executed at nodes in (V \ S) will not affect actions executed at nodes in S in

terms of the growing or shrinking of containment trees in S. Thus, the proof

follows that for Theorem 2 too. As shown in the proof for Theorem 2, the

number of non-empty containment trees reaches 0 within O(p) amount of time.

When all the containment trees are empty, the system is at a state q ′
0 where

(∀k : k ∈ V ′ ⇒ ¬ghost.i ∧ ¬SP.k) holds.

We can see that, starting at state q′0, the set of nodes in S converge to a legiti-

mate state within O(pd) amount of time. Let us denote the system state at this

moment as state q1.

Therefore, starting at state q0, the set of nodes in S converge to a legitimate

state within O(p) + O(pd) = O(p) amount of time.

(b) After all the nodes in S converge to a legitimate state q1, the system stabilizes

to a state in L within O(p) amount of time.

176

When all the nodes in S converge to a legitimate state q1, and action C2 has

not been executed at node i, action S2 will be executed at i. And a super-

containment wave will propagate from i downward to nodes in the containment

tree CTi, by the execution of action SC at those nodes. There are two possible

cases here:

• Action C2 has not been executed at any node j in CTi before the super-

containment wave arrives at it (see Figure D.1(a)).

In this case, because the super-containment wave propagates faster than

the containment wave, it will catch up with the containment wave, and sets

the state of every node l in CTi to a legitimate one where ¬ghost.l ∧LH.l

holds.

Because the propagation speeds of different diffusing waves are controlled

by introducing delays in action execution when a node schedules its en-

abled actions, and there is difference between clock rates at different nodes,

dc > α · (dsc + U) should hold in order for the super-containment wave to

catch up with the containment wave. Under this condition, let pcw be the

maximum distance (in terms of the number of hops) that the containment

wave can propagate before the super-containment wave catches up with

it. Then (U + dsc)pcw + O(p) = (L + dc)pcw holds, which implies that

pcw = O(p)
dc−dsc+L−U

= O(p).

Therefore, the range of contamination and the time taken for the system to

stabilize to a state in L is O(p) in this case.

• Action C2 has already been executed at some node k1 in CTi before the

super-containment wave arrives at it (see Figure D.1(b)).

177

In two cases will this happen: first, before the super-containment wave ar-

rives at k1, the containment wave has reached the leaf nodes of the subtree

rooted at k1 in CTi; second, there exists a node k in the subtree rooted at

k1 in CTi such that (∃k′ : k′ ∈ N.k ∧ k′ /∈ CTi ∧ PS.k.k′).

It is easy to see that in either case, the range of contamination is no more

than that in the case where action C2 has not been executed at any node

j in CTi before the super-containment wave arrives at it. Therefore, the

range of contamination is still O(p).

For any node l in CTi where action C2 has been executed before the super-

containment wave reaches it, action S2 will be executed at it within time

proportional to min{hops(l, m, G) : m ∈ CTi∧ the super-containment

wave has reached node m}, which is O(p). And the execution of S2 at l

will set LH.l to true.

We can see that the system stabilizes to a state in L within time O(p) in

this case.

(II) If action C2 has been executed at node i before the moment that is one round after all

the nodes in S (i.e., the original set of perturbed nodes at state q0) have converged to

a legitimate state (see Figure D.1(c)), the farthest distance the containment wave can

propagate is still O(p), and the system reaches a state in L in O(p) amount of time.

The reasoning is as follows.

It is easy to see that the depth of the containment tree CTi is O(p) in this case. Thus

the range of contamination is also O(p).

178

After the execution of C2 at node i, d.l = ∞ for every node l that was in CTi once

and has executed C2. Let us denote the set of these nodes as S ′. It is possible for

some nodes in S ′ to be added to the containment tree of some node j ′ in S, but this

can increase the depth of CTj′ by at most O(p). Therefore, the system will still reach

a state q′0 where all the containment trees are empty within time O(p). And the same

as analyzed before, the system will reach a state in L within time O(p), starting at

state q′0. Therefore, starting at state q′0, the system reaches a state in L within time

O(p).

2

179

BIBLIOGRAPHY

[1] Crossbow technology inc. http://www.xbow.com/.

[2] EmStar: Software for wireless sensor networks. http://cvs.cens.ucla.edu/emstar/.

[3] Karlnet’s turbocell: Enhancing the capabilities of standard 802.11.
http://www.karlnet.com/Documents/turbocellwhitepaper.zip.

[4] Rmase. http://www2.parc.com/isl/groups/era/nest/Rmase/default.html.

[5] Tinyos. http://www.tinyos.net/.

[6] Tmote sky sensor node. http://www.moteiv.com/.

[7] Wireless embedded systems. http://webs.cs.berkeley.edu.

[8] A Lites event traffic trace. http://www.cse.ohio-state.edu/∼zhangho/publications/
Lites-trace.txt, 2003.

[9] Application-oriented networking. http://www.cisco.com/, 2005.

[10] Daniel Aguayo, John Bicket, Sanjit Biswas, Glenn Judd, and Robert Morris. Link-
level measurements from an 802.11b mesh network. In ACM SIGCOMM, pages
121–132, 2004.

[11] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor
networks: A survey. Computer Networks (Elsevier), 38(4):393–422, 2002.

[12] A. Arora, R. Ramnath, E. Ertin, P. Sinha, S. Bapat, V. Naik, V. Kulathumani, Hong-
wei Zhang, H. Cao, M. Sridhara, S. Kumar, N. Seddon, C. Anderson, T. Herman,
N. Trivedi, C. Zhang, M. Gouda, Y. R. Choi, M. Nesterenko, R. Shah, S. Kulka-
rni, M. Aramugam, L. Wang, D. Culler, P. Dutta, C. Sharp, G. Tolle, M. Grimmer,
B. Ferriera, and K. Parker. Exscal: Elements of an extrem scale wireless sensor
network. In RTCSA, 2005.

[13] Anish Arora, Emre Ertin, Rajiv Ramnath, Mikhail Nesterenko, and William Leal.
Kansei: A high-fidelity sensing testbed. IEEE Internet Computing, March 2006.

180

[14] Anish Arora and et al. A Line in the Sand: A wireless sensor network for target
detection, classification, and tracking. Computer Networks (Elsevier), 46(5), 2004.

[15] Anish Arora and Hongwei Zhang. Lsrp: Local stabilization in shortest path routing.
IEEE/ACM Transactions on Networking, June, 2006.

[16] Anish Arora and Hongwei Zhang. Local stabilization in shortest path routing. Tech-
nical Report, OSU-CISRC-7/03-TR45, The Ohio State University (ftp://ftp.cis.ohio-
state.edu/pub/tech-report/2003/TR45.ps), July, 2003.

[17] Baruch Awerbuch, David Holmer, and Herbert Rubens. High throughput route se-
lection in multi-rate ad hoc wireless networks. Technical report, Johns Hopkins
University, 2003.

[18] Yossi Azar, Shay Kutten, and Boaz Patt-Shamir. Distributed error confinement. In
ACM PODC, pages 33–42, 2003.

[19] Sandip Bapat, Vinod Kulathumani, and Anish Arora. Analyzing the yield of exscal, a
large-scale wireless sensor network experiment. In IEEE ICNP, pages 53–62, 2005.

[20] G. Brown, M. Gouda, and R. Miller. Block acknowledgment: Redesigning the win-
dow protocol. In ACM SIGCOMM, pages 128–134, 1989.

[21] Alberto Cerpa, Jennifer Wong, Miodrag Potkonjak, and Deborah Estrin. Temporal
properties of low power wireless links: Modeling and implications on multi-hop
routing. In ACM MobiHoc, pages 414–425, 2005.

[22] Ian Chakeres and Elizabeth Belding-Royer. The utility of hello messages for deter-
mining link connectivity. In WPMC, 2002.

[23] Prashant Chandra, Yang hua Chu, Allan Fisher, Jun Gao, Corey Kosak, T.S. Eugene
Ng, Peter Steenkiste, Eduardo Takahashi, and Hui Zhang. Darwin: Customizable
resource management for value-added network services. In ICNP, 1998.

[24] Young-Ri Choi, Mohamed Gouda, Hongwei Zhang, and Anish Arora. Stabilization
of grid routing in sensor networks. AIAA Journal of Aerospace Computing, Infor-
mation, and Communication, to appear.

[25] Maurice Chu, Horst Haussecker, and Feng Zhao. Scalable information-driven sensor
querying and routing for ad hoc heterogeneous sensor networks. Technical Report
P2001-10113, PARC, 2001.

[26] David Clark. The design philosophy of the DARPA internet protocols. In ACM
SIGCOMM, 1988.

181

[27] Douglas S. J. De Couto, Daniel Aguayo, John Bicket, and Robert Morris. A high-
throughput path metric for multi-hop wireless routing. In ACM MobiCom, pages
134–146, 2003.

[28] Amol Deshpande, Carlos Guestrin, Wei Hong, and Samuel Madden. Exploiting cor-
related attributes in acquisitional query processing. Technical report, Intel Research
- Berkeley, 2004.

[29] Amol Deshpande, Carlos Guestrin, Samuel Madden, Joseph Hellerstein, and Wei
Hong. Model-driven data acquisition in sensor networks. In VLDB, 2004.

[30] Richard Draves, Jitendra Padhye, and Brian Zill. Comparison of routing metrics for
static multi-hop wireless networks. In ACM SIGCOMM, pages 133–144, 2004.

[31] Richard Draves, Jitendra Padhye, and Brian Zill. Routing in multi-radio, multi-hop
wireless mesh networks. In ACM MobiCom, pages 114–128, 2004.

[32] Cheng Tien Ee and Ruzena Bajcsy. Congestion control and fairness for many-to-one
routing in sensor networks. In ACM SenSys, pages 148–161, 2004.

[33] Cheng Tien Ee and Ruzena Bajcsy. Congestion control and fairness for many-to-one
routing in sensor networks. In ACM SenSys, pages 134–147, 2004.

[34] Kai-Wei Fan, Sha Liu, and Prasun Sinha. On the potential of structure-free data
aggregation in sensor networks. In IEEE INFOCOM, 2006.

[35] Jonathan Follows and Detlef Straeten. Application-Driven Networking: Concepts
and Architecture for Policy-based Systems. IBM, December 1999.

[36] J. J. Garcia-Lunes-Aceves. Loop-free routing using diffusing computations.
IEEE/ACM Transactions on Networking, 1(1):130–141, 1993.

[37] J. J. Garcia-Lunes-Aceves and Shree Murthy. A path-finding algorithm for loop-free
routing. IEEE/ACM Transactions on Networking, 5(1):148–160, 1997.

[38] Sukumar Ghosh, Arobinda Gupta, Ted Herman, and Sriram V. Pemmaraju. Fault-
containing self-stabilizing algorithms. In ACM PODC, pages 45–54, 1996.

[39] Sukumar Ghosh and Xin He. Scalable self-stabilization. In IEEE ICDCS’WSS,
pages 18–24, 1999.

[40] Omprakash Gnawali, Mark Yarvis, John Heidemann, and Ramesh Govindan. In-
teraction of retransmission, blacklisting, and routing metrics for reliability in sensor
network routing. In IEEE SECON, pages 34–43, 2004.

[41] Mohamed G. Gouda. Elements of Network Protocol Design. John Wiley and Sons,
1998.

182

[42] Tian He, John Stankovic, Chenyang Lu, and Tarek Abdelzaher. SPEED: A stateless
protocol for real-time communication in sensor networks. In IEEE ICDCS, 2003.

[43] Joseph Hellerstein, Wei Hong, Samuel Madden, and Kyle Stanek. Beyond average:
Toward sophisticated sensing with queries. In IPSN, 2003.

[44] Frederick Hillier and Gerald Lieberman. Introduction to Operations Research.
McGraw-Hill, 2001.

[45] Myles Hollander. Nonparametric statistical methods. Wiley, 1999.

[46] Christian Huitema. Routing in the Internet. Prentice-Hall, Inc., 1999.

[47] Bret Hull, Kyle Jamieson, and Hari Balakrishnan. Mitigating congestion in wireless
sensor networks. In ACM SenSys, pages 134–147, 2004.

[48] IBM. Application Driven Networking: Class of Service in IP, Ethernet and ATM
Networks. IBM, August 1999.

[49] V. Jacobson. Congestion avoidance and control. In ACM SIGCOMM, pages 314–
329, 1988.

[50] Ashish Jain, Marco Gruteser, Mike Neufeld, and Dirk Grunwald. Benefits of packet
aggregation in ad-hoc wireless network. Technical Report CU-CS-960-03, Univer-
sity of Colorado at Boulder, August 2003.

[51] Raj Jain. The Art of Computer Systems Performance Analysis. John Wiley & Sons,
Inc., 1991.

[52] Mahesh Jayaram and George Varghese. Crash failures can drive protocols to arbi-
trary states. In ACM PODC, pages 247 – 256, 1996.

[53] Brad Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing for wireless
networks. In ACM MobiCom, pages 243–254, 2000.

[54] Vikas Kawadia and P. R. Kumar. Principles and protocols for power control in ad
hoc networks. IEEE Journal on Selected Areas in Communications, 23(5):76–88,
2005.

[55] Almudena Konrad, Ben Zhao, and Anthony Joseph. A markov-based channel model
algorithm for wireless networks. Wireless Networks, 9:189–199, 2003.

[56] David Kotz, Calvin Newport, and Chip Elliott. The mistaken axioms of wireless-
network research. Technical Report TR2003-467, Dartmouth College, Computer
Science, July 2003.

183

[57] Rajnish Kumar, Matthew Wolenetz, Bikash Agarwalla, JunSuk Shin, Phillip Hutto,
Arnab Paul, and Umakishore Ramachandran. DFuse: A framework for distributed
data fusion. In ACM SenSys, 2003.

[58] Craig Labovitz, Ahba Ahuja, Roger Wattenhofer, and Srinivasan Venkatachary. The
impact of internet policy and topology on delayed routing convergence. In IEEE
INFOCOM, pages 537–546, 2001.

[59] Craig Labovitz, G. Robert Malan, and Farnam Jahanian. Origins of internet routing
instability. In IEEE INFOCOM, pages 218–226, 1999.

[60] Seungjoon Lee, Bobby Bhattacharjee, and Suman Banerjee. Efficient geographic
routing in multihop wireless networks. In ACM MobiHoc, pages 230–241, 2005.

[61] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. Tossim: Accurate and
scalable simulation of entire tinyos applications. In ACM SenSys, pages 126–137,
2003.

[62] J. Li, C. Blake, D.S.J. De Couto, H.I. Lee, and R. Morris. Capacity of ad hoc wireless
networks. In ACM MobiCom, pages 61–69, 2001.

[63] Xin Li, Young Jin Kim, Ramesh Govindan, and Wei Hong. Multi-dimensional range
queries in sensor networks. In ACM SenSys, 2003.

[64] Juan Liu, Feng Zhao, and Dragan Petrovic. Information-directed routing in ad hoc
sensor networks. In ACM WSNA, 2003.

[65] Ting Liu and Margaret Martonosi. Impala: A middleware system for managing
autonomic, parallel sensor systems. In ACM PPoPP, 2003.

[66] Henrik Lundgren, Erik Nordstrom, and Christian Tschudin. Coping with communi-
cation gray zones in ieee 802.11b based ad hoc networks. In ACM WoWMoM, pages
49–55, 2002.

[67] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., 1996.

[68] Samuel Madden, Michael Franklin, and Joseph Hellerstein. Tinydb: An acqui-
sitional query processing system for sensor systems. In ACM Transactions on
Database Systems, 2004.

[69] Samuel Madden, Michael Franklin, Joseph Hellerstein, and Wei Hong. TAG: a tiny
aggregation service for ad-hoc sensor networks. In OSDI, 2002.

[70] M. Maroti. The directed flood routing framework. In Technical report, Vanderbilt
University, ISIS-04-502, 2004.

184

[71] Klara Nahrstedt, Dongyan Xu, Duangdao Wichadakul, and Baochun Li. Qos-aware
middleware for ubiquitous and heterogeneous environments. IEEE Communications
Magazine, 2001.

[72] Suman Nath, Phillip Gibbons, Srinivasan Seshan, and Zachary Anderson. Synopsis
diffusion for robust aggregation in sensor networks. In ACM SenSys, 2004.

[73] Mikhail Nesterenko and Anish Arora. Local tolerance to unbounded byzantine
faults. In IEEE SRDS, pages 22–31, 2002.

[74] Charles E. Perkins. Ad Hoc Networking. Addison Wesley, 2001.

[75] Dragan Petrove, Rahul Shah, Kannan Ramchandran, and Jan Rabaey. Data funnel-
ing: Routing with aggregation and compression for wireless sensor networks. In
ICC Worshops, 2003.

[76] Peter Pietzuch. Path optimization in stream-based overlay networks. Technical Re-
port TR-26-04, Harvard University, 2004.

[77] Joseph Polastre, Jonathan Hui, Philip Levis, Jerry Zhao, David Culler, Scott Shenker,
and Ion Stoica. A unifying link abstraction for wireless sensor networks. In ACM
SenSys, pages 76–89, 2005.

[78] Joseph Polatre, Jason Hill, and David Culler. Versatile low power media access for
wireless sensor networks. In ACM SenSys, 2004.

[79] Bernd Reuther, Dirk Henrici, and Markus Hillenbrand. DANCE: Dynamic applica-
tion oriented network services. In EUROMICRO, 2004.

[80] Loren Rittle, Venu Vasudevan, Nitya Narasimhan, and Chen Jia. MUSE: Middle-
ware for using sensors effectively. In INSS, 2005.

[81] Y. Sankarasubramaniam, O. Akan, and I. Akyildiz. ESRT: Event-to-sink reliable
transport in wireless sensor networks. In ACM MobiHoc, pages 177–188, 2003.

[82] Karim Seada, Ahmed Helmy, and Ramesh Govindan. On the effect of localization
errors on geographic face routing in sensor networks. In IEEE-ACM IPSN, 2004.

[83] Karim Seada, Marco Zuniga, Ahmed Helmy, and Bhaskar Krishnamacari. Energy-
efficient forwarding strategies for geographic routing in lossy wireless sensor net-
works. In ACM SenSys, 2004.

[84] Aman Shaikh, Lampros Kalampoukas, Rohit Dube, and Anujan Varma. Routing
stability in congested networks: Experimentation and analysis. In ACM SIGCOMM,
pages 163–174, 2000.

185

[85] P. Sinha, N. Venkitaraman, R. Sivakumar, and V. Bharghavan. WTCP: a reliable
transport protocol for wireless wide-area networks. In ACM MobiCom, pages 231–
241, 1999.

[86] F. Stann and J. Heidemann. RMST: Reliable data transport in sensor networks. In
IEEE SNPA, pages 102–112, 2003.

[87] K. Sundaresan, V. Anantharaman, H.Y. Hsieh, and R. Sivakumar. ATP: A reliable
transport protocol for ad-hoc networks. In ACM MobiHoc, pages 64–75, 2003.

[88] David L. Tennenhouse and David J. Wetherall. Towards an ative network architec-
ture. Computer Communication Review, 26(2), 1996.

[89] C.Y. Wan, A. Campbell, and L. Krishnamurthy. PSFQ: A reliable transport protocol
for wireless sensor networks. In ACM WSNA, pages 1–11, 2002.

[90] C.Y. Wan, S. Eisenman, and A. Campbell. CODA: Congestion detection and avoid-
ance in sensor networks. In ACM SenSys, pages 266–279, 2003.

[91] Hong Shen Wang and Nader Moayeri. Finite-state markov channel - a useful model
for radio communication channels. IEEE Transactions on Vehicular Technology,
44(1):163–171, 1995.

[92] Lan Wang, Xiaoliang Zhao, Dan Pei, Randy Bush, Daniel Massey, Allison Mankin,
S. Felix Wu, and Lixia Zhang. Observation and analysis of BGP behavior under
stress. In ACM SIGCOMM Internet Measurement Workshop, pages 138–147, 2002.

[93] Andreas Willig. A new class of packet- and bit-level models for wireless channels.
In IEEE PIMRC, 2002.

[94] Andreas Willig. A new class of packet- and bit-level models for wireless channels.
In IEEE PIMRC, 2002.

[95] A. Woo, T. Tong, and D. Culler. Taming the underlying challenges of reliable multi-
hop routing in sensor networks. In ACM SenSys, pages 14–27, 2003.

[96] Alec Woo, Sam Madden, and Ramesh Govindan. Networking support for query
processing in sensor networks. Communications of the ACM, 47(6):47–52, 2004.

[97] Yong Yao and Johannes Gehrke. The cougar approach to in-network query process-
ing in sensor networks. In ACM SIGMOD, 2002.

[98] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient MAC protocol for wireless
sensor networks. In IEEE InfoCom, pages 1567–1576, 2002.

[99] Hongwei Zhang and Anish Arora. GS3: Scalable self-configuration and self-healing
in wireless sensor networks. Computer Networks (Elsevier), 43(4):459–480, 2003.

186

[100] Hongwei Zhang, Anish Arora, Young Ri Choi, and Mohamed Gouda. Reliable
bursty convergecast in wireless sensor networks. In ACM MobiHoc, 2005.

[101] Hongwei Zhang, Anish Arora, and Prasun Sinha. Learn on the fly: Quiescent rout-
ing in sensor network backbones. Technical Report OSU-CISRC-7/05-TR48, The
Ohio State University (http://www.cse.ohio-state.edu/∼zhangho/publications/LOF-
TR.pdf), 2005.

[102] Hongwei Zhang, Anish Arora, and Prasun Sinha. Learn on the fly: Data-driven link
estimation and routing in sensor network backbones. In IEEE INFOCOM, 2006.

[103] Hongwei Zhang, Loren J. Rittle, and Anish Arora. Application-adaptive messag-
ing in sensor networks. Technical Report OSU-CISRC-6/06-TR63, The Ohio State
University, 2006.

[104] Hongwei Zhang, Lifeng Sang, and Anish Arora. Link estimation and routing in
sensor networks: Beacon-based or data-driven? Technical Report OSU-CISRC-
6/06-TR64, The Ohio State University, 2006.

[105] L. Zhang. Why TCP timers don’t work well. In ACM SIGCOMM, pages 397–405,
1986.

[106] J. Zhao and R. Govindan. Understanding packet delivery performance in dense
wireless sensor networks. In ACM SenSys, pages 1–13, 2003.

[107] Jerry Zhao and Ramesh Govindan. Understanding packet delivery performance in
dense wireless sensor networks. In ACM SenSys, pages 1–13, 2003.

187

Index

constrained resource, ii

application diversity, ii, 4
application-adaptive scheduling, 14, 19, 62, 81
application-adaptive structuring, 14, 17
architecture, 6
ASC, ii, 14, 15, 19, 62, 81
AST, ii, 14, 15, 17

complex faults, 5
constrained resource, 3

data-driven adaptation, 45
data-driven link estimation and routing, 23, 25
differentiated contention control, 98
diffusing wave, 133
distance-vector protocol, 130
dynamic wireless link, ii, 1

ELD, 36, 37
exploratory neighbor sampling, 49

initial sampling, 44

large scale, 5
link estimation, 7
local stabilization, iii, 10, 119, 123, 127
LOF, ii, 17, 23, 42
LSRP, iii, 10, 118, 136

messaging, ii, 1

packet packing, iii, 62
packing-oriented scheduling, 7, 63

RBC, iii, 81, 92

188

reliable and real-time transport, 8, 81
routing, 7, 119

sample size, 39
sensornet, 1
SMA, ii, 13, 15, 23

timer management, 100
TLR, ii, 14–16, 23
traffic-adaptive link estimation and routing, 14, 16, 23

window-less block acknowledgment, 93

189

