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ABSTRACT

The wireless network community has become increasingly@awa
of the benefits of data-driven link estimation and routingcas-
pared with beacon-based approaches, but the issh@aséd link
sampling(BLS) has not been well studied even though it affects
routing convergence in the presence of network and envieohm
dynamics. Focusing on traffic-induced dynamics, we exartiine
open, unexplored question of how serious the BLS issue ifiand
to effectively address it when the routing metric ETX is usedr

a wide range of traffic patterns and network topologies argus
both node-oriented and network-wide analysis and expettane
tion, we discover that the optimal routing structure reraajaite
stable even though the properties of individual links andes vary
significantly as traffic pattern changes. In cases wheregtimal
routing structure does change, data-driven link estimaditd rout-
ing is either guaranteed to converge to the optimal straatuem-
pirically shown to converge to a close-to-optimal struetufhese
findings provide the foundation for addressing the BLS issube
presence of traffic-induced dynamics and suggest appreather
than existing ones. These findings also demonstrate ttsgpdssi-
ble to maintain an optimal, stable routing structure desttie fact
that the properties of individual links and paths vary imp@sse to
network dynamics.

Categories and Subject Descriptors
C.2.2 Network Protocols]: Routing protocols

General Terms
algorithms, measurement, performance
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estimation and routing, biased link sampling, convergesiadility
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1. INTRODUCTION

Wireless communication assumes complex spatial and texhpor
dynamics [5, 18, 32, 33], thus estimating link propertiea Isasic
element of routing in wireless networks. One commonly uged |
estimation method is letting neighbors exchange broadiesston
packets, and then estimating link properties of unicast ttains-
missions via those of broadcast beacons. Nonetheless atresig-
nificant differences between unicast and broadcast linket@s
[6, 22], and it is difficult to precisely estimate unicastkliprop-
erties via those of broadcast due to temporal correlatiorigk
properties and dynamic, unpredictable network trafficquatt [27,
29, 30]. To address the drawbacks of beacon-based link at#bim
the method of data-driven link estimation has been prop¢ked
14, 17, 19, 20, 29, 30] and shown to significantly improve iraut
performance [30].

In data-driven link estimation, information about the pdes
of a link is provided by the MAC feedback for unicast data -an
missions along the link. If a link is not currently used fortala
transmission, its current properties will most likely beknawn to
the associated node (since the precise correlation amoksg) dis-
sociated with the same node tends to be complex and difficult t
predict). This introduces the issue lmhised link samplingBLS)
where properties of actively used links are constantly $adand
updated but properties of unused links are not sampled and un
known. BLS is not a problem if link properties are mostly stat
and do not change temporally. Nonetheless, temporal limiaihy
icsis usually unavoidable due to dynamics in network trgffittern
and traffic-induced interference [29, 30], dynamics in emwinent
[8, 21, 26], and/or node mobility. For instance, Figure 1veho
the network conditions in the presence of different trafficai-
tions, where network condition is represented by the uhigax
(i.e., expected number of transmissions required to sstésde-
liver a unicast packet) for links associated with a randoselgcted
node in the Kansei testbeddeSection 2). We see that unicast
ETX changes significantly (e.g., up to 32.44) as traffic pateand
thus co-channel interference varies [30]. Therefore, ong ax-
pect that, in the presence of temporal link dynamics, déteeal
link estimation and routing may not converge to the optinudilis
tion since, due to BLS, a node may be unable to discover the rou
that is not currently used but has become optimal.

Even though data-driven link estimation has been used in var
ous forms, the severity that BLS affects routing optimatias not
been well studied, and only ad hoc, if any, solutions have ipee-
posed in existing data-driven link estimation and routiolyesnes.
For instance, CARP [19], four-bit-estimation [13], and NYX[20]
do not examine the BLS issue; LOF [29] and SPEED [14] explo-
ratively sample alternative routes at randomized but highifency
(i.e., once every few and every single packet transmissepec-
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Figure 1: Link unicast ETX in the presence of different net-
work traffic pattern. d denotes the probability that each node
generates traffic at an arbitrary moment, andd = 0 denotes the
case of no traffic in the network and thus zero co-channel inte
ference. The data is for XSM motes (an enhanced version of
MICA2 motes) and the B-MAC protocol, but similar phenom-
ena are also observed when other MAC protocols (e.g., S-MAC)
and radios (e.g., 802.15.4 and 802.11b radios) are used.

tively), which can reduce routing performance as we willvglio
Section 6; EAR [17] implicitly addresses the BLS issue byiriet
every node constantly overhear unicast transmissionsidriolbut
overhearing is not energy-efficient in battery-poweredseemet-
works (since overhearing increases nodes’ duty cycles))jtazan
lead to estimation errors since, due to MAC coordination lmec
anisms such as RTS-CTS handshake, the properties of ovérhea
unicast transmissions may be different from those of uhitass-
missions to a node itself. Thus, the lack of a thorough unideds
ing of the BLS issue is an important problem since it affebes t
performance of a basic service in sensor networks — routing.
The objective of this paper is to study the open, unexplotexsg
tion of how serious the BLS issue is and how to effectivelyradd
itin the presence of (potentially unpredictable) netwoykamics.
We focus on traffic-induced dynamics (i.e., varying netwookdi-
tions due to changes in network traffic pattern) in this pagued we
relegate detailed study of other network dynamics (e.ghilitg
external interference from other wireless networks) to foture
work. Therefore, we focus on mostly static deployment sdesa
where environment conditions and nodes are mostly staten e
though environment conditions may change slowly and nodgs m
fail or join the network. Not all sensor network deploymeats
mostly static, for instance, deployments where envirortnecen-
ditions may frequently change due to interference from rotiee
existing networks (e.g., 802.11 networks) or due to movermén
persons or objects within the deployment space (e.g., dibgj,

data collection, and their mix) and network setups (e.dd gnd
random networks) we study, we find out that nodes’ best faterar
and the optimal routing structure are rather stable evengtnohe
properties of individual links and routes may vary signifitya as
traffic pattern and network condition change. In cases wteze
optimal routing structure does change, we prove that daterd
link estimation and routing is guaranteed to converge toghenal
structure when network conditions worsen, and the convesyés
quick (e.g., with a median sample size requirement of no rtiee
7); when network conditions improve, the optimal forwardeo-
sen for heavy traffic load tends to remain a good suboptintal fo
warder for lighter traffic load, even though data-driventioymay
not converge to the optimal structure.

These findings provide the foundation for addressing the BLS
issue in the presence of traffic-induced dynamics. In cehta
existing approaches, for instance, these findings denaiastine
need to address the BLS issue, the drawbacks of frequera-expl
rative sampling in mostly static networks, and the feaijbdf an
energy-efficient, light-weight approach to addressingBhS is-
sue. These findings also demonstrate that it is possible io-ma
tain an effective, stable routing structure despite the tiaat the
properties of individual links and paths vary in responsegtwork
dynamics. Since routing stability enables consistent,diptable
routing performance, these findings also suggest that wereay
gard stability as a basic evaluation criterion for routingtrits.

The rest of the paper is organized as follows. We briefly dis-
cuss in Section 2 the routing metric, the routing protocot] the
experimental facility we use in this study. We then analymedon-
vergence properties of data-driven link estimation andimguin
Section 3. We study the dynamics of best forwarders and thte ro
ing stability in Section 4 and 5 respectively, and we disduss
to address the BLS issue in Section 6. We discuss related iwork
Section 7 and make concluding remarks in Section 8.

2. PRELIMINARIES

In this section, we discuss the routing metric, the routing p
tocol, and the experimental facility that we use in the aticdy
and/or experimental study of this paper.

Routing metric and protocol. We use the routing metric ETX
(i.e., expected number of transmissions for deliveringta dacket)
[7, 28] in our study, and we use the data-driven link estiora¢éind
routing method L-ETX [30] for estimating the ETX metric faaeh
link and path. In L-ETX, MAC feedback for unicast data tramsm
sions are used to calculate the reliability PDR of individwacast-
physical-transmissiohsalong a link, then the ETX of this link is
derived ass5g; the ETX metric of a path is the sum of the ETX
values of the individual links along the path.

or deployments where sensor nodes themselves may be mobile. For the analysis of Sections 3 and 4, we also use a localized,

Nonetheless, mostly static deployment does represent dassb
of sensor network deployments, for instance, in applicatishere
nodes are statically deployed in remote areas for envirohmen-
itoring. Moreover, traffic-induced dynamics are univelgsptesent

in sensor networks, thus addressing the issue in mostlg stat
ployment scenarios may shed light on how to address the issue
other deployment scenarios and how to address other netlyerk
namics.

In studying the impact of BLS on routing optimality, we cafesi
the routing metric ETX which is commonly used in wireless -net
works (e.g., sensor networks and mesh networks). Through-ma
ematical analysis and testbed-based experimentationxaraiee
the stability of optimal routes and the severity of BLS. Favide
range of dynamic traffic scenarios (e.g., dynamic eventsaahjc

geographic routing metric ETD (f&TX per unit-distance to des-
tination) in evaluating the goodness of forwarder candidates. ETD
is a geographic version of ETX, and it is defined as follows/e@i

a sendelS, a neighborR of S, and the destinatio®, the ETD via

R is defined as

ETXgs R
Ls,p—LRr,D

o0

if LS,D > LR_’D
otherwise

)

'In many MAC protocols such as the B-MAC [24] and the |IEEE
802.15.4 MAC, a unicast packet is (re)transmitted untihgesuc-
cessfully delivered or until the number of transmissionseexis a
certain threshold value (e.g., 8). For convenience, werdegach
individual transmission involved in transmitting a unicpacket as

a unicast-physical-transmission.



whereET X s, r is the ETX of the link fromS to R, Ls, p denotes
the distance from S to D, andr, p denotes the distance froRto

D. Zhanget al. [30] have shown that this local, geographic met-
ric performs in a similar way as the global, distance-veatetric
ETX for uniformly distributed networks; we will also show 8ec-

Proof sketch: Consider a nodé that is currently using a routg,
through forwarder/neighbaR,. Without loss of generality, let us
consider another rout®; through forwarder candidat®; .

If the quality of P, becomes better than both its own earlier qual-
ity and the current quality 0Py, nodeS will not know, due to the

tion 5 that phenomena observed through ETD based analydis an issue of biased link sampling, th&: has become better than,
measurements in Sections 3 and 4 carry over to cases where thend will continue using the suboptimal rous instead of the op-

measurements are based on ETX.

Experimental facility. For the experimental study in Sections 3,
4, and 5, we use the publicly available sensor network tdstae-
sei[12]. In an open warehouse with flat aluminum walls (see Fig-
ure 2(a)), Kansei deploys 98 XSM motes [11] in axI4grid (as
shown in Figure 2(b)) where the separation between neigdpor
grid points is 0.91 meter (i.e., 3 feet). The grid deploymeattern

(a) Kansuei

(b) 14x7 grid

Figure 2: Sensor network testbedKansel

enables experimentation with regular, grid topologiesywel as
random topologies (e.g., by randomly selecting nodes oftitto
participate in experiments). XSM is an enhanced version ichX

[2] mote, and each XSM is equipped with a Chipcon CC1000 [1]
radio operating at 433 MHz. To form multihop networks, ttas-
mission power of the CC1000 radios is set at -14dBm (i.e.,guow
level 3) for the experiments of this paper unless otherwigted.
XSM uses TinyOS [4] as its operating system. For all the exper
iments in this paper, the default TinyOS MAC protocol B-MAC
[24] is used; a unicast packet is retransmitted, upon trégssom
failure, at the MAC layer (more specifically, the TinyOS camp
nent QueuedSend) for up to 7 times until the transmissioocesds

or until the 8 transmissions have all failed; a broadcaskeiais
transmitted only once at the MAC layer (without retransioiss
even if the transmission has failed).

3. BIASED LINK SAMPLING AND ROUT-
ING CONVERGENCE

Taking the data-driven link estimation and routing methed L
ETX[30] as an example, we analyze in this section the corevrerg
properties of data-driven routing in the presence of bitiskdam-
pling (BLS) and traffic-induced dynamics (i.e., network dymics
introduced by varying network traffic patterns).

When network traffic pattern changes, the quality of a linkyma
become worse (e.g., when receiver-side interferenceases) or
better (e..g., when receiver-side interference decrgasésrns out
that these two types of link quality changes have differemgact
on data-driven protocols, as we show below.

PrROPOSITION 1. In the presence of biased link sampling and
when an unused route becomes better than the currently used o
the convergence of data-driven routing depends on theivelahange
in the quality of the unused route; routing converges to thinaal
if the quality of the unused route has deteriorated, othsewout-
ing does not converge. a

timal routeP; . Therefore, data-driven routing does not converge to
the optimal solution in this case.

On the other hand, if the quality d’; becomes worse than its
own earlier quality but better than the current qualityff, the
the current quality o, will be worse thanP;’s quality before the
network condition change. Sincekeeps in its routing tablé;’s
guality before the condition changg will regard P, being a better
route thanP, and will change taP;. OnceS starts to use, it re-
samplesP; and link estimation will converge to the latest quality
of Pr.

]

From Proposition 1, we can analyze the behavior of L-ETX in
cases of improving network conditions and deterioratingvoek
conditions separately. We first analyze the convergenadsphen
network condition deteriorates (i.e., link and route qyaivors-
ens). To this end, we first analyze the sample size requireimen
L-ETX for identifying the best forwarder. We assume thatETe
metric (i.e., the geographic-version of the distance-aeptotocol
L-ETX) is used since it enables us to have a closed-form isolut
as shown below.

PrROPOSITION 2. Given a sendef, the destinatiorD, and two
of S’s forwarder candidateg(; and K that are closer taD than .S
itself and whose corresponding unicast-physical-trassion reli-
ability is P; and P» respectively, the sample sizethat is suffi-
cient to distinguish the relative goodnessiof and K> at 100(1-
a)% confidence level 62~ “/Z(Ll\/Pl (A=P1)+Lay/Py(1- P2Dy2,

whereL; is the dlstance fron$ to D mlnus thathromKl toD, L,

is the distance fron$ to D minus that fromi; to D, and Z;_, /-

is the (Le/2)-quantile of the standard Gaussian variable N(0, 1).
a

Proof sketch: For a link with unicast-physical-transmission reli-
ability P that is calculated based eannumber of physical trans-
missions, the confidence interval (ClI) for the packet dejivate
at significance levek (i.e., at 100(1«)% confidence level) isP —

Zr—ayor) P P4 7y 0/ ZEP2) [16]. Thus, for the two
links with packet delivery raté’, and P> respectively, the corre-

sponding Cls are as follows:

Ccl, = P1 7 )2 /P1(1 Pl) P+ Z_ /2 Pl(l Pl)]
ClL = [PQ—ZI_Q/QW/%Z)P‘Z‘),PﬁZl_a/Q %fﬂ]

The Cls for the corresponding routing metric ETDs are troreeés
follows:

cr o= | - PL(1—Pp),’ l P (A-P
Ll(P1+Zl_a/2\/%) L1(P1—Zl_n/2\/%)
cry = | 1 ! ]

— ! —
L2(P2+Z1—a/2\/%2p2)) LZ(PZ*ZI—Q/Z\/%;IQ))

Without loss of generality, we assume that we take equal eamb
n of samples for both links (i.en1 = n2), and suppose that we
want to calculate the required sample sizeo thatK; is no worse



a forwarder candidate thali.. Then a sufficient condition [16] is
as follows:

1
Li(Pr — Z1_ay2

< 1
7&(17131)) Lo(Pe+ Z1_ay2

Py(1—P3)
o )

nz

which implies that

Zi—ay2(L1i/Pi(1 — P1) + Lo/ P2 (1 — P))
LiP — LoPs

Thus the minimum sample size required is

Z1—ay2(L1y/Pi(1 = P1) + Lay/Po(1 — P2))
LiP — LyP,

n>(

)2

( )?

]

To get numerical results on the sample size requirementpwe ¢
sider the case where the sender on the left end of the midalefro
Figure 2(b) needs to select the best next-hop forwarder grtien
set of receivers in the middle row, and the destination isafeay
from the sender but in the direction extending from the sealiag
the middle row to the right. (Phenomena similar to what we wil
present have been observed for other sender-receivertpaiysto
calculate the sample size required by the sender to idehgfpest
forwarder, we need to measure the unicast-physical-tresgm
reliability from the sender to each receiver. To this end, lete
the sender transmit 15,000 unicast packets to each of tee/ees
where each packet has a data payload of 30 bytes. Based agt pack
reception status (i.e., success or failure) at the receivee mea-
sure the unicast-physical-transmission reliability facle link. Us-
ing these data, we calculate the sample size required fopaony
every two links, and then the sample size required to idgttié
best forwarder is the maximum of the sample size requirefioent
pair-wise comparison.

To understand the potential impact of traffic-induced iieiemce
on sample size requirement, we randomly select 42 motesfout o
the light-colored (of color cyan) 6 rows of Figure 2(b) iaser-
ferers, with 7 interferers from each row on average. Each interfer
transmits unicast packets (of payload length 30 bytes) &stirth-
tion randomly selected out of the other 41 interferefdotéthat,
even though the overall traffic pattern in low-power wirslegn-
sor networks tends to follow certain regular patterns, é@wving
from sources to a common sink, the local traffic pattern addhe
neighborhood of a node tends to be much more irregular. We wil
also show in Section 5 that the phenomena observed via thk loc
random traffic patterns carry over to experiments wherecsaret-
work specific traffic patterns are studied.) The load of therfer-
ing traffic is controlled by letting interferers transmitgbats with
a certain probabilityl whenever the channel becomes available. In
our experiments, we measure the unicast-physical-trassoni re-
liability from the sender to its receivers whehis 0, 0.01, 0.04,
0.07, 0.1, 0.4, 0.7, and 1 respectively. Thus the intergetiaffic
pattern is controlled by in this case. (Phenomena similar to what
we will present have been observed for other interferinfi¢rpat-
terns, for instance, with different spatial distributiomdadifferent
number of interferers.)

Based on Proposition 2, we analyze the sample size requitsme
in the above interference scenarios, and Table 1 shows the me
dian sample size required to identify the best forwarder56 9
confidence level. We see that the number of required physical
transmission-samples tends to be small; for instance, yt ondy
take a very few number of unicasts to collect the required-sam
ples. Thisimplies that data-driven link estimation terasdnverge
quickly. The quick convergence in link estimation impliésit the

d 0[001|004|007|01]04]07]|1
Median
sample size| 4 3 5 4 5 7 514

Table 1: Median sample size required to identify the best for
warder at 95% confidence level

routing structure in L-ETX can converge to the optimal on&in
timely manner when network condition worsens (e.g., wher ne
work traffic load increases) to the degree that the optinmatgire
changes.

From Proposition 1, we know that, due to BLS, L-ETX may not
converge to the optimal solution when network conditioniiaves.
So, the questions atew this issue of potential divergence affects
routing optimality and how to address itVe explore answers to
these questions in the next section.

4. DYNAMICS OF BEST FORWARDERS

To provide guidelines on addressing the BLS issue in the-pres
ence of traffic-induced dynamics, we study in this section tiee
best forwarder of a node may change with traffic pattern. Vée fir
study the dynamics of best forwarder through mathematitallya
sis so that we can examine the issue in generic, differemankt
setups, and then we verify the analytical results througtbésl
based experimentation.

4.1 Mathematical analysis of best forwarders

To get closed-form solutions, we use the ETD metric to eval-
uate the goodness of different forwarder candidates as wvéndi
Section 3. We first present the analytical method and thenuhe
merical results for different network setups.

Analytical method. To evaluate the goodness of a forwarder can-
didate using the ETD metric, we need to analyze the packitdel
ery rate (PDR) of the corresponding link in the presence oédyic
traffic/interference patterns. To this end, we need to aeathe
interference at the forwarder candidate in different tcafienarios
so that we can calculate the signal-to-interference-asiserratio
(SINR) based on which we calculate the PDR.

To calculate the interference at a forwarder candidatedfwts
the packet receiver from the perspective of the sender),dapta
the interference model proposed by @tw:l. [25] to determine the
concurrent transmissions (and thus the interference) etaaork.

In Qiu’s model, the behaviors of IEEE 802.11 MAC in multi-hop
networks are modeled using a Markov chain where the siatthe
setS; of nodes that are transmitting concurrently at a certairtim
moment. To adapt Qiu’s model to the analysis of B-MAC, we need
to adapt the probability?: (m|S;) that a noden starts to transmit
when the system is at stateThis is because TinyOS B-MAC [4]
differs from 802.11 in how channel access is coordinatede @u
the limitation of space, we relegate to [31] the detailedva¢on

of the adapted model.

Using the adapted model, we can calculate the stationaty- pro
ability ; for each staté. Then, for each pair of transmittérand
receivers, the interference that concurrent transmissions have at

nodes is
RS

iit€S; jijE€S;,j#t

miPow(j, s),

where Pow(j, s) is the received signal strength atfor signals
coming fromj. Pow(y, s) can be calculated using the log-normal
path loss model as in [33]. Then, the SINR at receiyeenoted



by SINR(t, s), calculates as follows: the PDR and ETD in this setup. We see that PDR and ETD change
significantly with interference patterns, especially foks of lower
SINR(t,s) = Pow(t, s) : PDR. Yet the best forwarder remains rather stable: it is nade
No + Zi:tes,; Zj:jesi,jyét mi Pow(j, s) that is 5 meters away from the sender, except for the cases whe
d = 0.7 andd = 1 where the best forwarder is nodg that is 4
meters away from the sender. With other protocols (e.g.gesn
tion control) in place, a network usually works under loadcimu
lighter thand = 0.7; in fact, Nget al. [23] showed that the op-
timal traffic injection rated is 0.245 in a regular linear topology,
and the optimali will be even lower in common, two-dimensional
networks. Therefore, the optimal forwarder will not charigthe
network congestion level is well controlled (e.g., througinges-
Numerical results. Using the above models, we analyze the PDR tion control). Moreover, the ETD value of, is less than 5.51%
and ETD in different scenarios, including randomly disitéd and more than that ofi5; this implies that, even though a node may be
regularly distributed nodes, and for indoor and outdoorirenv unable to find the optimal forwarder when network condition i
ments. In our network setups, radio transmission powertiase  proves (i.e., interference level decreases), it may stitbkay for a
-14dBm, path loss exponent is set as 3.3 and 4.7 for indoor and node to use the suboptimal forwarder since its performaseery
outdoor environments respectively, and background neisetias close to the optimal.
-105dBm and -100dBm for indoor and outdoor environments re- . .
spectively. Given the high space complexity of Qiu's mods][ 4.2 Experimental analysis of best forwarders

we can only run in Matlab the adapted model with no more than To experimentally verify the analytical observations, vse the

44 transmitting nodes in our computer (which is a Dell Ogipl  data collected in Section 3 for network conditions in the #&in

GX620 with 4GB memory). Thus we run the model in networks of testbed. As in Section 3, we consider the case where the rsende

around 40 transmitting nodes. on the left end of the middle row of Figure 2(b) needs to seteet
Due to the limitation of space, here we only discuss the case pest next-hop forwarder among the set of receivers in thellmid

of indoor, randomly distributed interferers, and we refeéeiested row, and the destination is far away from the sender but irdthe

readers to [31] for other cases where similar phenomenatare o rection extending from the sender along the middle row taitjte.

served. We consider a network setup that is the same as wieat ha Figure 4 shows the PDR and ETD in different interferencéitra
presented in Section 3 except that 1) the grid spaté is7 and 2)

the distance between any two closest grid points is 1 metern,T
we let the node at the left end of the middle row serve as thédesen 1

where Ny is the background noise. Accordingly, we can calculate
the packet delivery rat€ DR(t, s) from ¢ to s as a function of
SINR(t, s), using the model proposed by Zunigaal. [33], and
thus we can calculate the corresponding ETD metric valugirida
derived the ETD metrics for each forwarder candidate of aenod
we can determine which is the best forwarder with the minimum
ETD metric value.

i i . ' +d=0
the rest nodes in the middle row serve as forwarder candidaitel oel ¥ #d=0.01
the destination is far away from the sender in the directidared- ' ) ¥ [7d=004
ing from the sender to the forwarder candidates. Figure 3wsho é‘ 0.6 e b Xg - 827
S -x-d = 0.4
3 0.4t 0d=07
1 = od=1
0.2
0.8
0 =

[ 0 5 10 15

E 0.6 distance (meter)

§0.47 (a) PDR

0.2
% 5 10 15
Distance (meter)
(a) PDR e
w
+d=0 o
+d=0.01
10° |24 =004 -8 :
- SOAL 1
5 ©d=007 Q%gs distance (meter)
e K (b) ETD
10° Figure 4: PDR and ETD in the Kansei testbed with 42 ran-
domly distributed interferers
Neighbor gistance progr]é(s)s (meter)
(b) ETD scenarios. The results are more complex than in analysiksein t
sense that the PDR and ETD are not monotonic functions of the

Figure 3: PDR and ETD in an indoor environment with 42 ran- sender-forwarder-distance due to real-world factors saischard-
domly distributed interferers ware heterogeneity. Nonetheless, the dynamics of the best f

warder assumes a similar pattern: despite the huge varsatio



PDR across different interference scenarios, the bestafalsy is We use a publicly available event traffic trace for a field sens
the node that is 9.15 meters (i.e., 30 feet) away from theegeind network deployment [3] to generate dynamic events in outystu

all the scenarios except for the case wilea 1; whend = 1, the Since the traffic trace is collected from 49 nodes that aréogted
best forwarder is 2.74 meters (i.e., 9 feet) away from thelsen ina7 x 7 grid, we randomly select and use &7 subgrid of the
This result is rather consistent with the indoor, analytresults Kansei testbed (as shown in Figure 2(b)) for experimematidhe
as shown in Figure 3, even though there is slight differemites mote at one corner of the subgrid serves as the base stdton, t
to differences in network setup and environment conditioAs other 48 motes generate data packets according to difféegnt
we have discussed earlier, well-controlled traffic load uitirhop fic patterns, and the destination of all the data packetseibéze
wireless networks is usually much lighter than 0.7 and 1,[28]s station.
the best forwarder remains the same across different énearée We use the event traffic trace mentioned above, but we control
scenarios. We discuss exceptional scenarios of extrefffie tocad the set of nodes that actually generate source packets tookton
in Section 6. the event size, through which we generate dynamic eventse Mo
specifically, we study the following dynamic events whictmizon
4.3 Summary 7 event configurations:

From the above mathematical and experimental analysiafor r
dom and grid topologies and for indoor and outdoor enviramsye
we observe that the best forwarder remains quite stabletboegh where each configuration specifies the subgrid of traffic casur
PDR (and even ETD) changes with dynamic traffic patternsnEve For instance, 3 x 3” specifies that the nodes in the farthést 3
though the best forwarder may change when traffic load dye®mi  subgrid from the base station generate event traffic. ~Fdn eac

1xXx1—-3%x3—=5x5—-7Tx7T—5x5—-3x3—1x1

passes through a threshold traffic load value, the best fdewae- event configuration, we generate the associated event 48
mains the same for a wide range of traffic scenarios. An im&iit  measure the performance of L-ETX for this event configuratio
explanation for this high stability in best forwarder, imt@st to Examining the routes taken by packets from each node, we ob-
the much more dynamic link reliability and routing metridue, serve that there are very few route changes during the whpkere

are that there is usually a guard margin between the routielg m  iment. For instance, Table 2 shows the statistics of compatie
ric values of the best forwarder and other forwarders, aat] tue

to the positively correlated impact that each interfersighal has Consecutive] Same| Diff. route, same| Increased | Decreased
on the best and other forwarders, it may take a significamghan routes hop length hop length | hop length
traffic (and thus interference) pattern to overcome thedymaargin Radio (%) | 99.98 0 0 0.02

as we have seen in our analysis. That is, the guard margirebatw
the best forwarder and the other forwarders tends to maskthe ~ Table 2: Routing stability in the presence of dynamic events
pact of traffic-induced dynamics. grid network
In the varieties of scenarios we studied, moreover, thestiule
value is either very low (e.g., less than 0.07) [31] or veghh(e.g.,

greater than 0.7). When the threshold load is low, it doeswait routes taken by every two consecutive packets from a same: nod
ter much even if routing does not converge to the optimal éoder 99.98% of the time, consecutive packets use the same route, a
when network traffic load decreases to pass the low thresiatle; only 0.02% of the time the route changes to be a longer one. The
this is because the chosen suboptimal forwarder may welldsec ~ high stability of routes in the presence of dynamic traffiteras

to optimal in performance, and optimality is less of a conder are due to the following reasons: 1) estimation in L-ETX isyve
light traffic load (when it is easy to ensure packet delivesijar accurate and stable [30]; and 2) the best forwarder doeshaoge
bility) [31]. When the threshold load value is high, it isesrthe much across different network traffic conditions as disedsis
case that we would expect to see network traffic load excgetim Section 4.

threshold in practice when other protocols are in place ttrob Because of the stability in routing, packet delivery perfance

the network congestion level, and thus the best forwardefstéo is rather consistent across similar network setups. Figwsieows

remain the same across different admissible traffic scemari
In the next section, we corroborate these observations &mex

ining the behaviors of L-ETX in different dynamic traffic patns 00— D 8 | 8 D ]

and network setups. We discuss in Section 6 how to address the
exceptional cases where best forwarders may change in aamann
that significantly affect network performance. 90k

Event reliability (%)

5. ROUTING WITH DYNAMIC TRAFFIC
PATTERNS

Having analyzed the convergence behaviors of data-driveta r
ing and the dynamics of best forwarders, we experimentatijue
ate the behaviors of L-ETX in the presence of three typesrefamet- Figure 5: Event reliability for dynamic events: grid networ k
specific dynamic traffic patterns: dynamic events, dynaneig-p
odic data, and mixed dynamic events and periodic data. Ve als
use both grid and random network topologies in this expertaie the boxplot of event reliability for each event configurati@and
study. Due to the limitation of space, here we only discuss th Table 3 shows the median event reliability and its 95% confide
case of dynamic events and grid network topology, and we refe level confidence interval (Cl) in different configurationdVe see
the readers to [31] for other cases (e.g., random networkdgy) that, despite random variations, the event reliabilitydonfigura-
where similar phenomena are observed. tions #3 and #5 are similar to each other, and their Cls gpevith

85

#L #2 #3 #4 #5 #6 #7



Config | Median (%) Cl (%) quently, biased-link-sampling is not an issue in L-ETX-te to
z; 188 (5(9180241(1)%) the _receiver_—assisted, data_-driven link esti_mation. WelLHETX-
#3 97.92 (96.92, 98.62) rcv in the dlffe_rent dynamlg traffic scenarios and networwp_;e
#4 91.85 (91.3, 92.39) discussed earlier, and we find out that, similar to L-ETXy¢his
#5 98 (96, 99) very little route changes and the best forwarders remabiestie-
#6 100 (98.94, 100) spite the traffic dynamics.

#7 100 (100, 100)

Table 3: The median event reliability and its 95% confidence 6. IMPLICATIONS FOR PROTOCOL DE-

level confidence interval for dynamic events: grid network SIGN

We see from the findings of Sections 3, 4, and 5 that, despite
BLS, L-ETX converges quickly when network condition dederi
each other. A Wilcoxon Rank Sum [15] test shows that configura rates (e.g., due to increased traffic load). For the wideaarfigly-

tions #3 and #5 have equal median event reliability at the 8686 namic traffic scenarios and network setups we studied, veesals
fidence level. The same observation applies to other sitnéfic that even though 1) data-driven protocols may, theoréyicpleak-
patterns, that is, configurations #2 and #6, and configuraitii ing, not converge to the optimal solution when network ctiodi
and #7. improves, e.g., due to decreased traffic load, and 2) linkero
We also examine the detailed route information, for instéaiioe ties do change significantly as traffic pattern changes, éiséfor-
hop length and the end-to-end transmission count of routkss. warders remain quite stable (in which case BLS is not a pmble

ing Wilcoxon Rank Sum tests, we find out that, at 95% confidence any more), or the optimal forwarder chosen for heavy tratiad|
level, routes chosen by nodes equal distance away from the ba may still be a very good suboptimal forwarder for lighterffica

station have equal median hop length and end-to-end tras&mi load [31].
count in similar network setups (e.g., configurations #3 #&y ~ Inour study, we have examined a wide spectrum of dynamie traf
For instance, Figure 6 shows the (statistically) similad-&mend fic scenarios (e.g., dynamic events, dynamic data collecaod

their mix) and network setups (e.g., grid and random nets)ork
but we understand that we have not covered all the scenduas t
~+Config #3) may exist in practice. For the mostly static deployment ades
Config #5 we studied, however, our findings on the high stability of dipe
timal routing structure in spite of dynamics of link propest are
themselves not obvious and shed new light on how to address th
BLS issue in mostly static networks such as those for remiote e
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6r 1 vironmental monitoring. On one hand, we are assured of td go

a { | performance of L-ETX in a variety of traffic conditions evémie
1) Tt 1{ do not design special mechanisms to address the BLS issu&eOn

2 50 100 150 200 other hand, to address the rare cases where improved netark

Samples dition leads to significantly worse-than-optimal perfora (e.g.,

due to slow but significant changes in environment condit{@d]),

a sender can proactively sample unused links/routes, ofothe
warder candidates can proactively overhear the sendeed@as-
missions to estimate the latest link quality; considerimg quick
convergence of L-ETX and the low probability or frequencgtth
improved network condition may lead to significantly wotkan-
optimal performance, however, the proactive sampling avdoder-
assisted receiver-side link estimation can be executeérgtlow
?requency to reduce the overhead of proactive sampling er-ov
hearing. This is in contrast to the existing approaches irFLO
[29] and SPEED [14] where a node periodically samples unused
Verification.  To corroborate the fact that the best forwarders are links/routes by using them to deliver data packets, whictdse
actually stable in the presence of the different dynamitfi¢race- to reduced routing performance due to frequent samplindnef t
narios discussed above, we implement a variant of L-ETX¢clwhi  links/routes that are not or not even close to be optimal. e h
we callL-ETX-rcv L-ETX-rcv is the same as L-ETX except that  observed through experimentation that the periodic, phitistic

the forwarder candidates of a node always try to overheantire sampling in LOF and SPEED can lead to bad performance, espe-
cast packet transmissions from the node. Note that the eadriy cially when traffic load is high (e.g., the x 7 event traffic trace

in L-ETX-rcv is similar to that in EAR [17], but unlike in EAR [3]).

which studied 802.11b networks with the RTS-CTS mechanism, L-ETX can deal with dynamics such as node/link failure orenod
the B-MAC used in our study does not use RTS-CTS handshake, join in a straightforward manner. Node or link failure canriee

Figure 6: Time series of route transmission counts for a nod8é
grid-hops away from the base station: dynamic events and gt
network

route transmission counts for the routes taken by packets &
node 9 grid-hops away from the base station in configuratiis
and #5. The same observations apply to parameters such as th
per-hop geographic distance and the per-hop transmissiont of

links used in similar network setups.

and thus overheard transmissions by a nfde L-ETX-rcv have garded as the case where the quality of the associated)litéis-
the same properties as those of unicast transmissionsee$tr riorates (in fact, to be unusable), in which case L-ETX coges
f itself. Therefore, a forwarder candidaten L-ETX-rcv can de- quickly; node join can be handled effectively through thitiah
termine, based on the overheard data transmissions, g Ik link sampling procedure when a new node and the associaes] i
properties for unicast data transmissions from the sesnderit- first become up. Besides traffic-induced dynamics, our sindy
self, and thenf can share this information witk so thats can this paper has not focused on other network dynamics sucbdes n

make the right decision in choosing the optimal forwardernsz- mobility [9] and quickly changing environment conditionBven



though we expect that the quick convergence and high giabfii
L-ETX routing may also help us design light-weight apprascto
address these types of network dynamics, detailed studyiofst
beyond the scope of this paper, and we relegate it as a patrof o
future work.

7. RELATED WORK

Data-driven link estimation where MAC feedback for unicast
data transmissions is used for estimating unicast linkgnttgs has
been used in several sensor network routing protocols 4,311,
19, 20, 29, 30], and it has been shown that data-driven litiknas
tion significantly improves estimation accuracy and rogiferfor-

mance as compared with beacon-based approach [30]. Nenethe

less, the impact of biased link sampling (BLS) on routingropt-

ity and the severity of the BLS issue in the presence of nétwor
dynamics are mostly unexplored. Lack of deep understanoling
these issues has led to ad hoc approaches to explicitly dicithp
addressing the BLS issue. As a first step toward systemati- tr
ment of the BLS issue in data-driven link estimation and irat
we have studied in this paper the routing convergence arichalpt
ity in the presence of traffic-induced dynamics, and the figsli
provide new insight into the BLS issue and suggest altaresiio
existing approaches in data-driven link estimation andingu

Ramachandramt. al [26] studied routing stability (based on
metric ETT [10]) in static wireless mesh networks. The stirdy
[26], however, used broadcast-beacon based link estimit&thod,
and it did not consider the errors in beacon-based link @dim.
The study on routing stability in [26] was also based on liokliy
data collected in the absence of data traffic, and it did nosicier
the impact of network traffic pattern on link and path proesrand
thus not the impact of traffic-induced dynamics. [@as:l [8] stud-
ied the stability of different routing metrics, but they didt focus
on routing stability which we have shown to be different frtme
stability of individual routing metrics. It was not the fazof [8] to
examine the BLS issue in data-driven link estimation andingu
either.

Lin et. al [21] proposed an adaptive transmission power control
mechanism that controls radio transmission power levehsuee
consistent link properties in the presence of environmgnéachics.
We have mainly focused on intra-network, traffic-inducedaiy-
ics in this paper, and we did not focus on environment dynamic
Nonetheless, the adaptive transmission power control amésim
of [21], if deployed, will make the findings of this paper aippble
to a broader sensor network scenarios including those wittkty
changing environment conditions.

8. CONCLUDING REMARKS

We have studied the open, unexplored issue of biased link sam
pling (BLS) in data-driven link estimation and routing. Fowide
range of traffic patterns and network setups we studied, w&e di
cover that the optimal routing structure remains quitelstelbspite
the significant variations in link properties and route reatalues.
For the rare cases where the optimal routing structure duasye,
we prove that, despite the BLS issue, data-driven link exton
and routing is guaranteed to quickly converge to the optstrak-
ture when network conditions deteriorate; when networlddmns
improve, we empirically show that the optimal structuretieavy
traffic load tends to remain a good suboptimal structureiftntér
traffic load, even though data-driven routing may not cogeen

the optimal. These findings shed new light on the BLS issue and

provide the foundation for a simple, light-weight mechamisf ad-
dressing the BLS issue in the presence of traffic-inducedriyes.

The highly stable routing structure in L-ETX provides a $ab
consistent infrastructure for data transport and can hedpre pre-
dictable QoS in the presence of traffic dynamics; detailadysof
this will be an interesting topic for future research. We énéo-
cused on traffic-induced dynamics in this paper, detailedysof
how other network dynamics (such as node mobility and quickl
changing environmental conditions) affect the stabilityoptimal
routing and data-driven link estimation is also a part of foare
work.
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