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Abstract—Wireless sensor networks are envisioned to be an
integral part of cyber-physical systems, yet wireless networks are
inherently dynamic and come with varieties of uncertainties. One
such uncertainty is wireless communication itself which assumes
complex spatial and temporal dynamics. For dependable and
predictable performance, therefore, link estimation has become
a basic element of wireless network routing. Several approaches
using broadcast beacons and/or unicast MAC feedback have been
proposed in the past years, but there still lacks as a systematic
characterization of the drawbacks and sources of errors in beacon-
based link estimation in low-power wireless networks, which leads
to ad hoc usage of beacons in routing. Using a testbed of 98 XSM
motes (an enhanced version of MICA2 motes), we characterize
the negative impact that link layer retransmission and traffic-
induced interference have on the accuracy of beacon-based link
estimation, and we show that data-driven link estimation and
routing achieves higher event reliability (e.g., by up to 18.75%)
and transmission efficiency (e.g., by up to a factor of 1.96) than
beacon-based approaches. These findings provide solid evidence
for the necessity of data-driven link estimation and demonstrate
the importance of addressing the drawbacks of beacon-based
link estimation when designing protocols for low-power wireless
networks of cyber-physical systems.

Index Terms—Low-power wireless networks, sensor networks,
link estimation and routing, data-driven, beacon-based

I. I NTRODUCTION

After the past decade of active research and field trials,
wireless sensor networks have started penetrating into many
areas of science, engineering, and our daily life. They are also
envisioned to be an integral part of cyber-physical systems
(CPS) such as those for alternative energy, transportation,
and healthcare. In supporting mission-critical, real-time, closed
loop sensing and control, CPS sensor networks represent a
significant departure from traditional sensor networks which
usually focus on open-loop sensing, and it is critical to ensure
dependable and predictable network performance in CPS sensor
networks.

Nonetheless, wireless sensor networks are inherently dy-
namic and susceptible to the impact of a variety of uncer-
tainties. One such uncertainty is wireless communication itself
which assumes complex spatial and temporal dynamics [1],
[2], [3], [4]. Wireless communication properties significantly
affect many sensor network services, and one such service is
wireless routing, which is the basis of cross-node coordination
in CPS sensor networks. For dependable and predictable per-
formance, therefore, estimating link properties has become a

basic element of routing in wireless networks. One commonly
used approach of link estimation is letting neighbors exchange
broadcast beacon packets, and then estimating link properties
of unicast data transmissions via those of broadcast beacons.
Nonetheless, there are significant differences between unicast
and broadcast link properties [5], [6], and it is difficult to
precisely estimate unicast link properties via those of broadcast
due to temporal correlations in link properties and dynamic,
unpredictable network traffic patterns [7], [8].

The research community has proposed mechanisms to ame-
liorate the impact of the differences between broadcast and
unicast link properties [5], [6], and MAC feedback carrying
information about unicast data transmissions has also been
used in link estimation [9], [10], [11], [12], [13], [14], [8].
For low-power wireless networks, however, there still lacks a
systematic characterization of the drawbacks and sources of
errors in estimating unicast properties via those of broadcast;
some protocols [13], [14] use MAC feedback mainly for saving
energy in link estimation (e.g., by reducing the frequency of
broadcast beacon exchanges), and some protocols [9], [11],
[14] use both broadcast-based and MAC-feedback-based link
estimation. Thus one open question is, from the perspectiveof
estimation accuracy, whether broadcast beacons should be used
as the basis of link estimation in low-power wireless networks
such as sensor networks. This is an important question because,
as we discuss later in the paper, link estimation accuracy
significantly affects data delivery reliability and transmission
efficiency which are important for mission-critical networked
sensing and control in CPS.

Focusing on the accuracy of estimating unicast data transmis-
sion properties, our objectives in this paper are to characterize
the limitations of beacon-based link estimation, to experimen-
tally quantify the impact that link layer retransmission and
traffic-induced interference have on beacon-based estimation,
and to comparatively study beacon-based and data-driven link
estimation methods in low-power wireless networks.

Using a testbed of 98 XSM motes, we characterize the
significant, unpredictable errors in estimating unicast properties
via broadcast beacons, and we examine the impact of interfer-
ence patterns on link properties in low-power wireless sensor
networks. We also demonstrate the complex, unpredictable
nature of temporal correlations in link properties, which,to-
gether with uncertainties in interference patterns, motivates the
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approach of data-driven link estimation and routing. Using
traffic traces for both bursty event detection and periodic data
collection and using both grid and random network topologies,
we experimentally demonstrate that data-driven link estimation
and routing greatly improves the event reliability (e.g., by
18.75%) and transmission efficiency (e.g., by a factor of 1.96)
of beacon-based approaches. These findings suggest that, even
though broadcast beacons are useful in many aspects of wireless
network design such as neighborhood management as well
as routing loop detection and removal, beacons have inherent
drawbacks when serving as the basis of fine-grained estimation
of unicast data transmission properties; these findings also
demonstrate the benefits of data-driven link estimation and
routing, thus suggesting that data-driven link estimationbe
a basic principle for protocol design in low-power wireless
networks.

The rest of the paper is organized as follows. In Section II,
we systematically characterize the drawbacks of beacon-based
link estimation and examine the necessity of data-driven link
estimation and routing in low-power wireless networks. We
compare beacon-based and data-driven link estimation and rout-
ing in Section III. We present additional performance evaluation
results in Section IV. Finally, we discuss related work in
Section V and make concluding remarks in Section VI.

II. W HY DATA -DRIVEN LINK ESTIMATION

In this section, we characterize, via theKansei [15] sensor
network testbed, the sources of errors and inherent difficulties
in predicting unicast data transmission properties via broadcast
beacons in low-power wireless networks. We first present the
experiment design and then the experimental results.

A. Experiment design

In an open warehouse with flat aluminum walls (see Fig-
ure 1(a)), Kansei deploys 98 XSM motes [16] in a 14×7 grid
(see Figure 1(b)) where the separation between neighboring
grid points is 0.91 meter (i.e., 3 feet). The grid deployment

(a) Kansei (b) 14×7 grid

Fig. 1. Sensor network testbedKansei

pattern enables experimentation with regular, grid topologies,
as well as random topologies (e.g., by randomly selecting nodes
of the grid to participate in experiments). XSM is an enhanced
version of Mica2 [17] mote, and each XSM is equipped with a
Chipcon CC1000 [18] radio operating at 433 MHz. To form
multihop networks, the transmission power of the CC1000
radios is set at -14dBm (i.e., power level 3) for the experiments
of this paper unless otherwise stated. XSM uses TinyOS [19]
as its operating system. For all the experiments in this paper,

the default TinyOS MAC protocol B-MAC [20] is used;1 a
unicast packet is retransmitted, upon transmission failure, at the
MAC layer for up to 7 times until the transmission succeeds or
until the 8 transmissions have all failed; a broadcast packet is
transmitted only once at the MAC layer (without retransmission
even if the transmission has failed). For convenience, we call
the individual transmissions involved in transmitting a unicast
packet the unicast-physical-transmissions.

To demonstrate the difficulty in precisely estimating unicast
properties via those of broadcast beacons, we let the mote
on the left end of the middle row (shown as black dots in
Figure 1(b)) be thesenderand the rest 13 motes of the middle
row as thereceivers, and we measure the unicast and broadcast
properties of the links between the sender and individual
receivers. (We have observed similar phenomena as what we
will present in Section II-B for other sender-receiver pairs.) The
sender transmits 15,000 broadcast and 15,000 unicast packets
to each of the receivers with a 128-millisecond inter-packet
interval, and each packet has a data payload of 30 bytes.
Based on packet reception status (i.e., success or failure)at
the receivers, we measure unicast and broadcast link properties.
Note that, in practice, broadcast beacons are transmitted at a
much larger interval (e.g., 30 seconds) than 128ms, and we
use 128ms mainly for saving experimentation time. The phe-
nomena observed with the 128ms inter-beacon interval applies
to cases where larger intervals are used since wireless channel
coherence-time is much shorter than 120ms in general [21],
for instance, being∼4ms; we will also show that the observed
drawbacks of beacon-based estimation are corroborated through
multi-hop routing experimentation in Section III.

To examine the impact of traffic-induced interference on link
properties and link estimation, we randomly select 42 motesout
of the light-colored (of color cyan) 6 rows asinterferers, with 7
interferers from each row on average. Each interferer transmits
unicast packets (of payload length 30 bytes) to a destination
randomly selected out of the other 41 interferers. The load of
the interfering traffic is controlled by letting interferers transmit
packets with a certain probabilityd whenever the channel
becomes clear. Nget al. [22] showed that the optimal traffic
injection rate is 0.245 in a regular linear topology, and the
optimal traffic injection rate will be even lower in general,
two-dimensional network. Thus our measurement study focuses
more on smallerd’s than on larger ones, but we still study larger
d’s to get a sense on how systems behave in extreme conditions.
More specifically, we use the followingd’s in our study: 0, 0.01,
0.04, 0.07, 0.1, 0.4, 0.7, and 1. Thus the interference pattern
is controlled byd in this case. (Note that phenomena similar
to what we will present in Section II-B have been observed
for other interfering traffic patterns, for instance, with different
spatial distribution and different number of interferers.)

B. Experimental results

Unlike in 802.11 networks where unicast and broadcast
differ in a variety of ways such as MAC coordination method
(i.e., whether data transmission is preceded by the RTS-CTS

1Since we do not focus on power management in this paper, we configure
B-MAC to run in full duty-cycle in our study.
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handshake) and transmission rate, the main difference between
unicast and broadcast in mote networks (where TinyOS B-
MAC or 802.15.4 MAC is usually used) lies in link layer
error control. That is, upon transmission failure, a unicast
packet is usually retransmitted at link layer to improve delivery
reliability, whereas a broadcast packet is not retransmitted. This
link layer retransmission affects the accuracy of estimating
unicast link properties via those of broadcast beacons. The
accuracy of beacon-based link estimation is also degenerated
by traffic-induced interference. In what follows, we present our
empirical results on the impact of link layer retransmission and
traffic-induced interference on the accuracy of beacon-based
link estimation.

Impact of link layer retransmission. In beacon-based link
estimation, unicast ETX (i.e., the expected number of physical
transmissions taken to successfully deliver a unicast packet)
along a link is estimated as1

Pb

, wherePb is the broadcast relia-
bility along the link. Note that, for simplicity of discussion, here
we only consider the ETX along one direction of a link, but the
observations are applicable to the case where ETX is computed
based on bi-directional link properties, and we corroborate this
in our routing experimentation in Section III where the ETX
computation considers bi-directional link properties. Based on
the measured data on broadcast reliability and unicast ETX in
our experiments, Figure 2 shows the errors in estimating unicast
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Fig. 2. Errors in estimating unicast ETX via broadcast reliability. Notethat, due
to factors such as radio and environment variations, properties of the wireless
links in a specific network setup are usually not monotonic functions of the
sender-receiver distance [4]; accordingly, we will observe that the phenomena
presented in this paper tend not to be monotonic with respectto distance.
We have also observed that phenomena studied in this paper are complex and
tend not to be correlated or monotonic with other parameterssuch as receiver-
side SINR or link reliability. In this paper, we use distancemainly to identify
individual links associated with a sender, and for clarity of presentation, we do
not present confidence intervals unless they are necessary for certain claims of
the paper.

ETX via broadcast reliability, where the error is defined as
the estimated unicast ETX minus the directly measured unicast
ETX and then divided by the measured unicast ETX. We see
that the estimation error tends to be large, e.g., up to 88.78%.
The estimation error also changes with interference pattern,
which makes it difficult to compensate for the estimation errors
in practice since interference patterns may well be unknown
and unpredictable. Note that, even though the estimation error
does have the general trend of decreasing with increasing link
reliability (as can be seen by examining Figures 2 and 5

together) and the estimation errors tend to be relatively small
when links are reliable, this fact does not help beacon-based
link estimation in practice because the routes with the smallest
ETX tend to have less-than-perfect-reliable but longer links as
observed in Section III of this paper and [8], [23].

Given a certain interference pattern (more specifically, in-
terfering traffic load in this case), one major cause for the
significant errors in beacon-based link estimation is the tem-
poral correlation among unicast-physical-transmissions, that is,
the fact that the status (i.e., success or failure) of the individ-
ual physical transmissions of a unicast are correlated due to
short-term, bursty variation in environment-induced fading and
traffic-induced interference. (Note that, independent of and in
parallel with our work, short-term, bursty variations in wireless
link properties have also been observed in [24].) As a result
of this short-term temporal correlation, the probability of a
physical transmission failure conditioned on an immediately
preceding physical transmission failure is higher than the
probability of a transmission failure at a random moment in
time. Given that broadcast beacons are usually well separately
in time when compared with the interval between consecutive
physical (re)transmissions involved in a unicast, the reliability
of unicast-physical-transmissions tends to be lower than that of
broadcast beacons. This conjecture is corroborated by Figure 3
where we show the difference between the reliability of each
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Fig. 3. The mean reliability of each unicast-physical-transmission minus that
of broadcast

unicast-physical-transmission and that of broadcast in different
interference scenarios. As a result, beacon-based estimation
tends to underestimate unicast ETX, which can also be observed
from Figure 2. As we will discuss shortly, the temporal corre-
lation among unicast-physical-transmissions is also affected by
interference pattern, thus the error in beacon-based estimation
changes with interference pattern as we see from Figure 2.

To further understand the temporal correlation among
unicast-physical-transmissions, we analyze the autocorrelation
coefficientρ among the individual physical transmissions of
unicasts, and examine its relation to time, interference pattern,
and link properties. Given the observationsx1, x2, . . . , xn of
a time series, the autocorrelation coefficientρ(h) for lag h

(−n < h < n) [25] is

ρ(h) =
γ̂(h)

γ̂(0)
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where

γ̂(h) = 1

n

∑
n−|h|
t=1

(xt+|h| − x̄)(xt − x̄)
x̄ = 1

n

∑
n

t=1
xt

For a link of length 9.15 meters (i.e., 30 feet), Figure 4(a)
shows the autocorrelation coefficients for the status of unicast-
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(a) Autocorrelation coefficient for a link of length 9.15
meters
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(b) Autocorrelation coefficient for lag 4

Fig. 4. Autocorrelation coefficient for the status of unicast-physical-
transmissions

physical-transmissions. We see that autocorrelation coefficient
decreases as the lagh increases; this is because the correlation
between individual unicast-physical-transmissions is due to
short-term, bursty variation in environment-induced fading and
traffic-induced interference. We also see that autocorrelation
coefficient tends to decrease as interference load increases,
partly due to the increased degree of randomization in traffic-
induced interference as a result of increased load of random
interfering traffic. For different links in different interference
scenarios, Figure 4(b) shows the autocorrelation coefficients for
lag 4. We see that autocorrelation coefficient also varies across
links. (Similar phenomena are observed for other links and
lag values.) The complex correlation patterns among unicast-
physical-transmissions partly explain why it is difficult to
address the difference between broadcast and unicast-physical-
transmission and thus the significant errors in beacon-based
estimation.

Note that the negative impact of temporal link correlation
on beacon-based estimation remains even if we use opportune
transmission [24] which delays retransmission after a unicast-
physical-transmission failure while trying to transmit asmany
packets as possible when channel condition is good. This is

because, in the case of opportune transmission, the reliability
of unicast-physical-transmissions will be higher than that of
broadcast beacons, which will make beacon-based estimation
overestimate link ETX (in contrast with the underestimation
error when opportune transmission is not used).

Impact of traffic-induced interference. Figure 5 shows
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Fig. 5. Unicast ETX in different interference scenarios

the network conditions, in terms of unicast ETX, in different
interference scenarios. We see that, as interference changes,
unicast ETX changes significantly (e.g., up to 32.44), and
unicast ETX tends to increase with increasing interference
traffic load. In event-detection sensor networks [26], there is
no data traffic in the network most of time, yet a huge burst of
data packets are generated within a short period of time (e.g., a
few seconds) once an event occurs. Therefore, network traffic-
induced interference and thus unicast ETX tend to vary signifi-
cantly depending on whether there is an active event. To reduce
control overhead, broadcast beacons are usually exchangedat
low frequencies (e.g., once every 30 seconds) in practice, thus
the network conditions experienced and sampled by broadcast
beacons may well reflect those in the absence rather than in the
presence of bursty event traffic. Consequently, beacon-based
estimation may well lead to significant sampling errors (i.e.,
broadcast beacons fail to sample the network conditions fordata
transmissions) in event-detection sensor networks. Note that
broadcast beacons will still be useful in event-detection sensor
networks for purposes such as maintaining routing topology
and disseminating control information (e.g., results of link
estimation), even though they should not be used as the basis
of link estimation. This implies that we should clearly identify
the roles that beacons play in routing, and detailed study ofit
should be a worthwhile future work to pursue.

Summary. From the testbed based experimental analysis,
we see that beacon-based link estimation introduces significant
estimation errors in low-power wireless networks such as the
XSM mote networks. Unlike in [8] where MAC feedback does
not indicate the number of physical transmissions for a unicast,
the MAC components of mote networks expose the number
of physical transmissions for each unicast, and this enables
us to derive the status of each unicast-physical transmission
and thus the properties of unicast-physical-transmissions such
as their reliability and correlation as shown in Figures 3 and
4. These new observations give insight into the complexity of



5

temporal correlation among unicast-physical-transmissions and
the impact of interference patterns, which represent inherent
difficulties in beacon-based link estimation and thus motivate
the necessity of estimating unicast properties via feedback
information about unicast data transmissions themselves.Note
that, even though temporal link correlation has been well
studied in the literature [24], [27], [7], this paper, to thebest
of our knowledge, is the first to examine the temporal corre-
lation among unicast-physical-transmissions and its relation to
interference pattern.

III. ROUTING PERFORMANCE

Having discussed the inherent drawbacks of beacon-based
link estimation in Section II, we experimentally compare the
performance of beacon-based and data-driven link estimation
and routing in this section. We first present the methodology
and then the experimental results.

A. Methodology

We use a publicly available event traffic trace for a field
sensor network deployment [28] to evaluate the performance
of different protocols. Since the traffic trace is collectedfrom
49 nodes that are deployed in a7× 7 grid, we randomly select
and use a 7×7 subgrid of the Kansei testbed (as shown in
Figure 1(b)) in our experiments. To form a multi-hop network,
we set the radio transmission power at -14dBm (i.e., power level
3). The mote at one corner of the subgrid serves as the base
station, the other 48 motes generate data packets accordingto
the aforementioned event traffic trace, and the destinationof all
the data packets is the base station.We also evaluate protocols
with other traffic patterns, e.g., periodic data traffic, andother
network setups, e.g., random networks. We observe phenomena
similar to what we will present, but we relegate the detailed
discussion to Section IV.

To understand the importance and benefits of data-driven
link estimation and routing, we study the performance of the
following link estimation and routing protocols:2

• ETX: a distance vector, beacon-based routing protocol
whose objective is to minimize the expected number of
transmissions (ETX) from each source to its destination.
The ETX metric is estimated based properties of broadcast
beacons. This is similar to the protocol proposed in [23].

• RNP: same as protocol ETX except that the ETX metric
is estimated as therequired number of packets(RNP)
[27] which tries to capture the temporal correlation in link
properties.

• L-ETX: a distance-vector routing protocol whose objective
is to minimize the ETX from each source node to its desti-
nation. The ETX metric of each link (and thus each route)
is estimated via unicast MAC feedback on the transmission
status (i.e., success or failure) and the number of physical-
layer transmissions taken to deliver each unicast packet.
In L-ETX, periodic, broadcast beacons are never used.
We use the approach ofinitial link sampling [8] to jump-
start the routing process, where a node proactively takes

2In this paper, we sometimes use the same name for the protocol, the
estimation method, and the routing metric. The context of its usage will clarify
its exact meaning.

7 samples of MAC feedback (by transmitting 7 unicast
packets) for each of its candidate forwarders and then
chooses the best forwarder based on the initial sampling
results.

Note that, for ETX and RNP, we consider bi-directional link
reliability as proposed in [23] and [27] respectively, and the
per-node beaconing frequency is set as one beacon every 30
seconds.

For each protocol we study, we ran the event traffic trace se-
quentially for 40 times, and we measure the following protocol
performance metrics:

• Event reliability (ER): the number of unique packets
received at the base station divided by the total number of
unique packets generated for an event. This metric reflects
the amount of useful information that can be delivered for
an event.

• Transmission efficiencyas measured by thenumber of
transmissions per packet delivered (NumTx): the total
number of physical transmissions incurred in delivering
packets of an event divided by the number of unique
packets received at the base station. This metric affects
network throughput; it also reflects the energy efficiency
of a protocol, since it not only affects the energy spent in
transmission but also the degree of duty cycling which in
turn affects the energy spent at the receiver side.

B. Experimental results

Figures 6 and 7 show the event reliability and the average
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number of transmissions (as well as their confidence intervals
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at the 95% confidence level) required for delivering each packet
in different protocols respectively. We see that L-ETX achieves
significantly higher event reliability (e.g., up to 18.75%)than
both ETX and RNP. L-ETX also achieves higher energy ef-
ficiency than ETX and RNP, by a factor of 1.43 and 1.96
respectively.

To explain the above observations and to understand the
detailed routing behavior, we present in Figures 8 and 9
the average route hop length and route transmission count
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Fig. 9. Average route transmission count for nodes different grid-hops away
from the base station

respectively forsuccessfullydelivered packets coming from
nodes at different grid-hops away from the base station. We
also present in Table I the detailed information about the

Metric ETX RNP L-ETX
Average per-hop 2.44 2.54 4.17

geo-distance (meter)
Average per-hop 76.23 68.05 68.43

physical tx reliability (%)
Average per-hop 80.99 75.15 93.10

unicast reliability (%)
Per-hop ETX 2.61 3.11 1.94

TABLE I
PER-HOP PROPERTIES

properties of the links used in different protocols, where we
consider, for a specific protocol,all the links that are used to
transmit any data packet whether or not the packet is received

by the base station in the end. Note that, for conciseness,
we do not present confidence intervals for these measured
parameters. Figure 8 shows that the routes taken by successfully
delivered packets in ETX are of similar hop length as those
in L-ETX, and Figure 9 shows that the route transmission
count for successfully delivered packets in ETX tends to be
slightly smaller than that in L-ETX; yet Table I shows that
the links used in L-ETX are much longer than those used
in ETX and the per-hop ETX in L-ETX is less than that
in protocol ETX. This seemingly contradicting observations
implies that packets that have been lost in ETX tend to go
through long and unreliable routes. Similar phenomena are also
observed in RNP. Table I shows that the average per-hop unicast
reliability in L-ETX is significantly higher (e.g., up to 17.95)
than that in ETX and RNP, which enables L-ETX to achieve
a significantly higher event reliability. The facts that L-ETX
achieves higher event reliability and that L-ETX uses more
reliable links and thus fewer number of transmissions enable
L-ETX to deliver packets with fewer number of transmissions
on average. (Note: a counterintuitive observation from Table I
is that links used in ETX have higher physical transmission
reliability than those in L-ETX, yet the unicast reliability in
ETX is lower than that in L-ETX. The reason for this is
that the physical transmission failures are more separatedand
consecutive physical transmission failures are rarer in L-ETX
so that they do not degenerate unicast reliability in L-ETX that
much.)

Table II shows the route stability in ETX, RNP, and L-ETX,

Two consecutive routes ETX RNP L-ETX
(%)

Same 98.24 93.63 99.94
Diff . routes but 1.62 2.71 0.03
same hop length

Increased hop length 0.07 1.79 0.03
Decreased hop length 0.07 1.87 0

TABLE II
ROUTE STABILITY: DATA -DRIVEN VS. BEACON-BASED ESTIMATION

which is measured by comparing the routes taken by every two
consecutive packets. We see that the routes used in L-ETX are
also slightly more stable than those in beacon-based routing
protocols ETX and RNP.

IV. A DDITIONAL PERFORMANCE EVALUATION RESULTS

In Section III, our study is mainly based on the regular7×7
event traffic trace and testbed configuration. In this section, we
comparatively study ETX and L-ETX with other traffic patterns
and network configurations. We also compare the achievable
throughput in ETX and L-ETX respectively. (Note that, in this
section, we do not study the protocol RNP since it performs
slightly worse than ETX as shown in Figures 6 and 7.)

Other traffic load. Using the same event traffic trace as in
Section III-A, we control the set of nodes that actually generate
source packets to imitate events of different sizes. We have
experimentally compared ETX and ETX using two event size:
3 × 3 where the nodes in the farthest3 × 3 subgrid from the
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base station generate packets, and5×5 where the nodes in the
farthest5×5 subgrid from the base station generate packets. We
observe similar phenomena for both event size configurations,
and here we only present the data for the5 × 5 configuration
only.

For the same testbed setup as in Section III-A, Figure 10
shows the event reliability, and Figure 11 shows the average
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Fig. 11. 5×5: average number of transmissions per packet delivered andits
95% confidence level confidence interval

number of transmissions per packet delivered, as well as
its confidence interval at 95% confidence level, in different
protocols. We see that, in the case of lighter traffic load, L-ETX
still achieves higher event reliability and energy efficiency (as
measured in the number of transmissions required in delivering
a packet to the base station) than ETX. Compared with the case
shown in Figure 6, the event reliability of ETX is slightly higher
because the traffic load and thus traffic-induced interference and
collision are lower in this case.

Periodic traffic. To understand routing performance in pe-
riodic data collection applications, we experimentally compare
performance of different routing protocols in delivering periodic
traffic. To this end, we let all the nodes except for the base
station in a 7 × 7 grid periodically generate packets with
an average inter-packet interval of 15 seconds. For the same
testbed setup as in Section III-A, Figure 12 shows the packet
delivery reliability, and Figure 13 shows the average number
of transmissions per packet delivered in different protocols. We
see that L-ETX outperforms ETX in delivering periodic traffic.

Sparser network. To understand whether the relative perfor-
mance among different protocols is consistent across different
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Fig. 12. Periodic traffic: packet delivery reliability
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Fig. 13. Periodic traffic: average number of transmissions per packet delivered
and its 95% confidence level confidence interval

network densities (e.g., number of neighbors for each node),
we change the radio transmission power to -17dBm (i.e., power
level 2). Then for the same node deployment and traffic trace
as in Section III-A, Figure 14 shows the event reliability, and
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Fig. 14. Sparser network: event reliability

Figure 15 shows the average number of transmissions per
packet delivered in different protocols. We see that L-ETX
achieves higher event reliability and energy efficiency than
ETX. Compared with the case when the radio transmission
power is -14dBm, the event reliability in a protocol is lower
when the power level is -17dBm because the routing hop length
increases as a result of the reduced power level.

Random topology. Instead of deploying 49 nodes in a regular
7×7 grid, we deploy 49 nodes in a randomly selected set of 49
grid points from the 14×7 grid space as shown in Figure 1(b).
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Fig. 15. Sparser network: average number of transmissions per packet
delivered and its 95% confidence level confidence interval

Then for the same traffic trace as in Section III-A, Figure 16
shows the event reliability, and Figure 17 shows the average
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Fig. 16. Random topology: event reliability
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Fig. 17. Random topology: average number of transmissions per packet
delivered and its 95% confidence level confidence interval

number of transmissions per packet delivered in different pro-
tocols. We see that L-ETX achieves significantly higher event
reliability and energy efficiency than ETX. Compared with
the case when nodes are deployed in a 7×7 grid, the event
reliability in a protocol is lower in the random topology because
the routing hop length increases as a result of increased average
spacing between nodes.

Network throughput. To measure network throughput, we
let source nodes send packets to the base station at the highest
speed allowable by the system (e.g., system software and
radio). We use the same testbed setup as in Section III-A,

but in order not to overload the network too much, we only
let nodes in the farthest 2×2 subgrid from the base station
generate traffic. Table III shows the number of unique packets

Protocol ETX L-ETX
Throughput (packets/second) 6.07 8.49

TABLE III
THROUGHPUT

that are delivered to the base station per second. We see that
L-ETX achieves a higher throughput than ETX. Given that
the highest one-hop throughput is about 42.93 packets/second
for Mica2 motes with B-MAC (the default MAC component
of TinyOS) and that, in multi-hop networks, even an ideal
MAC can achieve no more than1

4
of the throughput that a

single-hop transmission can achieve [29], the theoreticalupper
limit on achievable throughput in multi-hop Mica2 networks
is 10.73 packets/second. The throughput in L-ETX is 8.49
packets/second in our experiment, which is 79.12% of the upper
limit.

V. RELATED WORK

Link properties in wireless sensor networks and 802.11
networks have been well studied in [3], [4], [1], and [2].
Experiment-based interference models have also been proposed
for Mica2 radios [30] and 802.11 radios [31]. It is observed that
wireless links assume complex properties, such as wide-range
non-uniform packet delivery rates, loose correlation between
distance and packet delivery rate, link asymmetry, and temporal
variations. Orthogonal to these studies, our study on link prop-
erties focuses specifically on link estimation, the differences
between broadcast and unicast link properties, and the impact
of interference patterns on the differences in low-power wireless
networks.

To address the challenges of wireless communication, rout-
ing metrics such as ETX [23], [14] and ETT/WCETT [32]
have been proposed to identify good routes for data delivery.
The metric PRD [33] has been proposed for energy-efficient
geographic routing in sensor networks, and metrics such as
RNP [27] and mETX [34] have also been proposed to take
into account temporal link properties in route selection. While
focusing on routing metrics, these studies did not examine the
impact of link estimation methods, and they used beacon-based
approach to estimate the corresponding routing metrics.

Differences between broadcast and unicast and their impact
on the performance of AODV were first discussed in [5] and [6],
and the authors discussed reliability-based mechanisms (e.g.,
those based on RSSI or SNR) for blacklisting bad links. The
authors also proposed mechanisms, such as enforcing SNR
threshold on control packets, to ameliorate the negative impact
of the differences, and the authors of [5] studied the impact
of packet size, packet rate, and link reliability thresholdon the
end-to-end delivery rate in AODV. Nonetheless, the proposed
solutions were still based on beacon exchanges among neigh-
bors. Since it has been shown that reliability-based blacklisting
does not perform as well as ETX [23], [35], [14], we do not
study [5] and [6] in detail in this paper.
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MintRoute [14] used data feedback in link estimation, but it
also used beacons and treats beacon transmissions as the same
as data transmissions; MintRoute also assumed a fixed data-to-
beacon ratio which was used in deciding the amount of data that
should be transmitted in each time interval which was in turn
used for link estimation. Methods of using both MAC feedback
and beacon packets in link estimation were also proposed in [9]
and [11], but they did not systematically characterize the impact
that link layer retransmission and traffic-induced interference
have on the accuracy of beacon-based estimation. Even though
periodic broadcast beacons may be necessary for purposes
such as neighbor discovery and routing loop recovery, the
approach of incorporating periodic beacons in link estimation is
debatable, especially for event-detection sensor networks where
broadcast beacons may mislead link estimation since there may
be very little data traffic and thus little unicast MAC feedback
in event detection networks. The measurement study in [9]
and [11] focuses on TelosB and 802.11 networks respectively;
our study focuses on another platform — XSM motes — and
thus extends the scope of the observation that data-driven link
estimation should be treated as the basis of wireless routing.

SPEED [10], NADV [13], and CARP [12] also used MAC
feedback in route selection. While focusing on real-time packet
delivery, a general framework for geographic routing, and
temporal link dynamics respectively, [10], [13], and [12] did
not focus on characterizing the inherent drawbacks in beacon-
based link estimation. Most closely related to our work is LOF
[8] where the authors studied the inherent difficulty in pre-
cisely estimating unicast link properties via those of broadcast
in 802.11b networks. We complement [8] by examining the
issue in low-power sensor networks; even though our study
shows that the observations and protocol design decisions for
802.11b networks carry over to low-power sensor networks,
these findings are not obvious because the radios, the MAC
protocols, and the traffic patterns in low-power sensor networks
differ from those in 802.11b sensor network backbones, and
these factors greatly affect link properties and network protocol
performance. We also systematically study the properties of
individual unicast-physical-transmissions and compare them
with broadcast properties, which sheds new insight into the
temporal correlation in unicast-physical-transmissionsand the
impact of interference patterns; this was, however, infeasible in
[8] due to the limitations (e.g., not providing informationon the
number of physical transmissions for a unicast transmission) of
their 802.11b radios.

Other routing metrics and protocols [36], [37], [34], [38],
[39], [40], [41] have also been proposed for various opti-
mization objectives (e.g., energy efficiency). The findingsof
this paper can be applied to these schemes to help improve
the accuracy of estimating link and path properties. Directed
diffusion [42] provides a framework for routing in sensor
networks, and the findings of this paper can also be applied
to this framework to help select high-performance routes in
data forwarding.

Rather than selecting the next-hop forwarder before data
transmission, opportunistic routing protocols that take advan-
tage of spatial diversity in wireless transmission have been

proposed [43], [44], [45], [46]. In these protocols, the forwarder
is selected, through coordination among receivers, in a reactive
manner after data transmission. Link estimation can still be
helpful in these protocols since it can help effectively select
the best set of listeners [43]. Therefore, findings of this paper
can be useful in opportunistic routing too.

VI. CONCLUDING REMARKS

Through testbed based study, we have characterized the
impact that link layer retransmission and traffic-induced-
interference have on link estimation accuracy, and we have
shown that the complexity and uncertainty in link correlation
and interference patterns make it inherently difficult to pre-
cisely estimate unicast data transmission properties via those
of broadcast beacons. Using a variety of traffic patterns and
network setups, we have also experimentally demonstrated
the benefits of data-driven link estimation in improving data
delivery reliability and transmission efficiency. These findings
provide solid empirical evidence on the inherent drawbacksand
sources of errors in beacon-based link estimation and suggest
that we treat data-driven link estimation as a basic principle in
protocol design for low-power wireless networks.

The experimental analysis of this paper is based on networks
of CC1000 radios. Even though we expect the findings of this
paper to be valid for networks of IEEE 802.15.4 radios, system-
atic evaluation of this conjecture is a part of our future work. We
have focused on accurate estimation of the ETX routing metric
in this paper, identifying accurate estimation methods forother
routing metrics such as mETX [34] and CTT [41] is also an
important task to pursue for supporting different optimization
objectives in routing. It is expected that the observationsof this
paper also apply when other retransmission techniques suchas
opportune transmission [24] is used, and detailed study of this
is worthwhile. We have shown that broadcast beacons should
not be treated as the basis of wireless link estimation, but they
will still be an important part of wireless network protocol
design; it will be interesting to systematically study the roles
that broadcast beacons play in wireless routing and wireless
networks in general.
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