
Overview of MATLAB Code for generating lower

bounds on R∗(M)

Written by Hooshang Ghasemi

Email: ghasemi@iastate.edu

Please feel free to ask me about the code and paper

June 24, 2016

In our paper, H. Ghasemi and A. Ramamoorthy, “Improved lower bounds for
coded caching.”, available at http://www.arxiv.org/pdf/1501.06003.pdf, we
introduced a new technique to establish lower bounds on the rate for the coded
caching problem. Consider a coded caching systems consisting of a server with
N files connected to K users each equipped with a cache of size M (normalized
with respect to the file size) through a shared link. Let R be rate of the shared
link as defined in the paper.

1 An summary of results in the paper

In this section we present a top level overview of the results in [1]. In what
follows, we refer extensively to results in the paper. This section can be skipped
if you are only interested in generating the actual bounds. For this system we
are interested in establishing a lower bound like:

αR + βM ≥ L

Corollary 2 of the paper gives us,

αR + βM ≥ min(αmin(β, K), αl min(βl, K) + αr min(βr, K) + N− N0) (1)

provided that N ≥ N0 where,

αl = ceil(α/2), βl = floor(β/2),

αr = α− αl, βr = β − βl,
N0 = max(Nsat(αl, βl, K), Nsat(αr, βr, K)).

1

http://www.arxiv.org/pdf/1501.06003.pdf


Therefore,

L = min(αmin(β, K), αl min(βl, K) + αr min(βr, K) + N− N0)

provided that N ≥ N0.

2 Manual for using the code

There are two ways to generate the lower bounds. There is an web-based
form available at http://www.ece.iastate.edu/~ghasemi/Lower%20bounds%

20on%20coded%20caching where one can simply enter appropriate parameters
and generate the bounds. One can also download the corresponding MATLAB
code that generates the lower bounds. This will return the actual problem in-
stance that corresponds to the best lower bound. The corresponding inequalities
can be obtained by interpreting the problem instance according to the steps in
[1].

The Matlab code contains two functions called “comp bound.m” and “ComputeNsat.m”.
The main function to compute the lower bound is “comp bound.m”. The func-
tion “ComputeNsat.m” is used to upper bound the saturation number Nsat(α, β, K)
and N0. The file “Example genr bound.m” is an example of using “comp bound.m”
to generate lower bounds. One can use comp bound.m with different inputs as
explained below.

1. Inputs: N, K, M, alpha , beta.

Use the following command:

comp bound(N, K, M, alpha, beta).

Then the function returns R so that we have the following bound.

R ≥ (L− beta ∗ M)/alpha;

Note: In this case the code calls “ComputeNsat.m” to compute upper
bounds on Nsat(α, β, K) and N0. If N ≥ Nsat(alpha, beta, K) then L =
alpha ∗min(beta, K). If N < N0 then the problem instance corresponding
to given setting is non-atomic (please look at the paper for definition of
non-atomic problem instance) and the result is R = 0. When the problem
instance is non-atomic the code will return R = 0 as output and print out
the following message.

Problem instance associated with given alpha and beta is non-atomic.

For definition of atomic problem instance please refer to the manuscript.

Please try smaller alpha and beta.

A non-atomic problem instance can be represented by two or more atomic
problem instances with smaller alpha and beta. Therefore, it does not
provide new lower bounds on the rate. In this situation, we suggest that
you try lower values of alpha and beta.

2

http://www.ece.iastate.edu/~ghasemi/Lower%20bounds%20on%20coded%20caching
http://www.ece.iastate.edu/~ghasemi/Lower%20bounds%20on%20coded%20caching


2. Inputs are: N, K, alpha , beta.

Use the following command:

comp bound(N, K, alpha, beta).

Then the function will return L and print out the following bound.

alpha ∗ R + beta ∗ M ≥ L

Note: In this case the code calls “ComputeNsat.m” to compute upper
bounds on Nsat(α, β, K) and N0. If N ≥ Nsat(alpha, beta, K) then L =
alpha ∗min(beta, K). If N < N0 then the problem instance corresponding
to given setting is non-atomic (please look at the paper for definition
of non-atomic problem instance) and then L = 0. When the problem
instance is non-atomic the code will return R = 0 as output and print out
the following message.

Problem instance associated with given alpha and beta is non-atomic.

For definition of atomic problem instance please refere to the manuscript.

Please try smaller alpha and beta.

A non-atomic problem instance can be represented by two or more atomic
problem instances with smaller alpha and beta. Therefore, it does not
provide new lower bounds on the rate. In this situation, we suggest that
you try lower values of alpha and beta.

3. Inputs are: N, K, M.

Use the following command:

comp bound(N, K, M).

In this case the function uses an appropriate range of alpha and beta

and generates lower bounds for all these cases. The final bound returned
is the maximum over all of them. The specific range of the parameters
is alpha ∈ [1, 2 ∗ N] and beta ∈ [1, 2 ∗ K]. For the interested reader, an
explanation of why these are the appropriate ranges is given in Section 3
(this will require some understanding of the concepts in [1]).

R ≥ max
alpha∈[1,2∗N]

max
beta∈[1,2∗K]

(L− beta ∗ M)/alpha

3 Ranges of α and β

We first show that considering β ≤ 2K is sufficient. This is because if β ≥ 2K,
our algorithm for splitting β = βl + βr will be such that βl, βr ≥ K. For this
range of β eq. (1) will reduce to

αR+ βM ≥ min(αK, αK +N −N0) = αK,

⇒ R ≥ K − βM/α.

3



Therefore, choosing β to be larger than 2K will not result in any improvement
as far as the lower bound on R is concerned.

Nex, we show that it suffices to consider α ≤ 2N . Toward this end, first
note that Nsat(α, β,K) ≥ α for β ≤ K. This can be seen by showing that
Nsat(α, β,K) < α for β ≤ K results in a contradiction. Firstly, we note that
Nsat(α, 1,K) = α (by inspection). We let Psat(T , Nsat,K, L, α, β) to be the
problem instance associated with saturation number Nsat(α, β,K) so that L =

αβ. According to Claim 3 in [1] w.l.o.g. we can assume that β̂ = β in problem
instance Psat. Furthermore, as ψ(vi, v

′) ∈ {0, 1} and L =
∑α
i=1

∑
v′∈C ψ(vi, v

′)

in eq. (7) of [1] and |C| = β̂ = β, it has to be the case that
∑α
i=1 ψ(vi, v

′) = α
holds for all v′ ∈ C. This implies that each cache node, v′ ∈ C, contributes
exactly α towards the lower bound L. Therefore, if we retain only one cache
node of C we can come up with a new problem instance P ′(T ′, N ′,K, L′, α, 1)
such that L′ = α and N ′ ≤ Nsat(α, β,K) (as only a subset of recovered files
in Psat is used in P ′). But N ′ ≤ Nsat(α, β,K) < α and L′ = α contradict the
fact that Nsat(α, 1,K) = α since this implies that we have found a saturated
problem instance P ′ with L′ = α and N ′ < Nsat(α, 1,K).

So far we have shown that Nsat(α, β,K) ≥ α for β ≤ K. Now we show that a
problem instance with α ≥ 2N is non-atomic thus does not provide a new lower
bound. For α ≥ 2N we have either αl ≥ N or αr ≥ N in inequality (1). W.l.o.g
we assume that αl ≥ N . Then by argument we made Nsat(αl, βl,K) ≥ αl ≥ N
which further implies N0 ≥ N . Therefore, no new file will be recovered in last
edge as all files are recovered in upstream nodes, i.e., the instance is non-atomic.

References

[1] H. Ghasemi and A. Ramamoorthy, “Improved lower bounds
for coded caching,” preprint, 2016, [Online] Available:
http://arxiv.org/abs/1501.06003.

4


	An summary of results in the paper
	Manual for using the code
	Ranges of  and 

