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Abstract—Wireless sensor networks are envisioned to be an basic element of routing in wireless networks. One commonly
integral part of cyber-physical systems, yet wireless netorks are  ysed approach of link estimation is letting neighbors ergea
inherently dynamic and come with varieties of uncertainties. One broadcast beacon packets, and then estimating link piepert
such uncertainty is wireless communication itself which asumes - T .
complex spatial and temporal dynamics. For dependable and of unicast data transm|s§|ons_ via th_ose of broadcast beaqon
predictable performance, therefore, link estimation has ecome Nonetheless, there are significant differences betweecashi
a basic element of wireless network routing. Several apprasnes and broadcast link properties [5], [6], and it is difficult to
using broadcast beacons and/or unicast MAC feedback have be precise|y estimate unicast link properties via those otdoast

proposed in the past years, but there still lacks as a systetia  qq o temporal correlations in link properties and dynamic
characterization of the drawbacks and sources of errors in bacon- . .
unpredictable network traffic patterns [7], [8].

based link estimation in low-power wireless networks, whib leads " .
to ad hoc usage of beacons in routing. Using a testbed of 98 XSM  The research community has proposed mechanisms to ame-
motes (an enhanced version of MICA2 motes), we characterize liorate the impact of the differences between broadcast and
the negative impact that link layer retransmission and traffic-  ynicast link properties [5], [6], and MAC feedback carrying

induced interference have on the accuracy of beacon-basethk jnformation about unicast data transmissions has also been

estimation, and we show that data-driven link estimation aa L . .
routing achieves higher event reliability (e.g., by up to 1&5%) used in link estimation [9], [10], [11], [12], [13], [14], |8

and transmission efficiency (e.g., by up to a factor of 1.96)han  For low-power wireless networks, however, there still ek
beacon-based approaches. These findings provide solid esitte systematic characterization of the drawbacks and sourtes o
for the necessity of data-dri_ven link estimation and demonsate errors in estimating unicast properties via those of braatjc
the importance of addressing the drawbacks of beacon-based some protocols [13], [14] use MAC feedback mainly for saving

link estimation when designing protocols for low-power wieless o . . .
networks of cyber-physical systems. energy in link estimation (e.g., by reducing the frequenty o

Index Terms—Low-power wireless networks, sensor networks, broadcast beacon exchanges), and some protocols [9], [11],

link estimation and routing, data-driven, beacon-based [14] use both broadcast-based and MAC-feedback-based link
estimation. Thus one open question is, from the perspecfive
|. INTRODUCTION estimation accuracy, whether broadcast beacons shoulseok u

After the past decade of active research and field triass the basis of link estimation in low-power wireless neksor
wireless sensor networks have started penetrating intoy mauch as sensor networks. This is an important question becau
areas of science, engineering, and our daily life. They @ aas we discuss later in the paper, link estimation accuracy
envisioned to be an integral part of cyber-physical systeragnificantly affects data delivery reliability and trarission
(CPS) such as those for alternative energy, transportatiefficiency which are important for mission-critical netwed
and healthcare. In supporting mission-critical, realetjrlosed sensing and control in CPS.
loop sensing and control, CPS sensor networks represent &ocusing on the accuracy of estimating unicast data tramsmi
significant departure from traditional sensor networks alvhi sion properties, our objectives in this paper are to charaet
usually focus on open-loop sensing, and it is critical toueas the limitations of beacon-based link estimation, to experi-
dependable and predictable network performance in CP®sertally quantify the impact that link layer retransmissiondan
networks. traffic-induced interference have on beacon-based estimat

Nonetheless, wireless sensor networks are inherently dynd to comparatively study beacon-based and data-drim&n li
namic and susceptible to the impact of a variety of uncesstimation methods in low-power wireless networks.
tainties. One such uncertainty is wireless communicatiefi Using a testbed of 98 XSM motes, we characterize the
which assumes complex spatial and temporal dynamics [$ignificant, unpredictable errors in estimating unicaspprties
[2], [3], [4]. Wireless communication properties signifidly via broadcast beacons, and we examine the impact of interfer
affect many sensor network services, and one such servicenge patterns on link properties in low-power wireless gens
wireless routing, which is the basis of cross-node cooti@ina networks. We also demonstrate the complex, unpredictable
in CPS sensor networks. For dependable and predictable pexture of temporal correlations in link properties, whitbr,
formance, therefore, estimating link properties has becam gether with uncertainties in interference patterns, natéis the



approach of data-driven link estimation and routing. Usinpe default TinyOS MAC protocol B-MAC [20] is uséda
traffic traces for both bursty event detection and perioditad unicast packet is retransmitted, upon transmission failatr the
collection and using both grid and random network topolsgieMAC layer for up to 7 times until the transmission succeeds or
we experimentally demonstrate that data-driven link egtiiom until the 8 transmissions have all failed; a broadcast ptaiske
and routing greatly improves the event reliability (e.gy, btransmitted only once at the MAC layer (without retransiiiss
18.75%) and transmission efficiency (e.g., by a factor o6)L.9even if the transmission has failed). For convenience, vle ca
of beacon-based approaches. These findings suggest that, gve individual transmissions involved in transmitting aaast
though broadcast beacons are useful in many aspects oéssrepacket the unicast-physical-transmissions.
network design such as neighborhood management as wello demonstrate the difficulty in precisely estimating ustca
as routing loop detection and removal, beacons have intherproperties via those of broadcast beacons, we let the mote
drawbacks when serving as the basis of fine-grained estimaton the left end of the middle row (shown as black dots in
of unicast data transmission properties; these findings alBigure 1(b)) be theenderand the rest 13 motes of the middle
demonstrate the benefits of data-driven link estimation anolw as thereceives, and we measure the unicast and broadcast
routing, thus suggesting that data-driven link estimatimsn properties of the links between the sender and individual
a basic principle for protocol design in low-power wirelesseceivers. (We have observed similar phenomena as what we
networks. will present in Section 1I-B for other sender-receiver pgifThe

The rest of the paper is organized as follows. In Section Bender transmits 15,000 broadcast and 15,000 unicasttpacke
we systematically characterize the drawbacks of beacsaebato each of the receivers with a 128-millisecond inter-packe
link estimation and examine the necessity of data-drivek li interval, and each packet has a data payload of 30 bytes.
estimation and routing in low-power wireless networks. WBased on packet reception status (i.e., success or faiaire)
compare beacon-based and data-driven link estimationauid r the receivers, we measure unicast and broadcast link greger
ing in Section Ill. We present additional performance eatihn Note that, in practice, broadcast beacons are transmitted a
results in Section IV. Finally, we discuss related work imuch larger interval (e.g., 30 seconds) than 128ms, and we

Section V and make concluding remarks in Section VI. use 128ms mainly for saving experimentation time. The phe-
nomena observed with the 128ms inter-beacon interval eppli
II. WHY DATA -DRIVEN LINK ESTIMATION to cases where larger intervals are used since wirelessiehan

coherence-time is much shorter than 120ms in general [21],
| for instance, being-4ms; we will also show that the observed
drawbacks of beacon-based estimation are corroborategghr
mylti—hop routing experimentation in Section Il

To examine the impact of traffic-induced interference ok lin
properties and link estimation, we randomly select 42 motgs
A. Experiment design of the light-colored (of color cyan) 6 rows agerferers, with 7

) ) _interferers from each row on average. Each interferer tniss

In an open warehouse with flat aluminum walls (see Figiicast packets (of payload length 30 bytes) to a destimatio
ure 1(a)), Kansei deploys 98 XSM motes [16] in @d4grid  5nqomly selected out of the other 41 interferers. The Idad o
(see Figure 1(b)) where the separation between neighborfd interfering traffic is controlled by letting interfesgransmit
grid points is 0.91 meter (i.e., 3 feet). The grid deployment yets with a certain probability whenever the channel

becomes clear. Ngt al. [22] showed that the optimal traffic

injection rate is 0.245 in a regular linear topology, and the

optimal traffic injection rate will be even lower in general,
eecocsccccccee two-dimensional network. Thus our measurement study fegus
more on smalled’s than on larger ones, but we still study larger
d’s to get a sense on how systems behave in extreme conditions.
More specifically, we use the followings in our study: 0, 0.01,
0.04, 0.07, 0.1, 0.4, 0.7, and 1. Thus the interference noatte
Fig. 1. Sensor network testbéchnsei is controlled byd in this case. (Note that phenomena similar
to what we will present in Section II-B have been observed
for other interfering traffic patterns, for instance, witiffefent
spatial distribution and different number of interfergrs.

In this section, we characterize, via tKk@ansei[15] sensor
network testbed, the sources of errors and inherent ditiésu
in predicting unicast data transmission properties viatcast
beacons in low-power wireless networks. We first present t
experiment design and then the experimental results.

(a) Kansei (b) 14x7 grid

pattern enables experimentation with regular, grid togials,
as well as random topologies (e.g., by randomly selectirgso
of the grid to participate in experiments). XSM is an enhances. Experimental results
version of Mica2 [17] mote, and each XSM is equipped with a
Chipcon CC1000 [18] radio operating at 433 MHz. To form
multihop networks, the transmission power of the CC100
radios is set at -14dBm (i.e., power level 3) for the expentae
of this paper unless otherwise stated. XSM uses TinyOS [19}gjyce we do not focus on power management in this paper, wigaee
as its operating system. For all the experiments in this pape-MAC to run in full duty-cycle in our study.

Unlike in 802.11 networks where unicast and broadcast
fffer in a variety of ways such as MAC coordination method
i.e., whether data transmission is preceded by the RTS-CTS



handshake) and transmission rate, the main differencecleetwtogether) and the estimation errors tend to be relativelglism
unicast and broadcast in mote networks (where TinyOS Bthen links are reliable, this fact does not help beaconébase
MAC or 802.15.4 MAC is usually used) lies in link layerlink estimation in practice because the routes with the kasial
error control. That is, upon transmission failure, a urticaETX tend to have less-than-perfect-reliable but longekdias
packet is usually retransmitted at link layer to improve\dgly observed in Section 1l of this paper and [8], [23].

reliability, whereas a broadcast packet is not retransahiffhis Given a certain interference pattern (more specifically, in
link layer retransmission affects the accuracy of estinwati terfering traffic load in this case), one major cause for the
unicast link properties via those of broadcast beacons. Téignificant errors in beacon-based link estimation is the-te
accuracy of beacon-based link estimation is also degesteratoral correlation among unicast-physical-transmissitet is,

by traffic-induced interference. In what follows, we presear the fact that the status (i.e., success or failure) of thévied
empirical results on the impact of link layer retransmiesamd ual physical transmissions of a unicast are correlated due t
traffic-induced interference on the accuracy of beacomdbasshort-term, bursty variation in environment-induced fagdand
link estimation. traffic-induced interference. (Note that, independentrud &
Impact of link layer retransmission. In beacon-based link parallel With_ our work, short-term, bursty vgriations inrgless
estimation, unicast ETX (i.e., the expected number of piaysi INK properties have also been observed in [24].) As a result
transmissions taken to successfully deliver a unicast giackOf this short-term temporal correlation, the probability
along a link is estimated ag-, whereP is the broadcast relia- physical transmission failure conditioned on an immedyate
bility along the link. Note that, for simplicity of discussi, here Preceding physical transmission failure is higher than the
we only consider the ETX along one direction of a link, but th@_robab|_llty of a transmission failure at a random moment in
observations are applicable to the case where ETX is cordpugne- Given that broadcast beacons are usually well seggrat
based on bi-directional link properties, and we corrottais N time when compared with the interval between consecutive
in our routing experimentation in Section Il where the ETYPhYsical (re)transmissions involved in a unicast, theakelity
computation considers bi-directional link propertiessea on Of unicast-physical-transmissions tends to be lower thanaf

the measured data on broadcast reliability and unicast ErxQroadcast beacons. This conjecture is corroborated byéigu
our experiments, Figure 2 shows the errors in estimatingasbi where we show the difference between the reliability of each
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Fig. 2. Errors in estimating unicast ETX via broadcast kéliy. Notethat, due  Fig- 3. The mean reliability of each unicast-physical-rafssion minus that
to factors such as radio and environment variations, ptigseof the wireless ©f broadcast

links in a specific network setup are usually not monotoniecfions of the

sender-receiver distance [4]; accordingly, we will obgettvat the phenomena

prest?nted Iin thit;s papgr rt1end hnot to be mogptgr)ic r\?'/ith reStl'Eﬂ:ﬁlstanced unicast-physical-transmission and that of broadcastffereéint
tend ot to be correlated or monotonic with other parametach as receer- Interference scenarios. As a result, beacon-based etimat
side SINR or link reliability. In this paper, we use distamoainly to identify ~tends to underestimate unicast ETX, which can also be obderv
individual links associated with a sender, and for claritp@sentation, we do from Figure 2. As we will discuss shortly, the temporal cerre
?hoé B;epseerht confidence intervals unless they are necesmacgrtain claims of !ation among unicast-physical—transmissions is alsocseftd_apy
interference pattern, thus the error in beacon-based &sim
changes with interference pattern as we see from Figure 2.
ETX via broadcast reliability, where the error is defined as To further understand the tempora| correlation among
the estimated unicast ETX minus the directly measured shic@nicast-physical-transmissions, we analyze the autelsion
ETX and then divided by the measured unicast ETX. We segefficientp among the individual physical transmissions of
that the estimation error tends to be large, e.g., up to 88.78ynjcasts, and examine its relation to time, interferendeeps
The estimation error also changes with interference patteand link properties. Given the observatians s, . . . , z, of
which makes it difficult to compensate for the estimatiomesT 5 time series, the autocorrelation coefficigrit) for lag h
in practice since interference patterns may well be unknovyan < h<n)[25]is
and unpredictable. Note that, even though the estimatimr er
does have the general trend of decreasing with increasikg li A(h)

reliability (as can be seen by examining Figures 2 and 5 p(h) = (0)




where because, in the case of opportune transmission, the felabi
. 1 «—n—|h| _ _ of unicast-physical-transmissions will be higher thant tbh
Y(h) B ?Zfl (@einy = 2) (@0 = 7) broadcast beacons, which will make beacon-based estimatio
v T nZa=1 overestimate link ETX (in contrast with the underestimatio
For a link of length 9.15 meters (i.e., 30 feet), Figure 4(a&rror when opportune transmission is not used).

shows the autocorrelation coefficients for the status ofastt Impact of traffic-induced interference.  Figure 5 shows

E 10
105 4 6 8 10 12
distance (meter)
(a) Autocorrelation coefficient for a link of length 9.15
meters Fig. 5. Unicast ETX in different interference scenarios
+d=0 the network conditions, in terms of unicast ETX, in differen
L5 ;228'8}1 interference scenarios. We see that, as interference ebang
©d=007 unicast ETX changes significantly (e.g., up to 32.44), and
5 Ad=01 unicast ETX tends to increase with increasing interference
< ';'328:‘71 traffic load. In event-detection sensor networks [26], ¢hisr
Plod=1 no data traffic in the network most of time, yet a huge burst of
\ data packets are generated within a short period of time, @.g
. B few seconds) once an event occurs. Therefore, networkctraffi
4 6 8 10 12 induced interference and thus unicast ETX tend to vary figni
Link length (meter)

cantly depending on whether there is an active event. Toceedu
control overhead, broadcast beacons are usually exchatged
Fig. 4. Autocorrelation coefficient for the status of untepbysical- |OW frequencies (e.g., once every 30 seconds) in practicss, t
transmissions the network conditions experienced and sampled by broadcas
beacons may well reflect those in the absence rather thae in th

physical-transmissions. We see that autocorrelationficoegit presence of bursty event traffic. Consequently, beacoaebas

decreases as the lagincreases; this is because the correlatiog‘lsu":jat'onbmaly we:cl _Ilead to s:gnglcant sarEplln%_grrr(g;.,(Le
between individual unicast-physical-transmissions i€ da roadcast beacons tall to sample the network concitionsaer

short-term, bursty variation in environment-induced fadand gansc;mss%ns) n evgnt—qitgctmn fs?psor netvéorks._ Nod ¢
traffic-induced interference. We also see that autocdiosla 202 cast beacons will still be useful in event-detectiemssr

coefficient tends to decrease as interference load incseagléetwor_ks for PUrposes Such as ma_intaining routing topol_ogy
partly due to the increased degree of randomization in ¢Faffr'°‘”‘?' dls_semmatlng control information (e.g., resulis okl .
induced interference as a result of increased load of rand§ !matlorw_), even thqug_h th.ey should not be used as the basis
interfering traffic. For different links in different intearence of link estimation. This |mpI|(_as that_we should clgarly idién
scenarios, Figure 4(b) shows the autocorrelation cogtfisior the roles that beacoqs play in routing, and detailed study of
lag 4. We see that autocorrelation coefficient also variessac should be a worthwhile future work to pursue.
links. (Similar phenomena are observed for other links ar8ummary. From the testbed based experimental analysis,
lag values.) The complex correlation patterns among uticawe see that beacon-based link estimation introduces signtfi
physical-transmissions partly explain why it is difficuld t estimation errors in low-power wireless networks such &s th
address the difference between broadcast and unicasiephys XSM mote networks. Unlike in [8] where MAC feedback does
transmission and thus the significant errors in beaconebasmt indicate the number of physical transmissions for aastic
estimation. the MAC components of mote networks expose the number
Note that the negative impact of temporal link correlationf physical transmissions for each unicast, and this esable
on beacon-based estimation remains even if we use opportuseto derive the status of each unicast-physical transomissi
transmission [24] which delays retransmission after aastic and thus the properties of unicast-physical-transmisssuth
physical-transmission failure while trying to transmitmsny as their reliability and correlation as shown in Figures 8 an
packets as possible when channel condition is good. ThisdisThese new observations give insight into the complexity o

(b) Autocorrelation coefficient for lag 4



temporal correlation among unicast-physical-transmissand 7 samples of MAC feedback (by transmitting 7 unicast

the impact of interference patterns, which represent ifter packets) for each of its candidate forwarders and then

difficulties in beacon-based link estimation and thus naév chooses the best forwarder based on the initial sampling
the necessity of estimating unicast properties via feddbac results.

information about unicast data transmissions themseNete Note that, for ETX and RNP, we consider bi-directional link

that, even though temporal link correlation has been webliability as proposed in [23] and [27] respectively, ar t

studied in the literature [24], [27], [7], this paper, to thest per-node beaconing frequency is set as one beacon every 30

of our knowledge, is the first to examine the temporal correeconds.

lation among unicast-physical-transmissions and itsicl@o  For each protocol we study, we ran the event traffic trace se-

interference pattern. quentially for 40 times, and we measure the following protoc

performance metrics:

4 Event reliability (ER) the number of unique packets
received at the base station divided by the total number of
unigue packets generated for an event. This metric reflects
the amount of useful information that can be delivered for

Ill. ROUTING PERFORMANCE

Having discussed the inherent drawbacks of beacon-base
link estimation in Section I, we experimentally compare th
performance of beacon-based and data-driven link estimati
and routing in this section. We first present the methodology

and then the experimental results an event.
P ' « Transmission efficiencgas measured by thaumber of
A. Methodology transmissions per packet delivered (NumT#)e total

We use a publicly available event traffic trace for a field number of physical transmissions incurred in delivering
sensor network deployment [28] to evaluate the performance Packets of an event divided by the number of unique
of different protocols. Since the traffic trace is collecfeam packets received at the base station. This metric affects
49 nodes that are deployed irva 7 grid, we randomly select network throughput; it also reflects the energy efficiency
and use a ¥7 subgrid of the Kansei testbed (as shown in  ©Of @ protocol, since it not only affects the energy spent in
Figure 1(b)) in our experiments. To form a multi-hop network  transmission but also the degree of duty cycling which in
we set the radio transmission power at -14dBm (i.e., powed le ~ turn affects the energy spent at the receiver side.

3). The mote at one corner of the subgrid serves as the bBS.eExperimental results

station, the other 48 motes generate data packets accdaling
the aforementioned event traffic trace, and the destinatiat

the data packets is the base statidke also evaluate protocols
with other traffic patterns, e.g., periodic data traffic, aother
network setups, e.g., random networks. We observe pheaomen —+
similar to what we will present, but we relegate the detailed
discussion to Section IV.

To understand the importance and benefits of data-driven
link estimation and routing, we study the performance of the
following link estimation and routing protocofs:

« ETX a distance vector, beacon-based routing protocol
whose objective is to minimize the expected number of
transmissions (ETX) from each source to its destination.
The ETX metric is estimated based properties of broadcast
beacons. This is similar to the protocol proposed in [23].

« RNP. same as protocol ETX except that the ETX metric
is estimated as theequired number of packetéRNP)

[27] which tries to capture the temporal correlation in link 6
properties. 5

« L-ETX a distance-vector routing protocol whose objective
is to minimize the ETX from each source node to its desti- <
nation. The ETX metric of each link (and thus each route) Eg— .
is estimated via unicast MAC feedback on the transmission z
status (i.e., success or failure) and the number of physical
layer transmissions taken to deliver each unicast packet. 1
In L-ETX, periodic, broadcast beacons are never used. 0
We use the approach d@iitial link sampling[8] to jump-
start the routing process, where a node proactively takes

Figures 6 and 7 show the event reliability and the average
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Fig. 7. Average number of transmissions per packet delivere
2|n this paper, we sometimes use the same name for the protteol
estimation method, and the routing metric. The contextsotigage will clarify o ] ] )
its exact meaning. number of transmissions (as well as their confidence interva



at the 95% confidence level) required for delivering eactkgc by the base station in the endNote that, for conciseness,
in different protocols respectively. We see that L-ETX atleis we do not present confidence intervals for these measured
significantly higher event reliability (e.g., up to 18.75%pan parameters. Figure 8 shows that the routes taken by suatigssf
both ETX and RNP. L-ETX also achieves higher energy efielivered packets in ETX are of similar hop length as those
ficiency than ETX and RNP, by a factor of 1.43 and 1.9% L-ETX, and Figure 9 shows that the route transmission
respectively. count for successfully delivered packets in ETX tends to be
To explain the above observations and to understand tleghtly smaller than that in L-ETX; yet Table | shows that
detailed routing behavior, we present in Figures 8 and tBe links used in L-ETX are much longer than those used
the average route hop length and route transmission coimtETX and the per-hop ETX in L-ETX is less than that
in protocol ETX. This seemingly contradicting observation
o5 ‘ ‘ ‘ ‘ ‘ implies that packets that have been lost in ETX tend to go
—+ETX through long and unreliable routes. Similar phenomenalace a
E[‘E\‘EPTX observed in RNP. Table | shows that the average per-hopstnica
: reliability in L-ETX is significantly higher (e.g., up to 195)
than that in ETX and RNP, which enables L-ETX to achieve
a significantly higher event reliability. The facts that I-E
achieves higher event reliability and that L-ETX uses more
reliable links and thus fewer number of transmissions enabl
‘ L-ETX to deliver packets with fewer number of transmissions
10 12 on average. (Note: a counterintuitive observation froml@db
is that links used in ETX have higher physical transmission
Fig. 8. Average route hop length for nodes different grigshaway from the reliability than those in L-ETX, yet the unicast reliabjliin
base station ETX is lower than that in L-ETX. The reason for this is
that the physical transmission failures are more separateld
consecutive physical transmission failures are rarer BTX
so that they do not degenerate unicast reliability in L-ETXtt

Average route hop length

4 6 8
Grid hops

FETX ‘ ‘ ‘ ‘ much.)

£ RNP Table 1l shows the route stability in ETX, RNP, and L-ETX,
3 4= L-ETX ]
f Two consecutive routes ETX | RNP | L-ETX
33 (%)
o Same 98.24 | 93.63| 99.94
% ol Diff . routes but 162 | 271 | 0.03
£ same hop length

Increased hop length| 0.07 | 1.79 0.03

B P p 6 8 10 12 Decreased hop length 0.07 | 1.87 0
Grid hop

TABLE I

Fig. 9. Average route transmission count for nodes diffeggid-hops away ROUTE STABILITY: DATA-DRIVEN VS. BEACON-BASED ESTIMATION

from the base station

respectively forsuccessfullydelivered packets coming fromWwhich is measured by comparing the routes taken by every two

nodes at different grid-hops away from the base station. Wwensecutive packets. We see that the routes used in L-ETX are

also present in Table | the detailed information about ttdso slightly more stable than those in beacon-based @utin
protocols ETX and RNP.

Metric ETX | RNP | L-ETX
Average per-hop 544 | 254 | 417 IV. ADDITIONAL PERFORMANCE EVALUATION RESULTS
geo-distance (meter) In Section IlI, our study is mainly based on the regular7
phys’?‘g’;r?)?feﬁgrb'm:’yp(%) 76.23| 68.05] 68.43 event traffic trace and testbed configuration. In this sectiee
Average per-hop 8099 7515 93.10 comparatively study ETX and L-ETX with other traffic pattern
unicast reliability (%) and network configurations. We also compare the achievable
Per-hop ETX 261 | 311 | 194 throughput in ETX and L-ETX respectively. (Note that, inghi
TABLE | section, we do not study the protocol RNP since it performs
PER-HOP PROPERTIES slightly worse than ETX as shown in Figures 6 and 7.)

Other traffic load. Using the same event traffic trace as in

Section IlI-A, we control the set of nodes that actually geate
properties of the links used in different protocols, where wsource packets to imitate events of different sizes. We have
consider, for a specific protocall the links that are used to experimentally compared ETX and ETX using two event size:
transmit any data packet whether or not the packet is receiv@ x 3 where the nodes in the farthestx 3 subgrid from the



base station generate packets, and5 where the nodes in the

farthests x 5 subgrid from the base station generate packets. We 95 :
observe similar phenomena for both event size configursition S 5
and here we only present the data for the 5 configuration 290 e
only. 2 _
For the same testbed setup as in Section IlI-A, Figure 10 S 85 |
shows the event reliability, and Figure 11 shows the average §80 g
T o
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Fig. 12. Periodic traffic: packet delivery reliability
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3r t 1 Fig. 13. Periodic traffic: average number of transmissicerspacket delivered
< and its 95% confidence level confidence interval
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1 ] network densities (e.g., humber of neighbors for each node)
we change the radio transmission power to -17dBm (i.e., powe
0 level 2). Then for the same node deployment and traffic trace

ETX LETX as in Section llI-A, Figure 14 shows the event reliabilitpda

Fig. 11. 5x5: average number of transmissions per packet deliveredtand
95% confidence level confidence interval

90 ‘
number of transmissions per packet delivered, as well as S g
its confidence interval at 95% confidence level, in different EBO’ o
protocols. We see that, in the case of lighter traffic load,TX s -
still achieves higher event reliability and energy efficigrias g e
measured in the number of transmissions required in déliyer %60’ g
a packet to the base station) than ETX. Compared with the case ;
shown in Figure 6, the event reliability of ETX is slightlyghier 50t ;{ —_—

because the traffic load and thus traffic-induced interfeeemd

collision are lower in this case.
L . . . Fig. 14. Sparser network: event reliability
Periodic traffic. To understand routing performance in pe-

riodic data collection applications, we experimentallyngare

performance of different routing protocols in deliveringripdic  Figure 15 shows the average number of transmissions per
traffic. To this end, we let all the nodes except for the bag@cket delivered in different protocols. We see that L-ETX
station in a7 x 7 grid periodically generate packets withachieves higher event reliability and energy efficiencyntha
an average inter-packet interval of 15 seconds. For the safEX. Compared with the case when the radio transmission
testbed setup as in Section IlI-A, Figure 12 shows the packewer is -14dBm, the event reliability in a protocol is lower
delivery reliability, and Figure 13 shows the average numbwhen the power level is -17dBm because the routing hop length
of transmissions per packet delivered in different prolmcé/e increases as a result of the reduced power level.

see that L-ETX outperforms ETX in delivering periodic treffi p5ndom topology. Instead of deploying 49 nodes in a regular

Sparser network. To understand whether the relative perfor7x7 grid, we deploy 49 nodes in a randomly selected set of 49
mance among different protocols is consistent acrossrdiife grid points from the 147 grid space as shown in Figure 1(b).



8 ‘ ‘ but in order not to overload the network too much, we only

£ let nodes in the farthestx2 subgrid from the base station
6 ] generate traffic. Table Il shows the number of unique packet
l’é Protocol ETX [ L.ETX
3 4 Throughput (packets/second) 6.07 8.49
TABLE Il
2r ] THROUGHPUT
0 ETX L-ETX

that are delivered to the base station per second. We see that
Fig. 15.  Sparser network: average number of transmissi@msppcket L-ETX achieves a higher throughput than ETX. Given that
delivered and its 95% confidence level confidence interval the highest one-hop throughput is about 42.93 packetsigeco

for Mica2 motes with B-MAC (the default MAC component

of TinyOS) and that, in multi-hop networks, even an ideal
Then for the same traffic trace as in Section IlI-A, Figure 1BIAC can achieve no more thai@ of the throughput that a
shows the event reliability, and Figure 17 shows the averagi@agle-hop transmission can achieve [29], the theoretipaker
limit on achievable throughput in multi-hop Mica2 networks
is 10.73 packets/second. The throughput in L-ETX is 8.49

g packets/second in our experiment, which is 79.12% of theupp
Lsor e limit.
= o :
3 0. g | - | .V. R.ELATED WORK
‘® N Link properties in wireless sensor networks and 802.11
5407 networks have been well studied in [3], [4], [1], and [2].
i@ Experiment-based interference models have also been gedpo
0. . | for Mica2 radios [30] and 802.11 radios [31]. It is observeatt
ETX L-ETX wireless links assume complex properties, such as widgeran
non-uniform packet delivery rates, loose correlation feemw
Fig. 16. Random topology: event reliability distance and packet delivery rate, link asymmetry, and teaip
variations. Orthogonal to these studies, our study on lidpp
erties focuses specifically on link estimation, the differes
between broadcast and unicast link properties, and theampa
8 ‘ ‘ of interference patterns on the differences in low-poweelgss
I networks.
6/ : ] To address the challenges of wireless communication, rout-
< ing metrics such as ETX [23], [14] and ETT/WCETT [32]
(s ; ) )
Ear ] ] have been proposed to identify good routes for data delivery
z ) The metric PRD [33] has been proposed for energy-efficient
2t ] geographic routing in sensor networks, and metrics such as
RNP [27] and mETX [34] have also been proposed to take
0 into account temporal link properties in route selectiorhil/

ETX LoETX focusing on routing metrics, these studies did not exantiee t

impact of link estimation methods, and they used beacorebas
approach to estimate the corresponding routing metrics.
Differences between broadcast and unicast and their impact

o . o on the performance of AODV were first discussed in [5] and [6],
number of transmissions per packet delivered in different p ;4 the authors discussed reliability-based mechanisrgs (e

tocols. We see that L-ETX achieves significantly higher eveg,ose hased on RSSI or SNR) for blacklisting bad links. The
reliability and energy efficiency than ETX. Compared with, ;yhors also proposed mechanisms, such as enforcing SNR

the case when nodes are deployed in>a77grid, the event y, oqh1q on control packets, to ameliorate the negatiyeagn
reliability in a protocol is lower in the random topology Bese ¢ e differences, and the authors of [5] studied the impact

the routing hop length increases as a result of increasedgee of packet size, packet rate, and link reliability threshotdthe

spacing between nodes. end-to-end delivery rate in AODV. Nonetheless, the progose
Network throughput. To measure network throughput, wesolutions were still based on beacon exchanges among neigh-
let source nodes send packets to the base station at theshighers. Since it has been shown that reliability-based bistirhg
speed allowable by the system (e.g., system software atmks not perform as well as ETX [23], [35], [14], we do not
radio). We use the same testbed setup as in Section lll-gtudy [5] and [6] in detail in this paper.

Fig. 17. Random topology: average number of transmissiarspacket
delivered and its 95% confidence level confidence interval



MintRoute [14] used data feedback in link estimation, but jfiroposed [43], [44], [45], [46]. In these protocols, theviarder
also used beacons and treats beacon transmissions as the #&selected, through coordination among receivers, in ctikea
as data transmissions; MintRoute also assumed a fixed @atastanner after data transmission. Link estimation can s8ll b
beacon ratio which was used in deciding the amount of data tihelpful in these protocols since it can help effectivelyesel
should be transmitted in each time interval which was in tuthe best set of listeners [43]. Therefore, findings of thipgra
used for link estimation. Methods of using both MAC feedbaakan be useful in opportunistic routing too.
and beacon packets in link estimation were also proposed] in [
and [11], but they did not systematically characterize thpact VI. CONCLUDING REMARKS

that link layer retransmission and traffic-induced integfece Through testbed based study, we have characterized the
have on the accuracy of beacon-based estimation. Evenfthoygnact that link layer retransmission and traffic-induced-
periodic broadcast beacons may be necessary for purpQ&&Siference have on link estimation accuracy, and we have
such as neighbor discovery and routing loop recovery, tigown that the complexity and uncertainty in link correati
approach of incorporating periodic beacons in link estiarels 5,4 interference patterns make it inherently difficult t@-pr
debatable, especially for event-detection sensor neswshere (isely estimate unicast data transmission properties hdaet

broadcast beacons may mislead link estimation since thaye ¢ proadcast beacons. Using a variety of traffic patterns and
be very little data traffic and thus little unicast MAC feedka natwork setups, we have also experimentally demonstrated
in event detection networks. The measurement study in [@ penefits of data-driven link estimation in improving alat
and [11] focuses on TelosB and 802.11 networks respectivelibjivery reliability and transmission efficiency. Thesedfitgs

our study focuses on another platform — XSM motes — ang,\ide solid empirical evidence on the inherent drawbarids
thus extends the scope of the observation that data-diinkn Igq rces of errors in beacon-based link estimation and stigge

estimation should be treated as the basis of wireless lg)utinthat we treat data-driven link estimation as a basic priedip
SPEED [10], NADV [13], and CARP [12] also used MACprotocol design for low-power wireless networks.
feedback in route selection. While focusing on real-timekea ~ The experimental analysis of this paper is based on networks
delivery, a general framework for geographic routing, angf CC1000 radios. Even though we expect the findings of this
temporal link dynamics respectively, [10], [13], and [12Hd paper to be valid for networks of IEEE 802.15.4 radios, syste
not focus on characterizing the inherent drawbacks in beac@tic evaluation of this conjecture is a part of our future kvawe
based link estimation. Most closely related to our work isH.Ohave focused on accurate estimation of the ETX routing metri
[8] where the authors studied the inherent difficulty in pren this paper, identifying accurate estimation methodsotber
cisely estimating unicast link properties via those of biesst routing metrics such as mETX [34] and CTT [41] is also an
in 802.11b networks. We complement [8] by examining thignportant task to pursue for supporting different optintizia
issue in low-power sensor networks; even though our studpjectives in routing. It is expected that the observatioirthis
shows that the observations and protocol design decismns paper also apply when other retransmission techniquesasich
802.11b networks carry over to low-power sensor networkspportune transmission [24] is used, and detailed studyief t
these findings are not obvious because the radios, the MACworthwhile. We have shown that broadcast beacons should
protocols, and the traffic patterns in low-power sensor net®/ not be treated as the basis of wireless link estimation, eyt t
differ from those in 802.11b sensor network backbones, apdll still be an important part of wireless network protocol
these factors greatly affect link properties and netwodtqmol  design; it will be interesting to systematically study thwes
performance. We also systematically study the propertfes that broadcast beacons play in wireless routing and wiseles
individual unicast-physical-transmissions and compdrent networks in general.
with broadcast properties, which sheds new insight into the
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