
1

CHAPTER 35

ELEMENTS OF SENSORNET TESTBED DESIGN

Divya Sakamuri�, Hongwei Zhang♦

�Ford Motor Company, dsakamuri@gmail.com
♦

Department of Computer Science, Wayne State University, hzhang@cs.wayne.edu

Abstract

High fidelity experimental facilities play an important role in evaluating new

sensornet protocols. In this chapter we will discuss the important elements of

designing and implementing high fidelity sensornet testbeds, and we present in

detail the elements of NetEye – a testbed with desirable features such as high-

fidelity wireless environment, cost-effective hardware, web interface, and

software tools to enable users to run potentially complex experiments. For

instance, we will examine in detail the hardware details, software systems, and

implementation (e.g., interference control) of NetEye.

1. Introduction

The research of wireless sensor networks (which we refer to as sensornets

hereafter) has become prosperous in recent years because of their potential

applications in important domains, such as environmental monitoring,

surveillance, and disaster recovery. Wireless, sensor network scenarios are

expected to grow rapidly at the edge of the Internet. These systems will also be

increasingly used in pervasive computing applications where the Internet enables

monitoring and interaction with every aspect of the physical world. Over the past

few decades, the Internet has evolved into a global network supporting a variety

of computing and telecommunication applications. In the future the Internet must

also respond to the many emerging requirements such as those posed by wireless

sensor networks.

In order to help build the next generation Internet which will include wireless

and sensor network devices, researchers need a vehicle to drive their next ideas.

Researchers are investigating next generation network architecture and protocols,

but they need a facility to evaluate them. The evaluation can be done using

analytical modeling, simulation or high-fidelity measurements.

Analytical modeling provides insights into the effects of various parameters

and their interactions. In spite of its flexibility, analytical modeling is used

somewhat less often in sensornet research compared to simulation or

measurements. This is partly due to the complexity and tractability of analytical

modeling. Another disadvantage of analytical modeling is its often simplified

mathematical assumptions which may not capture all the complex behaviors of

sensornets.

2

Simulation is a replication of reality. When applied to the study of research

design, simulations can serve as a suitable substitute for constructing and

understanding field research. Simulations are easier to set up than physical

experiments, are easy to repeat and modify, and are highly portable. Nonetheless,

most existing simulators are unable to model many essential characteristics of the

“real world.” because of their simplifying assumptions. Therefore, Simulations

with simplified assumptions may not produce accurate results.

In view of the limitations of simulated environments, accordingly, wireless

and sensor network experimental facilities are very important to the research

community. When building high-fidelity experimental facilities, the following

characteristics are desirable:

− Realistic environments which are not too sterile;

− Simple programming and experimental interface;

− Flexible, comprehensive experiment control;

− Scale in terms of devices;

− Mix of devices providing heterogeneity.

In the following sections we will discuss in detail the design issues, the

architecture, and the implementation of sensornet testbeds that embody the above

characteristics.

2. Design issues for wireless and sensor network testbeds

To meet the goals of any deployment, proper design is the key factor. The testbed

design should be done in such a way that the users can rely on the results of the

facility. To obtain accurate results, the testbed should provide a controlled,

realistic environment. Moreover, the testbed should be easy to use.

The deployment of a testbed with self-forming networks of wireless devices

and sensor network devices requires a lot of design issues to be considered,

among which are the following issues:

− Interference control

− Topology control

− Resource management

− Health monitoring necessity and requirements

− Provision of user tools

− Provision of administrative tools

2.1. Interference control

For testbeds to accurately generate results, an interference controlled environment

is necessary. The wireless network devices are referred to by IEEE as 802.11

devices and the wireless sensor network devices as 802.15.4. One of the

important concerns when building a wireless sensor network testbed is its

3

coexistence with other wireless networks. Coexistence can be said to be “the

ability of one system to perform a certain task in a given shared environment

where other systems may or may not be using same set of rules”. There will be

many scenarios when different radios will operate in the same place and same

time explosively growing the Industrial, Scientific and Medical (ISM) band

usage. 802.15.4 radios share the 2.4 GHz ISB band with lots of other wireless

devices like 802.11, Bluetooth headsets, 2.4 GHz cordless phones, microwaves,

etc.

In some testbeds, deployment of both wireless and wireless sensor networks

may be necessary. In such a situation 802.15.4 networks and 802.11 networks

should operate simultaneously. Although the unlicensed ISB bands do not require

strict coordination between the deployed devices, they do not permit all forms of

behavior between the devices. The devices might interfere with each other and

there could be loss of data and performance degradation.

To understand the potential problem, the available channels and RF spectrums

for the 802.11 and 802.15.4 standards are shown in the following table and

figure.

Table 2.1: 2.4GHz ISM Band (IEEE 802.15.4 and IEEE 802.11 channels)

There are 11 channels in 802.11 with only 3 non-overlapping channels. Each

channel has a 22 MHz frequency range. There are 16 channels in 802.15.4 with a

3 MHz frequency range and each channel is 5 MHz apart.

4

Figure 2.1: RF channel spectrum of IEEE 801.15.4/ZigBee and IEEE 802.11b / WiFi

 Since the RF channels in 802.11 and 802.15.4 overlap there is a cause for

concern. Even the beacon packets from the 802.11 access point cause

considerable interference. To reduce the amount of interference from 802.11

devices, a channel on 802.15.4 that does not interfere with any 802.11 channel

should be used.

From Figure 2.1, we can observe the RF spectrum of channels 15-24 of 802.15.4

overlap with the channels 1-11 of 802.11. This shows that channels 25 and 26 in

the 802.15.4 standard are interference free from any channels of the 802.11.

2.2. Topology control

A few of the important topology design considerations are to choose which place

to use, which equipment to use, how the devices should be placed on the chosen

equipment, etc.

Once the sensor and wireless devices are chosen according to the

requirements the physical and radio properties of the devices should be studied.

The equipment to place these devices should be selected appropriately. For

example wood can be chosen to place the devices as it won’t conduct. The sensor

devices will have large transmission ranges indoors. Experiments should be done

appropriately to set the transmission range to form a multi-hop network.

Attenuator can be used to reduce the communications over large range.

5

2.3. Resource Management

Resource allocation and management is a key factor for any shared computing

and communication infrastructure. Resource allocation should provide fairness,

efficiency, and reasonable performance for each scheduled task while honoring

federated control. The challenge is to schedule all the tasks contending to use the

nodes at the particular time. Some services using the testbed need guaranteed

allocation of resources but some services may need just best-effort service

model.

The shared testbed can either perform strict space sharing where individual

jobs control a subset of nodes or best-effort scheduling where individual jobs

receive resources inversely proportional to the number of currently competing

jobs. The amount of resources that can be reserved by an application, the relative

priority of best-effort applications, and the proportion of global resources subject

to admission control are all matters of the resource allocation policy implemented

in a particular testbed.

One of the important tasks of the resource allocation mechanism

implemented is to allow efficient usage of the resources available. It should be

ensured that the users only acquire only as much resources as they truly need and

for only the period of time they really need them. Renewing of the resource

privileges every few minutes should be implemented to ensure the resources

usage efficiently.

Resource allocation algorithms implemented in the shared system, like a

testbed should satisfy the following requirements:

a) Heterogeneous user base

The testbed can be used for a simple network experiment or a complex

system architecture research. The resource allocation algorithm should

provide some baseline guarantee of the resource availability to both kinds

of users.

b) Policy Implementation

The resource allocation should implement a appropriate policy to

guarantee resources to the individual users and applications. The policy

can either share equal resources for all the users or allocate more

resources to certain type of users. If the first type is implemented then

many of the resources will be wasted if the resources are not being used

by them in a given particular time. The second method lacks fairness; a

normal user may or may not get the resources he wants to use.

c) Resource Isolation

Once the policy mentioned in the above section is implemented, there

should be resource isolation. Virtualization is one technique that can be

used to provide isolation. Resource allocation and isolation are enforced

on a per node basis.

d) Security and Authentication

6

 Security is a primary requirement for any resource allocation

infrastructure. Users must have a secure mechanism for authenticating

themselves to the system and for receiving the resources that they are

entitled to. Users should not be allowed to consume more than their

allocated share of resources denying other users from using the system.

e) Separation of Policy and Mechanism

 Following two kinds of policies, best effort or guaranteed allocation,

there should not be any fixed constraint on which user gets which

resources, priorities of the jobs, etc. Basic mandatory classes of resource

principles and the capabilities types should be defined which will take

care that the resources are allocated within the authorized usage limits.

f) Providing Proper Incentives

The enabled resource allocation policies should ensure user

commitment to the continued maintenance and growth of the

infrastructure and promote user consumption of only as many resources as

they require, especially during times of peak demand.

2.4. Health Monitoring Necessity and Requirements

A health monitoring service should be considered important while designing a

wireless and sensor network testbed. The testbed will contain lots of hardware

devices. It is natural for faults to occur in the middle of the experiment affecting

the quality of the data. The fault can be due to the relatively unreliable wireless

sensor network devices, software faults, or incorrect configuration of the devices.

The faults can be categorized as follows:

a) Device Failure

 Device failure, which the name itself suggests may be due to hardware

failure or software fault that fails the device completely. There will be

many hardware devices that might fail. The failure might be in the

wireless sensor device, wireless device, etc. It depends on the deployed

devices in the particular testbed.

b) Software Defects

Software defects and errors might corrupt a device or a network

interface. This might be due to a bug in the code or using wrongly

configured software.

c) Fault on the Network Interface

Communication between the devices might also fail due to driver

failure, an unplugged Ethernet cable, detached cards, etc. A situation

where all the network interfaces fail, resulting in a detached forest of

devices, is also a possible. These faults are important to be diagnosed for

both the users and the administrators of the testbed.

7

There are several important requirements to be considered while developing

a health monitoring service since both the administrators and users use this tool.

The requirements are as follows:

a) Correctness and Reliability

The monitoring results obtained should be correct. Incorrect data leads

to misuse of the testbed facility. The status of each and every resource in

the network should be reliably obtained. The monitoring service should be

reliable in the manner that it should not be affected by the experiments

scheduled on the testbed or the communication procedures. If this

happens then the monitoring results might be incorrect.

b) Efficiency

The monitoring application should be efficient. This means it should not

consume lots of time and lots of testbed resources. It should be efficient

enough to monitor using less time, few messages, and fewer resources.

c) Independent and Adaptable

A testbed runs with lots of hardware devices. Hardware devices do not

last forever; they might be replaced due to several reasons. The health

monitoring code should be independent of all such changes and should

adapt to any replacements on the testbed. It should be adaptable even

when the network devices, interfaces, and the configuration changes with

very little effort.

d) Availability

Monitored results should be available to the users and administrators in

real time. To accommodate this requirement, health monitoring code

should be automated to run periodically or it should be flexible to even

run on demand. The results should be displayed on the GUI for the users

and the administrators.

e) Handling Heterogeneity

A wireless and wireless sensor network testbeds may have many

different devices with different capabilities and limitations. The health

monitoring application should be capable enough to monitor the status of

different hardware components like wireless devices, sensor network

devices, Ethernets, embedded Linux systems, etc.

2.5. Provision of user tools

The kind of user tools to be provided to the user using the testbed is another

important design decision to be made. The tools should be very user friendly,

flexible for the use; and provide the user with full control on his experiment. A

graphical user interface should be provided to each user for easy access and

control of his experiments. The interface should also be remotely available.

Ideally, the sensor network testbed GUI should have the necessary tools to

perform the following operations:

8

a) Tool for registering as a new user

New users should be able to register into the testbed for doing their

experiments. The users should be given a form to fill in and the

administrator should check the accuracy of the information. Once the

validation of the user information is done, he should be given access to

the testbed with appropriate privileges. This method provides an easy way

for both the users and administrators.

b) Tool for scheduling an experiment

The user, once provided authentication, should be able to schedule the

nodes for his experiment. The nodes should be assigned according to the

resource allocation algorithm implemented in the testbed. The algorithm

can either be best-effort access or guaranteed access to the nodes. The

user can select the start time for his experiment and also the duration to

run his program.

c) Tool for knowing the job status

The user will always want to know the status of his scheduled

experiment. The status should be communicated to the user through a GUI

interface. This increases the user trust on the deployed testbed. Also

implementing the necessary security mechanisms (the user should view

only his jobs) is appropriate.

d) Tool for canceling the experiment

The testbed design should be done in such a way that it should save the

resources whenever possible. There should be a provision to cancel the

scheduled experiment at any moment. This saves lots of resources if the

user has scheduled a wrong experiment, or on the wrong nodes that he

does not want to use. Another advantage is if the user has specified a

wrong duration, say 100 minutes instead of 10 minutes, it is not a good

idea to wait for 100 minutes when the user really does not want to.

e) Tool for injection of real time data

The user might want to inject the data into the wireless or sensor

devices when necessary. It might be any time during the experiment (real

time). A GUI interface should allow the user to inject his data into the

appropriate nodes when necessary. This injection should be abstract

enough not to interfere with other nodes running different experiments

and the data logging facility.

f) Tool for monitoring the health status of the nodes

To provide the user with up-to-date information about the nodes, a

health monitoring service is necessary. If the user checks the health of the

node often while the job is in process he can determine the quality and

correctness of the output data. If the node is up and running before the job

and after the job too, then if is less likely that the produced result is not

correct. If the node is running before the job and if it fails in the middle

and still gives some results, the users will know the result is not accurate.

9

Through the health monitoring tool, users can also know the job statistics

on a particular testbed.

g) Provision to collect the results

The job of a testbed is not done with experiment scheduling, resource

allocating, health monitoring, etc. It has to provide the results to the users

for analysis. A GUI should provide the user with the link to collect his

experimental data, errors if any to analyze.

With all the above facilities provided and running, a testbed provides a

realistic, flexible, easy to use environment to the users. Such testbed provisioning

is of high importance to the research community as it eliminates most of the

disadvantages of simulated environments.

2.6. Provision of administrative tools

Administrative tools are necessary for maintenance of the testbed. Different

kinds of administrative tools can be developed according to the requirements.

The following explained administrative tools are very important in any testbed.

a) Creating New Users

Only the administrators should have privileges to create new users.

Administrators should have a handy tool to add the user into the system.

This helps to reduce the manual work of the administrators.

b) Health Monitoring as an Administrative Tool

The health monitor serves both as an administrator as well as a user

tool.For administrators it is to help maintain the testbed. Through this

service, administrators will easily know the nodes that are down and

fixing the node will be easier. This way because the administrators do not

have to go and check each node manually in such a large facility.

3. Survey of existing testbeds

The setting up of different wired, wireless and sensor network testbeds is

growing in fast pace. A few of the important testbeds in United States are listed

in the following table:

Testbed Name Year Establishment

Kansei 2004 The Ohio State University

Motelab 2004 Harvard University

10

SensorNet 2005 Intel Berkeley Research

Labs

Orbit 2005 Rutgers(WINLAB), Columbia,

and Princeton, Lucent Bell Labs,

IBM Research and Thomson

Emulab 2002 University of Utah

Planetlab 2002 Berkeley, Intel Research, MIT,

Washington, Rice, Princeton,

Columbia, Duke, Utah, HP

Table 3.1: Testbeds detail chart

3.1. Kansei

The Kansei Testbed at Ohio State University was developed to provide sensing

at scale. The Kansei testbed consists of stationary array with 210 nodes (XSM

and Stargates) on a rectangular 15X14 rectangular bench with 3 feet spacing, 150

TMote sky nodes for mobility, 50 Trio motes in a portable array that duplicates

the sensors in a stationary array for at-scale high fidelity sensing, and 5 robotic

mobile nodes.

The objectives of the Kansei testbed include

− Provision of heterogeneous hardware infrastructure for wireless and

sensor network experiments. Stargates are used as wireless network

devices and TMote sky nodes are used as sensor nodes.

− A time accurate hybrid simulation engine for simulation that is designed

to simulate large-scale experiments with an emphasis on high fidelity on

timing, application, radio and sensing environments and complements the

prior work on simulation.

− High fidelity sensor data generation and real-time data and event injection

on the fly, which enables dynamic experiments with the mobile nodes

where the user can change the input processes in real time.

− Software components to support complex multi-tier experiments utilizing

real hardware resources, and data generation and simulation engines.

In the Kansei testbed a user can define the topology and schedule a job

through the remote web interface. There is provision for data storage, data

analysis, remote access, and high fidelity sensor data generation and injection.

Easy data retrieval is another added advantage in the Kansei Testbed. The

Kansei Testbed includes a cluster of PCs for running visualizations, compute-

intensive analysis, high-fidelity sensor data generation, hybrid simulation, and

diagnostic analysis. One of the PCs, called Director is a remotely accessible

11

multi-user framework provides the services. It provides services for experiment

scheduling, deployment, monitoring and management for all array platforms like

motes and stargates, creation and management of testbed configurations, system

administrative services for managing the testbeds, and it contains tools for data

injection, and logging of all array platforms and tools for hybrid simulation.

“Chowkidar” which means watchman, is Kansei’s health monitoring tool.

Periodically the health-monitoring service runs automatically giving important

data about the testbed devices.

Health monitoring serves both users and the administrators. For users

monitoring this data helps in analyzing the real time data if any node is corrupted

or producing error, etc. For the administrators it helps in detecting if the node or

device is not working and helps in knowing the reason why it happened. The

software is developed in PHP, Perl, and MySQL as the backend.

3.2. Motelab

The objective of the Motelab testbed at Harvard is to meet the challenge of

deploying, developing, and debugging applications on realistic environments on

a large scale. Recently, they have deployed 190 TMote Sky sensor “motes” with

T1 MSP430 processors running at 8MHz, with 10KB of RAM, 1Mb Flash

Memory, and a Chipcon CC2420 radio. The CC2420 radio operates at 2.4GHz

and has an indoor range of approximately 100 meters. The motes are powered

from wall power. The motes run the TinyOS operating system and are

programmed in NesC language. The mote provides two TCP ports, one for

reprogramming and one for data logging. The functionality of Motelab includes

create, edit and schedule a job, programming the node, and logging the data

through a central server. Users access the testbed using the web browser to set up

or schedule jobs and download data.

The different software components of the motelab are

− Web interface for job creation, scheduling, and data collection.

− MySQL database backend for storing the collected data.

− DBLogger, a Java program to parse the generated data. It will be started

at the beginning of every job. It connects to the data logging port of emote

and its main job is to collect the data.

− Job Daemon, a Perl script job running as a cron job is responsible to set

up experiments, which involves reprogramming nodes and starting other

necessary system components like DBLogger and tears them down when

finished, and dumping the data from the MySQL database into a format

suitable for download.

Resource scheduling in motelab is done through defining the user quota,

which facilitates sharing the lab between multiple uses. The quota does not

control how much total access the user will have on the lab. It limits the number

12

of outstanding jobs the user can post to the lab at once. Motelab also provides

direct access to the nodes serial port over a TCP/IP connection. This helps in

monitoring and injecting the data to the motes via its serial port. An important

service motelab avails is power measurement. Since the sensor network

developers become aware of power as a design constraint this feature is

developed. A networked Keithley Digital Multimeter is attached to a node and it

will sample continuously at 250Hz, it bursts at 3000Hz, and this value is

displayed on the main page of the web interface.

There are two different ways to use motelab. One is batch use where a user

can schedule a batch of jobs and does not have to worry about them till he gets

the data. Other is real time use, where the user can interact directly with their job

by attaching to the exposed per-node serial forwarder or accessing the MySQL

database. Motelab has a connectivity daemon, which is kind of health monitoring

tool. It is used to collect the information about the nodes and graphically

represent the connectivity on the Maps pages. The administrators can run it

periodically when the lab is available. A Java program that runs during the job

connects directly to active nodes and uses this connection to tell them when to

send messages and when to listen. A Perl script accesses the database tables and

calculates the packet losses and updates the connectivity information between the

pair of nodes.

3.3. SensorNet

SensorNet is a testbed by Intel Berkeley Research. It has 150 MicaZ motes with

CC2420 802.15.4 radios. A canonical testbed incorporates a collection of

compute and sensing nodes that are coupled together by an out-of-band

communication channel and a power supply. This channel provides for remote

control, reprogramming and data collection independent of a node’s wireless

capabilities. The power supply eliminates the need to replace batteries, reducing

the physical maintenance needs of the testbed.

The current testbed resource allocation algorithm has the following

shortcomings:

− Inability of meeting real user demands on a large system.

− Either lack or have inadequate mechanisms for resolving contention

among competing users during peak times of demand. This system often

requires direct system administrator intervention to resolve conflicts.

− They provide limited mechanisms for expressing resource. So the user

cannot express desired resources and their associated constraints.

− This affects the efficient utilization of the underlying resources by

limiting the system’s ability to make intelligent allocations for multiple

users.

To address user contention Intel Research Berkeley has developed tool

“Mirage” for allocation of resources. It applies microeconomic approach to

13

arbitrate among competing users. Users will be given virtual currency to request

for the resources. A combinatorial auction is then run periodically to determine

which bids are allocated resources based on supply and demand while aiming to

maximize aggregate utility. A combinatorial auction is periodically run to

determine which user bids are allocated resources based on supply and demand.

Any user who ever spends more currency on particular resources is the winner.

The aim is to maximize the aggregate utility of the resources on the testbed.

3.4. Orbit

Orbit is an open-access research testbed for next generation wireless networks.

The Orbit testbed consists of an indoor radio grid emulator for controlled

experimentation and an outdoor field trial network for end-user evaluations in

real-world settings. It consists of 20X20 802.11 radio nodes with 1m spacing in

the indoor testbed and a mix of 3G and 802.11 nodes in the outdoor testbed

which spans over a region of 5 Km wide and 2 km long space.

The design objectives of the Orbit testbed at Winlab, Rutgers include

− Scalability in terms of the number of wireless nodes.

− Reproducibility of experiments which can be repeated in similar

environments for similar results.

− Open-access flexibility giving the researcher high-level control over

protocols and software used on the testbed.

− Extensive measurement capability at all layers providing cross layer

experimental possibility.

− Access to the testbed remotely through a web interface.

3.5. Emulab

Emulab at the University of Utah has a wide range of environments developing,

debugging, and evaluating the systems. They call it universally available

“Internet in the room” to provide balance between control and realism. The main

design goal of Emulab is to provide penalty free accessibility of the nodes that is

hundred percent configurable. The other goals are scalability and flexibility.

Emulab contains 160 end nodes and 40 core nodes (PC650/800) which are wired,

a few 802.11a/b/g nodes, 25 Mica2 motes for wireless sensor networks, 6 Garcia

motes for mobility.

There are different experimental environmental facilities in Emulab like the

following:

− Emulation-An emulated experiment allows specifying an arbitrary

topology and gives controllable, predictable and repeatable environments

giving full control of the nodes.

14

− Live Internet experimentation- Using PlanetLab, Emulab provided a full

featured environment to run the applications at hundreds of sites around

the world.

− An 802.11 wireless environment for wireless applications.

− Software Defined Radio- It gives control over layer 1 of a wireless

network. Everything from signal processing and up is done in software.

− A sensor network facility for sensor applications.

− A mobile sensor Network facility for sensor applications involving

mobility.

− Simulation- Using the ns-2 emulation facility simulated environment can

interact with real networks.

Emulab provides services through provisioning of web-based tools to

remotely configure reserve and control machines, to define error models, latency,

bandwidth, and packet ordering. It provides high speed network processor chips.

Emulab also has non-intrusion instrumentation for security. Emulab network

testbed software provides the first remotely-accessible mobile wireless and

sensor testbed. This testbed is robust. Robots carry motes and single board

computers through a fixed indoor field of sensor-equipped motes, all running the

user’s selected software. In real-time, interactively or driven by a script, remote

users can position the robots, control all the computers and network interfaces,

run arbitrary programs, and log data.

Emulab provides simple path planning, a vision-based tracking system

accurate to 1 cm, live maps, and webcams. Precise positioning and automation

allow quick and painless evaluation of location and mobility effects on wireless

protocols, location algorithms, and sensor-driven applications.

3.6 . PlanetLab

PlanetLab works as a global platform for designing and evaluating network

services. PlanetLab is the first testbed that is distributed across the world with

834 nodes at 408 sites. Planet Lab’s design evolved incrementally based on

experience gained from supporting a live user community called experience-

driven design, and the design decisions made with conflicting requirements

called conflict-driven design.

The design objectives in PlanetLab include

− Immediate availability to researchers to do their experiments. It is

achieved by spreading the nodes all across the world and implementing a

fair resource allocation algorithm.

− Global platform that supports both short term experiments and long

running services. The services run continuously and support real client

workload.

15

− Autonomy and decentralized control is achieved through distribution of

control to different organizations who contributed to PlanetLab and thus

reducing the centralized control.

− Scalability to support many users with minimal resources by promoting

efficient resource sharing.

− Distributed virtualization, which means running a service as a slice in

every node which acts as an individual system. The user does not even

know that he is just using a part of the resources; it seems all the

resources are allocated to him through this service.

− Unbundled management services used in the PlanetLab testbed has three

arguments, namely

o To allow the system to more easily evolve;

o To permit third-party developers to build alternative services,

enabling a software bazaar, rather than rely on a single

development team with limited resources and creativity; and

o To permit decentralized control over PlanetLab resources, and

ultimately, over its evolution.

3.7 . Physical parameter comparison of different testbeds

Each testbed discussed so far has a different level of design detail according to

the goal and requirements. Table 3.2 provides the comparison chart of different

testbeds with respect to different physical parameters like the type, node type,

radio type, scale and field.

Parameter Kansei MoteLab SensorNet Orbit Emulab Planet lab

Type Wireless,

wireless sensor

Wireless

sensor

Wireless

Sensor

Wireless Wired,

Wireless,

Wireless

sensor and

Mobile

Wired

Networks

Node type XSM, Stargates

TMote sky,

robotic mobile

nodes

TelosB,

Mica2

motes,

MIB-600

motes

Sensor motes 802.11 nodes,

3G cellular

Pc(600/850)

nodes,

802.11X

nodes, mica2

motes, robotic

nodes

Wired nodes

16

Radio Type 802.15.4

802.15.4

802.15.4 802.11 802.11/

802.15.4

 -

Scale 1500 190 150 400 250 846

Field Indoor/Outdoor Indoor Indoor Indoor Indoor Distributed

Table 3.2: Physical parameter comparison table for different testbeds.

3.8. Design parameter comparison of different testbeds
 .

Table 3.3 provides the comparison chart of different testbeds with respect to

different design parameters like the topology, resource allocation, health

monitoring, and available tools.

Design Kansei Motelab SensorNet Orbit Emulab PlanetLab

Topology

design

3ft wood tables,

20db antenna

Multiple

floors

 - Indoor

20X20

nodes with

1m space.

Multiple

floors

Across the

world

Resource

Allocation

FCFS, best-

effort

FCFS with

user quota,

best-effort

Auction model FCFS, best-

effort

FCFS Best-effort

and

guaranteed

Health

Monitoring

Chowkidar Connectivity

graphs

 - Script Slice, sliver

mechanism

 Health

Monitorin

g service

Tools Select

topology,

Schedule,

Upload,

manage,

retrieve

Select

topology,

Schedule,

upload,

manage,

retrieve

No user tools

for data logging

and automated

reprogramming

Schedule

Ruby script

to upload

and select

nodes, orbit

commands

Ns2 script to

select

topology,

schedule, run

and

terminate the

experiment.

Results

through

email

Scripts to

schedule

program

Table 3.3 Design parameter comparison of different testbed

4. NetEye

The NetEye testbed at Wayne State University is deployed to facilitate research

on wireless and wireless sensing applications at scale. The NetEye testbed

consists of a controlled indoor environment with a set of sensor nodes and

wireless nodes deployed permanently. This topic helps the reader to understand

the implementation of the design issues in greater detail.

17

The NetEye testbed provides a web interface to create and schedule a job on

the testbed while automated reprogramming of the sensor devices and storing the

experimental data on the server. NetEye has the following features:

− It motivates application deployment by providing access to a large scale,

fixed sensor network.

− Through automatic storage and logging of data, it accelerates the

debugging and development of an application.

− NetEye provides a web interface allowing both local and remote users to

easily access the testbed.

− The resource scheduling mechanism used in NetEye ensures a fair share

of resources to its users.

− NetEye consists of heterogeneous hardware for computations, data

storage, and to support complex experimentation.

− It provides real-time data and event injection on the fly.

− Software components in NetEye support multi-tier complex experiments.

4.1 . Interference Control in NetEye

The NetEye testbed has both wireless and wireless sensor network devices. The

NetEye testbed deals with the issue of coexistence between wireless and sensor

networks thus providing an interference controlled environment. The wireless

network devices are referred to by IEEE as 802.11 devices and the Wireless

Sensor Network devices as 802.15.4 radio devices. Both these devices share the

2.4 GHz ISB band. So there is a chance that the packets from one device can be

interrupted by the other and the packets may be lost. More details about

considering this as an important design issue are explained in section 2.

In NetEye this issue is taken seriously since the testbed setup itself contains

both wireless and wireless sensor devices. There are many access points around

the NetEye testbed set up, so definitely there is a need to find an interference free

channel for 802.15.4 radio devices. There are 11 channels in 802.11 with only 3

non-overlapping channels. Each channel has a 22 MHz frequency range. There

are 16 channels in 802.15.4 with 3 MHz frequency range and each channel is

5MHz apart.

To measure the environmental noise, a TinyOS application, written in the

NesC language that samples RF energy at 1 KHz by reading the RSSI register of

the CC2420 radio is used. The register contains the average Received Signal

Strength Indicator (RSSI) over the past 8 symbol periods (125 microseconds).

The application logs this data to flash for a fixed period of time (2 minute period

with one sample for a millisecond). The data is collected on the PC through

UART (serial port).

Noise is sampled on different radio channels in a variety of environments;

including the NetEye embedded testbed lab at Wayne State University which has

18

six access points from the surrounding areas, Undergraduate library at Wayne

State University where there is heavy usage of 802.11, Deroy apartments where

there is no access point present but some peer-to-peer networks exist and an

outdoor quiet area in Richmond where neither access points nor peer-to-peer

networks exists.

To find the difference on how just the existence of the 802.11 access point

without heavy usage and with heavy usage changes the interference levels on

802.15.4, an experiment is conducted to collect RSSI values while downloading

a large HTTP file.

Table 2.1 in Chapter 2 shows the RF spectrum of available channels for

802.11 and 802.15.4. According to the table it seems like channels 25 and 26 of

802.15.4 do not interfere with any channels of 802.11.

Following experiments are done to determine the interference channel to

provide the controlled environment:

− Channel 11 set in 802.15.4 when channel 1 is set in 802.11 network

− Channel 16 set in 802.15.4 when channel 6 is set in 802.11 network

− Channel 17 set in 802.15.4 when channel 6 is set in 802.11 network

− Channel 21 set in 802.15.4 when channel 11 is set in 802.11 network

− Channel 22 set in 802.15.4 when channel 11 is set in 802.11 network

− Channel 26 set in 802.15.4 when channel 1 is set in 802.11 network

− Channel 26 set in 802.15.4 when channel 6 is set in 802.11 network

− Channel 26 set in 802.15.4 when channel 11 is set in 802.11 network

 The following tables show the measured RSSI values at different areas at

different times. The median and confidence intervals (95%) for 5000 samples are

represented in the tables and the box plots are used to represent the overlapping

and non-overlapping confidence intervals.

4.1.1 NetEye Embedded Lab

NetEye Embedded Lab is at Wayne State University and is the place where the

testbed is set up. The room has few access points around. The values when

Channel 26 is set in 802.15.4 and channels 1, 6, 11 are set in 802.11 are

measured and they are stable with standard deviation almost less than 1.

Channels 11, 17, and 21 in 802.15.4 have non-overlapping confidence intervals

(CI) compared to channel 26 when corresponding interfering channels are set in

802.11.

The box plot below shows the non-overlapping confidence intervals between

the interfering and non-interfering channels. The red line represents the median

and the notches represent the confidence intervals.

19

Figure 4.1: Boxplot showing median and 95% CI-NetEye Embedded lab

The first column is when channel 26 (non-interfering) is set in 802.15.4 and

column 2 is when channel 11 (interfering) is set in 802.15.4 when channel 1 is set

in 802.11. The RSSI values do not overlap showing the significantly different

values. Likewise other values need to be compared. The last column (21:11)*

shows the different non-overlapping performance compared to 21:11. This is

when a large file is being downloaded and the values are significantly different.

4.1.2 Undergraduate library at Wayne State University

The Undergraduate library at Wayne State University has a heavy usage of

802.11 network. The box plot below shows the non-overlapping confidence

intervals between the interfering and non-interfering channels. The red line

represents the median and the notches represent the confidence intervals. The

first column is when channel 26 (non-interfering) is set in 802.15.4 and column 2

is when channel 11 (interfering) is set in 802.15.4 when channel 1 is set in

802.11. The RSSI values do not overlap showing the significantly different

values. Likewise column 26:6 and 17:6 show non-overlapping values. Columns

26:11 and 21:11show non-overlapping CI values

20

Figure 4.2: Boxplot showing median and 95% CI-Undergraduate Library

.

4.1.3 Deroy Apartments

The apartments in Wayne State University does not have any access points but

have a few peer-peer networks.The box plot below shows the overlapping

confidence intervals between all the channels. The red line represents the median

and the notches represent the confidence intervals. The first column is when

channel 26 (non-interfering) is set in 802.15.4 and column second is when

channel 11 (interfering) is set in 802.15.4 when channel 1 is set in 802.11. The

RSSI values do overlap showing the values are in the same range. Likewise

column 26:6 and 17:6 show overlapping values. Columns 26:11 and 21:11 show

non overlapping CI values because of the existence of peer-peer networks.

.Figure 4.3: Boxplot showing median and 95% CI-Deroy apartments

21

4.1.4 Quite Area in Richmond

There are no access points and peer-to-peer networks and the mean values are

high, with much less standard deviation. The values at different confidence

intervals are also almost in the same range. The box plot below shows the

overlapping confidence intervals between all the channels. The red line

represents the median and the notches represent the confidence intervals. The

first column is when channel 26 (non-interfering) is set in 802.15.4 and column

second is when channel 11 (interfering) is set in 802.15.4 when channel 1 is set

in 802.11. The RSSI values do overlap showing the values are in the same range.

Likewise column 26:6 and 17:6 show overlapping values. Columns 26:11 and

21:11 show overlapping CI values because of the non-existence of access points

and peer-peer networks.

Figure 4.4: Boxplot showing median and 95% CI-Richmond

4.2. Results

With a different set of experiments done at different times and different places, it

can be concluded that channel 26 set in sensor devices provides the interference

free environment even in the presence of access points. It is not affected by any

channel at 802.11 networks. It provides necessary abstraction even in the

presence of wireless network. This is a very important study for setting up a

sensor testbed since if the interfering channel is set it will be affected even by the

beacon packets from the access points and there is high possibility to provide less

accurate results to the user.

22

4.3 Elements of NetEye

The block diagram below shows all the elements of NetEye. The elements

include hardware and software components.

Figure 4.5: Elements of NetEye

The details of all the elements of the NetEye testbed are as follows

4.3.1 Hardware Components

NetEye consists of a fixed array of wireless and sensor nodes. The wireless nodes

are Dell Vostro 1400 laptops with a Intel dual core processor, 1GB RAM, and

80GB hard disk. The operating system on the laptops is Linux Fedora core 8.

There are 15 laptops arranged on 15 wooden benches. The benches are 1 foot

apart column wise. Proper ventilation and air conditioning facilities are provided

for the laptops as these will be used on a 24/7 basis.

The NetEye testbed has 130 “TelosB motes” connected to the laptops. The

motes are connected through the USB interface. There are 6 to 12 motes

connected to the laptops depending on the topology design. The design is based

on providing a multi-hop network. The design is also optimized to reduce the

number of USB hubs and cables used. There are 21 USB hubs connecting 130

motes to the laptops. TelosB is a 802.15.4 compliant device designed by UC

Berkeley and manufactured by Crossbow Solutions. It has a T1 MSP430

microcontroller, 2.4 GHz Chipcon CC2420 radio, 4MHz 8 bit CPU, 128KB

instruction memory, 4KB RAM, and a USB interface.

23

Motes run TinyOS 2.0.2, which is a lightweight event-based operating system

that implements the networking stack and communication with the sensors, and

provides the programming environment for this platform. Each mote

accommodates a light sensor and has a customized onboard facility to hold a 3db

RF attenuator. The spacing between the motes is 2 feet. Since the sensors are low

power radio devices the TelosB motes use the power from the laptops which

inturn use wall power.

Laptops in each column are connected through a Gigabit Ethernet switch to an

Ethernet back-channel network that provides high-bandwidth connectivity to and

from the nodes for management commands, data injection and extraction. The

NetEye server connects to join the local Ethernet back channel network and it

also has another Ethernet card through which it connects to the Internet. The

NetEye server provides remote access to the users for creating, editing, and

scheduling the job.

4.3.2 Topology Control in NetEye

Topology control is one of the important design issues for setting up a testbed.

The topology setup in NetEye supports multi-hop transmission between the

motes.

In the NetEye testbed wooden benches are used to hold the laptops and the

motes since wood is a bad conductor. Another advantage is it does not interfere

much with the signal propagation. The benches are 5 feet high in order to reduce

the ground effect.

Channel 26 is set on the sensor nodes to avoid interference with any channels

on wireless networks. The radio characteristics of the sensor networks are

measured in the NetEye testbed. The experiments are done to select the minimum

power level and to obtain reliable packet delivery in a multi-hop network. In the

indoor environment the transmission ranges will be high. To deal with this a 3 db

attenuator attached to each TelosB mote is used.

To achieve a multi-hop network a NesC program that broadcasts 10000

packets is scheduled on one of the nodes. All the other nodes are scheduled with

a receiver program. The data is collected from all the nodes and the packets

received are counted to know the Packet Delivery Rate (PDR). The experiments

are done using different Power Levels (PL) and between different distant nodes.

The graph below shows the Packet Delivery Rate at different power levels and at

different distances.

Power levels 1 and 2 has very low delivery rate. Power level 3 can be

considered since it offers reliable packet delivery rate up to 6 hops. Power levels

4, 5, and 6 have very high transmission ranges even with the attenuator.

24

Figure 4.7: PDR vs Distance-At different power levels at channel 26

The actual network connectivity in the network depends on the power level

adopted on the motes. The following box plots show the variation of packet

delivery rate as a function of distance, when the power level is 2, 3, and 6.

From Figure 4.8, we see that the network is sparse at power level 2, where

most nodes can talk to a limited number of nodes. Figure 4.9 shows at power 6

level the density is fairly high;almost any two nodes can talk to each other with

high probability. Figure 4.8 also shows at power level 3, a node can reach many

nodes in the network, and some links are reliable while some are not. Thus power

level 3 gives a typical multi-hop network (about 6 hops).

Figure 4.8: Boxplot for PDR vs Distance at power level 2and power level 3

0

20

40

60

80

100

120

2 4 6 8 10 12 14 16 18 20 22 24

Distance (Feet)

P
a

c
k

e
t

D
e

li
v

e
ry

 R
a

te
(%

)

0

20

40

60

80

100

120

PL 1

PL 2

PL 3

PL 4

PL 5

PL 6

25

Figure 4.9: Boxplot for PDR vs Distance at power level 6

4.3.3 NetEye server

The NetEye server is a remotely accessible framework for wireless sensor

network applications. A user experiment is referred to as a job. NetEye Server

provides the following services:

− Web interface for experiment scheduling a job, deployment, and

monitoring the fixed array platform.

− Resource scheduling for the user jobs to support multiple user jobs.

The job specified by the users consists of one or more files like sensor

network executables, scripts, support files etc which should be programmed to

run on the specific set of resources for a specified interval of time. The status of

the jobs may be monitored during execution. On the successful completion of the

jobs, output must be retrieved.

The NetEye server also handles the resource allocation mechanism according

to the need and availability of the node which is FCFS scheduling. The NetEye

server provides the set of services for optimized resource allocation for gathering

the status of the NetEye testbed. The NetEye server collects the availability

information from each of the laptop, which act as an interface between the server

and the sensor nodes, considers the next job requirement, and allocates the

appropriate resources for the job.

The NetEye server also implements the core set of system utilities. It includes

tools for data injection, health monitoring, and logging of data. System

administrative services are also part of the NetEye server. These services include

user management for creation and deletion of users, assigning access privileges

to the users, and platform administration like restarting a node, etc.

26

The NetEye server exposes these services for scheduling, managing, creating

jobs etc, through a web interface using a web server. The NetEye server

implementation is independent of specific hardware and platform.

4.3.3.1 . NetEye Server Implementation

The NetEye server implementation is done in a way that if the sensor node has to

be deployed a component on the server will be invoked, which in turn invokes a

component in the laptop to which the node is connected. All the components in

the NetEye server are hierarchical and is independent. The main NetEye server

runs on Linux (which also runs the Apache webserver for the web interface).

Testbed scheduling, administration, management, and experimentation are

implemented in a multi threaded daemon that uses scripts and utilities written as

PERL modules and which encapsulate testbed services. PHP modules implement

the web-accessible testbed services, such as job-creation, storage of experiment

data, and a testbed health monitoring page. A MySQL database provides

persistence for storing job configurations and user reservations. Data generated

by jobs are stored on the server database and may be retrieved by links through

the web interface. Data injection is done by an Injector Manager component on

the server and the implementation is socket programming in the C language.

4.3.4 Integration between NetEye server and motes (Laptops)

The laptops serve as integration points and interface the motes with the server.

They also, in turn, acts as wireless network devices.

It provides the channels for:

− Data collection: The laptop collects the experimental data from the motes

attached to it and sends it to server.

− Local data storage: The laptop stores the local information about the

motes and locally stores the data from the nodes during the running of the

experiment.

− Transfer of data like the executable files, injection files, and output files

between the server and motes

− Local node information: The laptop collects the local node information.

The health monitor service contacts each laptop to collect the health status

of the nodes.

− Data injection: Each laptop has an injector for injecting events to

applications running on it, as well as to serve as a bridge that injects

events into the application on the mote. Each mote application has a

receptor component that receives injections and takes appropriate actions.

4.3.4.1 Integration Point (Laptop) Implementation

27

The laptops also run on the Linux operating system. They have the local MySQL

database. The laptops act as clients to the MySQL server set up on the NetEye

server. In the database the local health information of the nodes, the jobs

scheduled on the particular nodes attached to the laptop etc, are stored. The

duration and start time of a particular job are pushed on to the laptop by the

server if the node attached to it is selected for a particular job. Reprogramming

the nodes and collecting the data from the nodes is done through daemons

(written in shell and Perl).

Each laptop has an injector which is invoked by the Injector Manager from the

server for injecting events to applications on fly. Each mote application has a

receptor component that receives injections and takes appropriate actions. The

injector code in the laptops is in C the language. TinyOS is installed on the each

laptop to handle programming motes attached to it.

4.3.5 Software Components

NetEye consists of several different software components for providing the

necessary functionality and services on the testbed.

The main components are:

a) Web interface

 PHP generated pages are used for the user interface for job creation,

scheduling, and data collection. Administrators also have an interface to control

the testbed functionality. After logging users have the access to the following

functionality:

− Home page

− Topology page

− Schedule tier-1 jobs page

− Schedule tier-2 jobs page

− Select node-group page

− Manage Tier-1 jobs page

− Manage Tier-2 jobs page

− Health Monitor Page

− Help and Instructions page

b) MySQL Database

MySQL database is used to store all the information necessary for running the

testbed. There are two categories of information stored:

− Data related to the jobs: The JID, information of the user who scheduled

the job, scheduled time, start time of the job, duration, information about

the input files, status of the jobs, and the links for output retrieval are

stored in this database.

28

− Testbed status data: The health status of each node, the work status of the

node, etc. are stored in this database.

 c) Job Daemon

Perl and Shell scripts run as cron jobs for setting up, running, and tearing

down the jobs. The job daemon also does reprogramming of the nodes and starts

necessary services like the serial forwarder and serial listen to get the data to the

PC for a particular job. After the specified duration the job daemon tears the jobs

down, kills processes which were running during the jobs, and puts the output

data back to the server and updates the databases with the links.

NetEye provides the following functionality through different software

components.

4.3.5.1 New user

A new user can easily register into the NetEye testbed. A user can run his 802.11

experiments as well 802.15.4 experiments on NetEye testbed. The user has to just

fill in the new registration form available on the web interface of NetEye,

answering a few simple questions. .

As soon as the account is available for the user, a login and password will be

provided to the user through the email he has specified in the registration form. A

login directory will be created for the user at the start when he registers, which

will contain all the input files and output files for the jobs specified by the user.

Different users can have input files with the same names. The aspect of creating

directories for individual users helps in preventing the user files from being

overwritten with one another.

The New User form is implemented in PHP. As the user registers an

automated mail is sent to the administrator stating the user’s interest in

registration. An account will be created for the user through the automated

administrative tools with appropriate user privileges. A directory will be created

automatically (written in Perl script) on the server for the user to store user input

files and output files.

4.3.5.2 Topology selection

Each user is provided with the topology of the testbed from which he can select a

subset of nodes he wanted for the experiment. A user-friendly interface is

provided for the user to select the nodes remotely.

The user has two options while selecting the topology:

− The user is given the option to name the selected nodes if he wants. This

is stored in the database for reusing rather than selecting it every time if

he wants to use the same set of nodes. This is available in the creating

node group web page in the NetEye web interface.

29

− If he does not want the option of naming the nodes he can directly select

them and use them. This is available in scheduling tier-1 job web page in

the NetEye web interface.

The graphical selection tool is provided in the form of a grid of 10X13 for

topology selection where a click will select the appropriate nodes for the user.

This tool is implemented in Javascript and PHP.

4.3.5.3 Schedule jobs

NetEye users can schedule jobs through a web interface. The user can specify the

start time of the job, the nodes selected for the experiment, and the duration time

for the experiment. The user can upload the executable that needs to be

programmed on the selected nodes.

The user can schedule the other jobs simultaneously and if the resources are

available those will be allocated; otherwise the job will be in the pending state. In

tier-2 jobs the user can upload support files along with the executable. The

support files should be in zipped format.

The Schedule Job web page is in PHP. As the jobs are scheduled an entry will

be made into the MySQL database about the job information like JID, start time,

duration etc.

4.3.5.4 Upload files

For the users to run their experiments users can upload their executables through

the web interface. Once the file is uploaded it will be stored in the user directory,

which is created during user registration. These will be copied to the appropriate

laptops through the secured copy protocol according to the user node selection.

The selected nodes will be programmed with the uploaded file.

For the ease of the users, the files uploaded by them will be stored and the

user can select from the stored files as well. The user can select from only the

files he has uploaded and not from other’s files. This facility serves two

purposes:

− If the user has to run the same experiment at different times, he does not

have to upload them again, he can just select from the existing files.

− If the user does not have his executable files available to him at a

particular moment when he wishes to run his experiment, he can upload

them earlier and use them when he wants to run the experiment.

For tier-2 jobs there is a possibility that he can upload support files along with

his executable all in zipped format. Both the executable and support files will be

uploaded in one directory, so that those can be used easily whenever needed. The

schedule web page will link the upload web page and is in PHP. The user files

will be uploaded into the directory through a PHP program but the secured copy

30

protocol is implemented in Perl to copy the files to the laptops. The uploaded

files are stored in the database on the server for further usage.

4.3.5.5 Resource Management in NetEye

In any shared computing and communication infrastructure resource allocation

plays an important role. The NetEye testbed will be shared by many users and

each user should get a fair share of resources.

FCFS resource allocation is used in the NetEye testbed. The user is provided

with the topology of the testbed from which he can select a subset of nodes he

wants for the experiment. A user-friendly interface is provided for the user to

select the nodes remotely. The user is also allowed to specify the start time if he

wants to, otherwise the current time will be taken as the start time for his

experiments. A few services running as daemons on the individual laptops collect

availability information of all the nodes and send it to the server. The server

stores all the information in the MySQL database and the resource allocator uses

the information from the database to check the availability and allocates the

resources to the user. If not the user’s job will be put in the pending list and will

be allocated with the resources once they are available. The allocation is based on

the start time as the priority.

After the specified duration of a particular job, a module that will be running

as the daemon will tear down the job and free the resources for further usage.

After the duration, the daemon tears down the job and notifies the server. The

resources are made available for further usage.

 There are different tables in MySQL database which hold the state

information about all the nodes in the facility. Job daemons (written in Perl)

collect state information about the nodes from the database tables. They are

responsible for setting up the jobs, tearing down the jobs after the duration, and

updating the status of the nodes in the database. A local database is maintained in

each laptop, which acts as a client to the NetEye server. The database holds the

local information about the availability of the nodes and updates it to the server.

4.3.5.6 Manage jobs

The user can manage his jobs through the web interface remotely. There will be

some sensitive information about the user and he might not want others to collect

his data. For security reasons and providing confidentiality the user can view just

his jobs.

The Manage jobs interface shows the user details about his job including the

Job ID, the input file, start time, duration, and the status of the job. A link to the

output directory is also provided in the Manage jobs interface. A cancel job

option is provided on this web page if the user wishes to cancel his job. The

status of the jobs will always be shown to the user through the Manage jobs

31

webpage. There will be a different status for each job depending on the

availability of the nodes. The different statuses for a given job are as follows:

− Pending: The job has been entered in the database, but the resources

requested are not yet allocated.

− Reserved: The resources for the particular job are allocated.

− Running: The motes are programmed and the job is running.

− Finished: The job is finished and the packaging module on the server is

preparing for the output.

− Completed: The output link is available to the user and he can download

from the provided link.

The web page for manage jobs is implemented in PHP. The job information

and the status of the job is picked from the MySQL database and displayed to the

user. The output link provision is also done in PHP once the job is finished.

4.3.5.7 Cancel jobs

If the user mistakenly schedules a job it should be corrected by canceling the job.

It is useful for both the user as well as the resource providers. For the user it is

useful because he does not have to waste time waiting for job that he does not

want to complete or if he wants to schedule a different job on the same nodes he

does not have to wait till resources get free. For the providers wastage of

resources is reduced.

In NetEye the user is given the option to cancel a job if he does not want it or

he has mistakenly scheduled it. This option is provided on the Manage Jobs

webpage for the remote users. No output will be provided to the user. The job

will be torn down and the resources will be freed for further usage.

The cancel job option is provided on the Manage Jobs web page which is in

PHP. For canceling the job there are daemons running on the server as well on

the laptops (written in Perl). Once the user cancels a job, then the information

will be updated in the database by the daemon running on the server which will

be picked up by the daemon running on the particular laptop to which the node

is attached. This daemon will kill all the necessary processes like serial

forwarder, listen tool, etc. to tear down the job and update it to the database on

the server.

4.3.5.8 Programming the Motes

The user can upload the executable to program on the selected nodes. The users

also have an option to select an already uploaded file for programming. For

security reasons he can just use the files he has uploaded earlier. Programming

the nodes is done using shell script. A daemon running on the individual laptops

checks if the nodes are allocated to the particular job scheduled and it calls this

shell script to program on the motes.

32

The users have two options while programming the motes:

− If the user does not select the injection service, just the Java listen tool

will start running and collect the data from the motes through serial port.

The user has to take care to write his code to send the data through the

UART.

− If the user selects the injection service, a serial forwarder (one instance

for each mote), an injection tool, and a listen tool listening to the serial

forwarder will be opened. The program running on the mote should have

a receptor component to read the data from the serial port. The data is

written to the serial port using the serial forwarder.

4.3.5.9 Killing a Job

The user processes for a particular job have to be killed after the scheduled

duration or if the user cancels the job. If the jobs are not properly killed it will

hamper the resource availability on the testbed.

 A shell script will be called by a Perl daemon to kill the processes running by

the job after the duration or on the selection of the cancel option. The script will

collect the processes ID’s and kill the listen tool, serial forwarder, and the

injection tool to free the resources.

4.3.5.10 Data Retrieval

The user can easily retrieve his experimental data using the link provided on the

web page. The output will be in zipped format. The user can just download his

data with a simple click. The user can’t either see or download other’s data for

security reasons.

The directory created for the user will be used to store his experimental data.

Each output file is named with the Job ID to prevent it from being overwritten by

other files. The Java listen tool and the serial forwarder tool are used to collect

experimental data. Once the duration of a job is completed, a secured copy

protocol is used by each laptop to push the data to the server. The data thus

obtained is zipped on the server by the packaging module written in Perl and the

link is provided to the user.

4.3.5.11 NetEye Injection

NetEye provides a service of real-time data injection. Users can inject traces of

data to the nodes through a web interface option. If the user selects this option a

tool called Injection Manager on the server will be invoked to send the traces to

the selected nodes through a set of dedicated ports. The user has to upload a file

that contains the injection traces. The format should be such that the first field

33

should contain the IP address of the laptop to which the mote is attached and the

second field is the port number of the mote.

The port number can be obtained from the node ID itself. For example node

“A0” means it is the mote attached to port 0 of Machine A. The IP address of the

laptop to which the mote is attached can be obtained through the topology web

page. The last field should be the time interval between each injection. There will

be 6 bytes of data between the port number and time interval. Through this

facility the user can pipe the output of one job to the other job on the fly. It is

also possible for the user to send some input traces to the nodes for running a

particular job if need be in real time.

The injection option is provided to the user on the Schedule Job web page. If

the user selects it he is given an option to upload a file that contains the injection

traces. The PHP script checks if the option is selected and updates it to the

database on the server. A daemon on the server will invoke the injection manager

tool (written in the C language) and send the data through the socket to the

individual laptop to which the node is attached. A daemon running on the

individual laptops will check the database if the injection is selected for a

particular job. If it is a serial forwarder (tool provided by TinyOS), a injection

tool (written in C language) and a listen tool (provided by TinyOS) will be

invoked.

There will be different instances of serial forwarders and injection tools

running on different ports. The ports are selected as per the USB port to which

the mote is attached. The injection tools will listen to the port to which the server

sends the data and inject the data to the serial forwarder. The serial forwarder

will in turn send the data to the serial port. The mote application that the user

specifies should have a receptor component which will read from the UART and

take appropriate actions.

4.3.5.12 Health Monitoring

Health monitoring is one of the important services in any testbed for both users

and administrators. Remote users can check the health status of the nodes on the

testbed. The health monitoring daemon uses an executable to periodically run on

all the available nodes to monitor its health status. Through this facility a user

knows the following details about the testbed:

− Number of Tier-1 nodes up

− Number of Tier-1 nodes down

− Number of Tier-2 nodes up

− Number of Tier-2 nodes down

− Number of Tier-1 nodes busy

− Number of Tier-1 nodes free

− Number of Tier-2 nodes busy

34

− Number of Tier-2 nodes free

− Number of Tier-1 jobs running

− Number of Tier-1 jobs pending

− Number of Tier-2 jobs running

− Number of Tier-2 jobs pending

− List of nodes that are down

Through this information a user knows which nodes are not available and

cannot be used for scheduling. The administrators can identify the broken nodes

for fixing them easily through this service; otherwise the administrator has to

check each and every node manually for its health status.

 A health monitor daemon (written in Perl) runs periodically on all the

available nodes to determine if the nodes are up and running. A NesC module is

run on the nodes automatically and the data is collected to the laptop through the

Java listen tool. The data collected to the laptop is checked for correctness if the

mote has generated an AM type 99 message. If it is of type 99 then a Perl

daemon script running on the laptop accesses the database table on the server and

updates that the motes attached to is up and running; otherwise it updates the

corresponding mote as down. The server receives the health information from all

the laptops about the motes attached to it. Finally a PHP module collects the

information from the MySQL database dynamically and displays the information

to the user.

4.3.5.13 Administrative tool to add new users

The NetEye testbed also provides an administrative tool to add users and allow

access privileges to them. Once the user registers using the registration form an

automated email will be sent to the admin. After checking the authenticity of the

information the administrator will add the user into the database. Appropriate

access rights are given to the user by the administration. The default is a normal

user who can use the testbed for scheduling, data retrieval, etc. The normal user

won’t have rights to view other’s data. This admin tool is provided on the web

interface and can only be seen if logged in as admin. The code uses PHP and

MySQL database.

5. Concluding Remarks

We have discussed the important elements of sensornet testbed design, and we

have presented in detail the design and implementation of the NetEye testbed.

The design issues and the implementation details presented in this chapter will be

useful for researchers who are interested in building their own testbeds.

Future work on NetEye includes increasing the scale and upgrading to

accommodate mobile robots. Other areas of future work include integrating

NetEye with the Global Environment for Network Innovations (GENI), which

35

will consist of a global wired network with programmable, virtualized network

elements along with edge wireless access deployments intended to support

experimentation with mobile computing devices, embedded sensors, etc.

As a part of this effort, NetEye will participate in the Kansei Consortium

(which includes organizations such as The Ohio State University and Los

Alamos National Lab) to deliver a prototype of GENI-fied infrastructure for

wireless sensor network experimentation. Each testbed site will offer multiple

types of sensornet platforms and operate autonomously. The prototype will also

include a number of researcher client tools and researcher portal services. It will

provide publicly available support for programmability, virtualization, and slice-

based experimentation.

References

1. D. Raychaudhuri, M. Gerla, (eds.), "New Architectures and Disruptive Technologies for the

Future Internet: The Wireless, Mobile and Sensor Network Perspective”, in NSF WMPG

Workshop Report, August 2005.

2. J. Evans, D. Raychaudhuri, S. Paul, "Overview of Wireless, Mobile and Sensor Networks in

GENI," in GENI Design Document 06-14, Wireless Working Group, September 2006.

3. S. Paul, “Requirements Document for Management and Control of GENI Wireless Networks”,

GENI Design Document 06-15, Wireless Working Group, September 2006.

4. . Thomas Anderson, Amin Vahdat(Eds), “GENI Distributed Services”, in GENI Design

Document 06-24, Distributed Working Group, September 2006.

5. Emre Ertin, Anish Arora, Rajiv Ramnath, Mikhail Nesterenko, Vinayak Naik, Sandip Bapat,

Vinod Kulathumani,Mukundan Sridharan, Hongwei Zhang, Hui Cao “Kansei: A Testbed for

Sensing at Scale”, in Proceedings of the 5th IEEE International

Conference on Information Processing in Sensor Networks (ISPN 2006), April 2006

6. Sandip Bapat, William Leal, Taewoo Kwon, Pihui Wei, Anish Arora , “Chowkidar: A Health

Monitor for Wireless Sensor Network Testbeds”, in proceedings of the 3rd IEEE International

Conference on Testbeds and Research Infrastructure for the Development of Networks and

communities (TridentCom 2007), May 2007

7. D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo, R. Siracusa, H. Liu

and M. Singh, “Overview of the ORBIT radio grid testbed for evaluation of next-generation

wireless network protocols”, in proceedings of the first IEEE International Conference on

Testbeds and Research Infrastructure for the Development of Networks and communities (

TridentCom 2005), Feb 2005.

8. Geoffrey Werner-Allen, Patrick Swieskowski, and Matt Welsh, “MoteLab: A Wireless Sensor

Network Testbed”, in the proceedings of the 4th IEEE International Symposium on Information

Processing in Sensor Networks (ISPN 2005), April 2005.

9. Brent N. Chun, Philip Buonadonna, Alvin AuYoungz, Chaki Ngy, David C. Parkesy, Jeffrey

Shneidmany, Alex C. Snoerenz, Amin Vahdatz “Mirage:A Microeconomic Resource

Allocation System for Sensornet Testbeds” in proceedings of the 2nd IEEE Workshop on

Embedded Networked Sensors (EmNetS-II), May 2005.

10. David Johnson, Tim Stack, Russ Fish, Daniel Montrallo Flickinger, Leigh Stoller, Robert Ricci,

Jay Lepreau, “ Mobile Emulab: A Robotic Wireless and Sensor Network Testbed”, in

proceedings of 25th IEEE International Conference on Computer Communications (INFOCOM

2006), April 2006.

11. http://www.emulab.net/

36

12. Larry Peterson, Andy Bavier, Marc E. Fiuczynski, Steve Muir, “Experiences Building

PlanetLab”, in the Proceedings of the 7
th

 conference on USENIX Symposium on Operating

Systems Design and Implementation (Volume 7), 2006.

13. Andy Bavier, Mic Bowman, Brent Chun, David Culler, Scott Karlin, Steve Muir, Larry

Peterson, Timothy Roscoe, Tammo Spalink, and Mike Wawrzoniak, “Operating System

Support for Planetary-Scale Network Services”, in Proceedings of the 1st conference on

Symposium on Networked Systems Design and Implementation (Volume 1), 2004.

14. Larry Peterson “PlanetLab-A Blueprint for Introducing Disruptive Technology into the

Internet”, in Proceedings of ACM HotNets-1Workshop, Princeton, New Jersey, USA, October

2002.

15. http://www.xbow.com.

16. Chulho Won, Jong-Hoon Youn, Hesham Ali, Hamid Sharif, and Jitender Deogun, “Adaptive

Radio Channel Allocation for Supporting Coexistence of 802.15.4 and 802.11b”, in

Proceedings of 2005 IEEE 62nd Vehicular Technology Conference (VTC-2005-Fall),

September 2005.

