
Rescuing Uncorrectable Fault Patterns in On-chip Memories
through Error Pattern Transformation

Henry Duwe
University of Illinois
at Urbana-Champaign

Email: duweiii2@illinois.edu

Xun Jian
University of Illinois
at Urbana-Champaign

Email: xunjian1@illinois.edu

Daniel Petrisko
University of Illinois
at Urbana-Champaign

Email: petrisk2@illinois.edu

Rakesh Kumar
University of Illinois
at Urbana-Champaign

Email: rakeshk@illinois.edu

Abstract—Voltage scaling can effectively reduce processor power, but
also reduces the reliability of the SRAM cells in on-chip memories.
Therefore, it is often accompanied by the use of an error correcting
code (ECC). To enable reliable and efficient memory operation at low
voltages, ECCs for on-chip memories must provide both high error
coverage and low correction latency. In this paper, we propose error
pattern transformation, a novel low-latency error correction technique
that allows on-chip memories to be scaled to voltages lower than what
has been previously possible. Our technique relies on the observation
that the number of on-chip memory errors that many ECCs can correct
differs widely depending on the error patterns in the logical words they
protect. We propose adaptively rearranging the logical bit to physical bit
mapping per word according to the BIST-detectable fault pattern in the
physical word. The adaptive logical bit to physical bit mapping transforms
many uncorrectable error patterns in the logical words into correctable
error patterns and, therefore, improving on-chip memory reliability. This
reduces the minimum voltage at which on-chip memory can run by 70mV
over the best low-latency ECC baseline, leading to a 25.7% core-wide
power reduction for an ARM Cortex-A7-like core. Energy per instruction
is reduced by 15.7% compared to the best baseline.

I. INTRODUCTION

Current and future process technologies face serious power chal-
lenges. A well-known technique that effectively reduces processor
power consumption is supply voltage scaling. One major challenge
for voltage scaling is that the reliability of SRAM cells decreases
with the supply voltage. As the supply voltage decreases, an rapidly
increasing fraction of SRAM cells become faulty due to process
variations [1], [2]. This problem becomes more pronounced at smaller
feature sizes (Fig. 1) and is expected to get worse [3]. As such, the
reliability of SRAM cells, and not the reliability of logic circuits,
often determines the extent to which supply voltage can be reduced
[4], [5], [6]. Although using more robust SRAM cell implementations
with larger area and leakage can improve the reliability of SRAMs at
low supply voltages, a significant fraction of these SRAM cells are
still faulty at low voltages, as shown in Fig. 2.

Many recent works have investigated using an error correcting
code, or ECC, to tolerate the high fault rates of SRAMs at low supply
voltages [7], [8], [9], [10]. However, there is often a strong trade-off
between error correction coverage and latency between different ECC
schemes. For example, Fig. 3 shows that the four-bit-correcting BCH
(127,64) ECC can tolerate many factors higher bit failure rates than
weaker ECC schemes for the same coverage; however, this comes at
the cost of incurring up to 20X higher latency overhead1. Although
stronger ECC schemes provide the high error correction coverage
needed to enable low supply voltage, their high error correction
latencies make them unattractive for on-chip memories, where latency
is often critical.

1BCH decoder latency is taken from [11]; the calculation assumes an
oracular BCH decoder whose latency depends on the actual number of faults
in a word, as opposed to having a constant worst-case latency.

1.E$12&

1.E$06&

1.E+00&

0.4& 0.45& 0.5& 0.55& 0.6& 0.65& 0.7& 0.75& 0.8& 0.85& 0.9&

Fr
ac
%
on

(o
f(S

RA
M
(c
el
ls
(

th
at
(a
re
(fa

ul
ty
(

Supply(Voltage((V)(

130nm&6T&SRAM&cell&

65nm&6T&SRAM&cell&

28nm&6T&SRAM&

Fig. 1: SRAM failure probability w.r.t. to voltage for different
processing technologies [1], [2], [12]. Technologies with smaller
feature sizes exhibit higher fault rates.

1.E$09&

1.E$03&

0.4& 0.5& 0.6& 0.7& 0.8& 0.9& 1&

Fr
ac
%
on

(o
f(S

RA
M
(c
el
ls
(th

at
(a
re
(fa

ul
ty
(

Supply(Voltage((V)(

6T&
8T&(33%&area,&33%&leakage&overheads)&
6T&with&2X&large&transisters&(33%&area,&100%&leakage&overheads)&
6T&with&3X&large&transistors&(66%&area,&200%&leakage&overheads)&

Fig. 2: 65nm SRAM failure probability w.r.t. to voltage for
different SRAM cells [2]. Larger SRAMs have lower but still
significant fault rates at low voltages.

In this paper, we propose error pattern transformation, a novel low-
latency microarchitectural technique that allows on-chip memories to
be scaled to voltages lower than what has been previously possible.
We observe that although many ECCs only guarantee correction of
a few memory errors, they can opportunistically correct more errors
depending on the error pattern in the logical words they protect. As
such, we propose transforming the uncorrectable error patterns in
logical words into correctable ones by intelligently rearranging the
logical bit to physical bit mapping when storing a logical word into a
physical word in an on-chip memory. This improves on-chip memory
reliability and, therefore, leads to a reduction in the minimum voltage
at which on-chip memory can be run reliably.

Error pattern transformation (EPT) is a general technique that can
be applied on top of many prior works on improving on-chip memory
reliability. EPT can provide reliability benefits even in the presence of
soft errors and erratic faults. Our evaluations show that EPT reduces
the minimum voltage at which on-chip memory can run by 70mV

0"

10"

20"

30"

40"

50"

60"

70"

80"

90"

100"

0.001%"

0.010%"

0.100%"

1.000%"

10.000%"

100.000%"

0.0001" 0.001" 0.01"

Decoder'Latency'in'FO
4s'

'(refers'to'the'do5
ed'lines)'

%
'o
f'w

or
ds
'th

at
'a
re
'u
nc
or
re
ct
ab

le
''

(r
ef
er
s't
o'
th
e'
so
lid

'li
ne

s)
''

Bit'Failure'Probability'

segmented"OLSC(8,4)" segmented"Hamming(7,4)"
OLSC(128,64)" oracular"BCH(127,64)"

Fig. 3: ECC latency and coverage for 64-bit data words. Low-
latency ECCs typically provide lower coverages than long-latency
ECCs.

over the best low-latency ECC baseline, leading to a 25.7% core-
wide power reduction. Energy per instruction is reduced by 15.7%
compared to the best baseline.

II. MOTIVATION

The key insight driving this work is that for for many ECCs, the
number of errors that they can correct differs widely depending on
the observed error pattern (i.e., the bit locations of the individual
errors). Consider, for example, a segmented ECC, which breaks a
word into several independent and equally-sized segments, each with
its own check bits for error correction [7]. The number of errors that a
segmented ECC can correct depends on how many errors are located
in each segment, as illustrated in Fig. 4.

Our second example ECC does not break a word into independent
segments. An Orthogonal Latin Square Code, OLSC(128,64), protects
64 bits of data with 128-64=64 bits of redundancy. OLSC(128,64)
performs error correction in multiple levels of majority voting, where
each level consists of multiple majority voters processing overlapping
sets of input bits in parallel for low-latency error correction. When
there are too many errors in the inputs to one of the majority voters,

segment' segment' segment' segment'

'word:'

'word:'

segment' segment' segment' segment'

Fig. 4: Uncorrectable (above) and correctable (below) error
patterns in a segmented ECC that corrects one error per
segment. Low-latency ECCs can correct different numbers of errors
for different error patterns.

0.1%&

1.0%&

10.0%&

100.0%&

1& 2& 3& 4& 5& 6& 7& 8& 9& 10& 11& 12& 13& 14&%
(o
f(t
Fb
it
(e
rr
or
s(
in
(a
(6
4F
bi
t(

da
ta
(w
or
d(
an

d(
it
s(
EC
C(
bi
ts
(

th
at
(a
re
(c
or
re
ct
ab

le
(e
rr
or
s(

t,(the(number(of(erroneous(bits(in(a(64Fbit(data(word(and(its(ECC(bits(

segmented&Hamming&(7,4)& segmented&OLSC(8,4)& OLSC&(128,64)& BCH&(127,64)&

Fig. 5: Fraction of t-bit errors that are correctable by different
ECCs. Many t-bit errors are correctable even for large values of t.

Fig. 6: Possible logical to physical bit orderings. The error pattern
in a logical word depends on the bit ordering used to access the
physical word.

the output of the voter can flip; this can in turn flip the outputs
of subsequent voting levels. As such, the number of errors that
the OLSC ECC can correct again depends on the error pattern.
OLSC(128,64) can correct up to 32 bad bits among the 128 bits for
some specific error patterns; for all error patterns in general, however,
OLSC(128,64) only guarantees correction of up to four bad bits.

In fact, it is quite common for many low-latency ECCs (the latency-
coverage trade-offs of different ECCs are shown in Fig. 3) to have
some error patterns for which more errors can be corrected than other
error patterns. Fig. 5 shows the fraction of t-bit error patterns that
are correctable under different ECCs. Fig. 5 considers 64-bit data
words; it presents the unsegmented OLSC(128,64) ECC as well as
a segmented Hamming(7,4) ECC and a segmented OLSC(8,4) ECC,
where a segmented ECC(n,k) breaks a 64-bit data word into segments
of k data bits with n − k check bits per segment. Fig. 5 shows
that a significant fraction of t-bit error patterns are correctable for
a large range of t even though segmented Hamming(7,4), segmented
OLSC(8,4), and OLSC (128,64) guarantee correction of only 1, 1,
and 4 errors, respectively.

In this paper, we improve the coverage of low-latency ECCs by
adaptively transforming an uncorrectable BIST-detectable t-bit error
pattern in a logical word into one of the many correctable t-bit error
patterns (the latency-coverage trade-offs of different ECCs are shown
in Fig. 3). This allows low-latency ECCs to obtain similar coverage
as high-latency ECCs (e.g., the coverage of the BCH(127,64) shown
in Fig. 5), while incurring only a small fraction of the latter’s long
latency overhead. The improved coverage allows on-chip memories
to be scaled to voltages lower than what has been previously possible.

III. ERROR PATTERN TRANSFORMATION

Consider the proposed technique in context of a cache. We observe
that the same physical fault pattern in a cache word can manifest
as different error patterns in the logical word presented to the ECC
decoder depending on the mapping of the logical bits in a cache word
to the physical bits stored in the physical cache word. For example,
the logical bit to physical bit mapping from a logical word to a
physical cache word, or simply bit ordering, shown in the left half
and the right half of Fig. 6 generates error vectors ‘01010000’ and
‘10000001’, respectively, even though the physical fault pattern in the
cache word remains the same. We seek to transform uncorrectable
error patterns in the logical words into correctable error patterns
by supporting multiple bit orderings per physical cache word. In
comparison, conventional cache designs support only a single bit
ordering, which maps bit x in a logical word (e.g., logical bit 0)
to the same bit x in the physical cache word (e.g., physical bit 0).

When accessing a cache word with a known (BIST-detectable)
physical fault pattern, our proposal uses a pre-recorded bit ordering
that generates only correctable errors for the known physical fault
pattern in the cache word; the pre-recorded bit ordering is selected
from a pool of available bit orderings. Under our proposal, a physical
fault pattern in a cache word is uncorrectable only if no bit ordering
that generates only correctable error patterns for the given physical
fault pattern can be found; intuitively, the larger the number of
supported bit orderings, the less likely that a bit ordering that
generates only correctable error patterns cannot be found for a given
physical fault pattern.

Fig. 7 shows the calculated ideal fault coverages for different ECCs
under different numbers of supported bit orderings2. Fig. 7 shows that
the fraction of correctable fault patterns increases significantly as the
number of supported bit orderings increases. In fact, for a sufficient
number of available bit orderings (e.g., 32 to 256 bit orderings),
coverage approaches, and sometimes, exceeds the high-latency BCH
ECC. This improved coverage can be used to to be scale voltages
lower than what has been previously possible for cache memories.

Our proposal requires addressing three main challenges. First,
how to identify the appropriate bit ordering for each cache word.
Second, how to record the identified bit orderings in a space-efficient
manner. Third, how to enact the appropriate bit ordering during cache
accesses at low latency overhead. We address these challenges in
Sections III-A to III-C. Finally, Section III-D walks through examples
of how to apply our proposal.

A. Bit Ordering Selection

Low voltage SRAM faults are largely hard faults that can be identi-
fied using a BIST (Built-in Self Test) routine that is run either during
post-manufacture testing or at set intervals during processor lifetime
[4], [8]. The following describes a general approach, applicable to
different ECCs, for selecting the appropriate bit ordering that only

2Coverages are determined as follows. Let f (t) be the fraction of t-bit
error patterns that are uncorrectable by an ECC scheme; we obtained f (t) for
each of the fast ECC implementations via Monte Carlo simulations. Given that
there are n ways to reorder the logical bits stored in a physical word, a t-bit
fault pattern is uncorrectable if the fault pattern expresses uncorrectable error
patterns under all n bit orderings. The probability that a t-bit fault pattern is
expressed as an uncorrectable error pattern under all n bit orderings is f (t)n,
assuming that the n orderings are generated independently from one another.
The fraction of t-bit fault patterns that are correctable given n bit orderings
is, therefore, 1− f (t)n.

generates correctable errors for a physical fault pattern that has been
identified in a cache word.

The first step is to identify the physical fault vector of a cache word
at low supply voltage using BIST. Next, the fault vector is sent to
the bit reordering logic (described in detail in Section III-C), which
modifies the ordering of the bits in the fault vector. The modified fault
vector is then fed into a correctability checker to check whether all
possible error patterns due to the modified fault vector are correctable.
The correctability checker is specific to an ECC. For example, for the
segmented Hamming (7,4) ECC, the correctability checker counts the
number of ‘1’s in every segment of seven adjacent bits in the fault
vector under test; the checker asserts a fail signal if any segment
contains more than one ‘1’ and asserts a pass signal otherwise. If the
check passes, the tested bit ordering for the cache word is recorded
so that the ordering will be used to access that cache word for all
future accesses. Otherwise, the bit reordering logic checks another bit
ordering of the identified fault vector until one of the bit orderings
passes or until all available bit orderings have been tested; in the
latter case, the cache word is reported as having an uncorrectable
fault pattern.

Fig. 8 summarizes the steps described above. Note that all of the
steps only have to be performed once for each cache word (e.g., once
during post-manufacturing testing). They are not performed during
normal operations and, therefore, do not affect runtime performance.
Assuming a 50s BIST overhead to identify all fault patterns for a 2MB
cache [8], our 32KB L1 cache requires 0.78s. Assuming the worst
case of 28 OID calculations per word and two cycles per calculation
(one cycle to generate a new bit ordering and one cycle to check
the new ordering), a 32KB L1 cache requires only 131K cycles.
Therefore, selection of OID bits would add a negligible amount of
time to the BIST routine.

B. Tracking Bit Orderings

To support 2k different bit orderings per cache word, we allocate
k bits per physical cache word to record the chosen bit ordering for
each physical cache word. We call these k bits per cache word the
Ordering ID or OID of the physical cache word. We store the OIDs
in the tag array where they are accessed at the same time as the tags.
Similar to prior work [8], a copy of the OIDs is stored off-chip to
allow the OIDs to be used across multiple switches to low voltage
or after the chip is powered down.

0.1%&

1.0%&

10.0%&

100.0%&

1& 2& 3& 4& 5& 6& 7& 8& 9& 10& 11& 12& 13& 14&

%
(o
f(c
or
re
ct
ab

le
(tF
bi
t(f
au

lt
(

pa
@
er
ns
(in
(a
(6
4F
bi
t(
ca
ch
e(

w
or
d(
an

d(
it
s(
EC
C(
bi
ts
(

The(number(of(faulty(bits(in(a(64Fbit(cache(word(and(its(ECC(bits(

segmented(Hamming((7,4),1(bit(ordering(segmented(OLSC(8,4),((1(bit(ordering(OLSC((128,64),((1(bit(orderings(

segmented(Hamming((7,4),(2^5(bit(orderings(segmented(OLSC(8,4),(2^5(bit(orderings(OLSC((128,64),(2^5(bit(orderings(

segmented(Hamming((7,4),(2^8(bit(orderings(segmented(OLSC(8,4),(2^8(bit(orderings(OLSC((128,64),(2^8(bit(orderings(

BCH((127,64)(

Fig. 7: The physical fault coverages of low-latency ECCs with different numbers of bit orderings. With multiple bit ordering options,
the low-latency ECCs approach, and sometimes, exceed the slow BCH ECC in coverage.

Physical)Cache)Word)

."."."

BIST)Circuit)

Bit)Reordering)Logic)

Check)another)bit)ordering)un<l)the)new)
bit)ordering)passes))or)un<l)all)available)
bit)orderings)have)been)exhausted.)

ECCCspecific)
Correctability)Checker)

Iden<fied)fault)vector:)
V=01010000….)

Modified)fault)vector:)
V’=10000001….)

Fig. 8: Selecting the appropriate bit ordering for a cache word.
A BIST circuit generates the fault pattern of a physical word. Logical
bit reorderings are tried until one guarantees that the logical word will
be correctable. In our evaluations, this takes less than two attempts
on average.

Cache&Write/Fill&Request&

Read&the&OID&in¶llel&
with&the&tag&access&

ECC&encoder&encodes&
the&data&word&

Reorder&the&encoded&
word&using&the&OID&

Write&the&reordered&encoded&
word&into&the&cache&word&

Cache&Read&Request&

Read&the&OID&in¶llel&
with&the&tag&access&

ECC&decoder&decodes&the&
original&encoded&word&

Using&the&OID,&revert&the&earlier&
modificaAon&to&the&bit&ordering&

Return&the&decoded&
data&word&

Fig. 9: Cache access action flow. Since bit reordering is on the
critical path of a cache access, it is critical that it have low latency.

C. Bit Reordering and Order Recovery

Prior to a write to a physical cache word, we reorder the bits in
the logical word to be written according to the recorded OID of the
cache word. Conversely, after reading from a cache word, the earlier
modification to the bit ordering has to be reversed to recover the
original logical word. Fig. 9 details the steps needed for accessing
a cache word. During a cache access, the OID is read at the same
time as the tag; however, bit reordering and order recovery are on
the critical paths of cache writes and reads, respectively. It is critical
that these two steps are implemented at very low latency.

To provide low latency bit reordering and order recovery, we
evenly divide each logical word into multiple small groups of bits
and perform bit reordering and order recovery on all groups in
parallel; bits in each parallel reordering group (or simply, PRG) can
only be moved within the PRG but not across PRG. Intuitively, the
smaller the PRG sizes, the higher the parallelism in the reordering
and order recovery logic, and therefore, the lower the latency of the
bit reordering and order recovery logic. However, the smaller the
PRG sizes, the less flexible bit reordering becomes, which limits
the correctable fault coverage because it reduces the number of
correctable error patterns that can be exploited. As such, the size

PRG$

$
Barrel$
Shi-er$

$

Shi-$Dist.$$
$

Shi-$Data$

$
Barrel$
Shi-er$

$

Shi-$Dist.$$
$

Shi-$Data$

$
Barrel$
Shi-er$

$Shi-$Data$

OrderingID

Bit$Reordering$Logic$

$
Barrel$
Shi-er$

$

Shi-$Dist.$$
$

Shi-$Data$

$
Barrel$
Shi-er$

$

Shi-$Dist.$$
$

Shi-$Data$

$
Barrel$
Shi-er$

$

Shi-$Dist.$$
$

Shi-$Data$

Order$Recovery$Logic$

.$.$.$.$.$.$

Shi-$Dist.$$
$

.$

.$

.$

.$

.$

.$

.$

.$

.$

.$.$.$.$
.$
.$

.$

.$

.$

.$

.$

.$

.$.$.$

Fig. 10: Bit reordering and order recovery logic. PRG stands for
a Parallel Reordering Group.

of the PRGs needs to be selected based on the underlying ECCs.
Section III-D walks through some examples of PRG selection and
sizing.

A straightforward way to reorder the bits in a PRG is to use a set
of static circuits, each designed to reorder bits within a PRG in a
specific way. However, this can lead to a large area overhead when
supporting a large number of bit orderings per cache word. Instead,
we use barrel shifters as a more scalable approach to reorder a PRG.
A barrel shifter can generate a different bit ordering within a PRG for
a different shift distance input value. In addition to providing good
scalability, the barrel shifters can also reorder the bits in a PRG at
low latency since the PRGs are small (e.g., only 8 to 16 bits per
PRG). Synthesis shows (details in Section IV-A) only < 0.3 cycle of
barrel shifting latency assuming 20FO4s per cycle.

Fig. 10 illustrates the details of how to implement the bit reordering
and order recovery logic using barrel shifters. The barrel shifters in
the bit reordering logic and order recovery logic differ simply by the
direction of rotation so that the actions taken by the former can be
reversed by the latter. The shift distance inputs to the barrel shifters
are taken from the OID of a cache word; this allows a logical word
to be reordered/recovered according to the OID of the cache word
that stores the logical word. Note that the number of bits in the
shift distance input to a barrel shifter is a function of the size of
each PRG; this number may or may not be equal to the size of an
OID. As such, each barrel shifter takes as its shift distance input
a combination of bits from the OID. Different barrel shifters take
different combinations of the bits from an input OID to reduce the
correlation between different PRGs since this correlation can reduce
the effectiveness of bit reordering by reducing the movement of the
bits in a logical word relative to each other. For our evaluation
in Section V, we choose the combinations of input bits to the
barrel shifters experimentally by picking the set of combinations
that provides the best empirical fault coverage out of ten randomly
generated sets of combinations.

D. Application Examples

Error pattern transformation (or EPT) is a general technique that
can be applied on top of many prior works on improving on-chip
memory reliability. In this section, we describe how to apply EPT to
two different ECCs.

Fast'Fault'Mapping'with'MS<ECC''
4b1e'Uncorrectable'

PRG'

OLSC(8,4)+Codeword+0:+

OLSC(8,4)+Codeword+1:+

OLSC(8,4)+Codeword+2:+

OLSC(8,4)+Codeword+3:+

(a) A bit ordering that can gener-
ate uncorrectable errors for seg-
mented Hamming(7,4).

Fast'Fault'Mapping'with'MS<ECC''
4b1e'Uncorrectable'

PRG'

OLSC(8,4)+Codeword+0:+

OLSC(8,4)+Codeword+1:+

OLSC(8,4)+Codeword+2:+

OLSC(8,4)+Codeword+3:+

(b) A bit ordering that only gen-
erates correctable errors for seg-
mented Hamming(7,4).

Fig. 11: PRGs for segmented Hamming(7,4). Each row corresponds
to one segment within the access granularity. Green and blue repre-
sent data and ECC bits, respectively. Red represent bits mapped to
faulty SRAM cells. All rows are accessed at once, are decoded at
once, and are combined to form one word.

1) Applying to Segmented ECCs: For segmented ECCs, we con-
struct each PRG using logical bits from different segments to move
errors in segments with more errors into segments with fewer errors;
this PRG composition principle benefits all segmented ECCs. Fig. 11
shows the PRG composition for a 16-bit data word protected by the
segmented Hamming(7,4) ECC; each column of squares represents a
PRG while each row of squares represents a segment. Fig. 11 also
illustrates how the composition of each PRG from bits in different
segments improves the fault coverage of a segmented ECC.

2) Applying to Unsegmented ECCs: For unsegmented ECCs, a
good PRG composition may be different for different unsegmented
ECC implementations. As such, we propose a two-stage EPT that
provides more freedom in bit reordering to better suit the specific
needs of different unsegmented ECCs. During the first stage, each
PRG is composed from bits in the same row so that the bits can be
reordered along the X-axis. During the second stage, each PRG is
composed from bits in the same column so the bits can be reordered
along the Y-axis. Fig. 12 shows the PRG composition for a 16-bit
data word protected by the OLSC(24,16) ECC.

Section VI provides more examples of application of EPT to prior
works on improving on-chip memory reliability.

IV. METHODOLOGY

A. EPT-Based Cache Resilience Designs

To demonstrate the applicability of EPT to a variety of ECCs that
can be used to protect deeply voltage scaled on-chip memories, we
apply EPT to three different ECCs in the context of a 32KB L1
cache with a word size of 64 bits - the segmented Hamming(7,4),
segmented OLSC(8,4), and OLSC(128,64). All three ECCs protect
at the granularity of a 64-bit data word, which is the word size of the

Cycle Area Gate Count
Segmented 0.22 0.44% 528Hamming(7,4)
EPT:segmented 0.43 1.53% 2009Hamming(7,4)
Segmented 0.16 0.40% 573OLSC(8,4)
EPT:Segmented 0.46 1.60% 2095OLSC(8,4)
OLSC(128,64) 0.68 8.89% 6394
EPT:OLSC(128,64) 0.98 10.10% 9187

TABLE I: Synthesized decoder latency and area. Area overheads
is w.r.t a 0.76mm2 L1 cache.

evaluated L1 cache. For sensitivity analysis, we evaluate EPT using
both 5-bit OIDs and 8-bit OIDs; we refer to them as 5-bit EPT and 8-
bit EPT, respectively. We apply EPT to segmented Hamming(7,4) and
segmented OLSC(8,4) by adding one level of 16-bit barrel shifters
and apply EPT to OLSC(128,64) by adding two levels of 16-bit barrel
shifters.

To accurately characterize the latency and area overheads of EPT,
we implemented these ECCs, both by themselves and with EPT, in
RTL and synthesize them using Synopsys Design Compiler [13] and
the TSMC 65GP standard cell library. Cadence SoC Encounter [14]
was used for physical layout. Area and latency values were verified
using Encounter. Table I shows the latency in cycles and area
overheads normalized to the evaluated 32KB cache (see Section
IV-C); our evaluation assumes the 20FO4 cycle commonly used in
prior works [4], [2]. Table I shows that all three ECCs stay within one
cycle of latency, with or without EPT. By itself, each level of barrel
shifters required by EPT only incurs < 0.3 cycle latency and 3% area
overhead. In particular, the two segmented ECCs both stay within
0.5 cycle of latency, with or without EPT. The low-latency overheads
justify our design choices in Section III. In our evaluations, we model
the latency overhead of all of the ECCs in Table I as one cycle; the
one exception is EPT:OLSC(128,64), which we conservatively model
as two cycles of latency. Table II lists the EPT latency overheads that
are used during our performance and EPT area overheads used during
our power evaluations.

B. Baseline Cache Resilience Designs

To show that the proposed approach can lead to lower on-chip
memory voltages than what has been previously possible, we compare
against seven baselines. We compare against the SECDED (72,64)
ECC commonly used in existing processors [15]. We compare
against the primary implementation of MS-ECC [7], which uses
the OLSC(128,64) ECC. We also compare against the circuit-level
technique of using robustified 8T SRAM cells, instead of the usual
6T SRAM cells.

We compare against an Oracular BCH(127,64) ECC that guaran-
tees correction of up to 10 bits of error per word. We consider this
baseline oracular because we optimistically assume a BCH decoder
that incurs the minimum latency for the exact number of errors
currently present in a logical word. The oracular decoder has the
low-latency benefit of weaker BCH decoders that correct fewer errors
per word while having the high error coverage benefit of always
guaranteeing correction of 10 bits in a word. As such, this oracular
BCH baseline represents the best coverage and latency obtainable by
prior works that propose protecting caches with the BCH ECC, such
as Hi-ECC [16].

We compare against word disable (WD), the best resilience scheme
presented in [4] for L1 caches. WD is previously evaluated in the
context of caches with 512-bit access granularity; in this context,
WD combines two 512-bit cache lines into an error-free logical line
by dividing the two lines into 32 chunks and remapping data to fault-
free chunks among the 32 available chunks. When evaluating WD in
the context of our L1 cache with a 64-bit word size, we note that
dividing two 64-bit words into 32 chunks can result in a high storage
overhead for recording the 32 chunks. As such, we evaluate two
versions of WD, WD–Original and WD–IsoArea; the former divides
two 64-bit words into 32 chunks, while the latter divides the two 64-
bit words into fewer chunks such that the implementation requires
the same number of extra storage bits as an 8-bit OID EPT scheme.

We compare against a VS-ECC [8] implementation where each
64-bit data word is divided into four 16-bit segments. The 64-bits

Baselines Latency Overhead Usable Cache Decoder Area Metadata Total Area
(Cycles) Size Overhead Overhead Overhead

5-bit EPT+Segmented 1 16KB 3.06% 0% 3.1%Hamming(7,4)
5-bit EPT+Segmented 1 16KB 3.2% 0% 3.2%OLSC(8,4)
5-bit EPT+OLSC(128,64) 2 16KB 20.20% 0% 24.2%
8-bit EPT+Segmented 1 16KB 3.06% 4% 7.1%Hamming(7,4)

TABLE II: Evaluated EPT overheads.

Baselines Latency Overhead Usable Cache Decoder Area Metadata Total Area
(Cycles) Size Overhead Overhead Overhead

Oracular BCH(127,64) 2 - 21 (3.2 avg) 100% 70% 0% 70%(Hi-ECC)
VS-ECC 1-7 (1.9 avg) 16KB 37% 4% 42%
MS-ECC 1 16KB 9.4% 0% 9.4%
SECDED 1 32KB 10.9% 0% 10.9%
8T SRAMs 0 32KB 0% 0% 33.3%
WD–Original 1 16KB <1% 43.2% 44.2%
WD–IsoArea 1 16KB <1% 4% 5%

TABLE III: Evaluated baseline overheads.

of ECC are shared as 6-bit ECC chunks between the four segments.
Each segment can have up to four 6-bit ECC chunks allocated to
it; each additional 6-bit chunk guarantees correction of up to an
additional error. For this VS-ECC implementation, we assume that
the four segments each have a dedicated decoder that corrects up to
a single error but shares two 4-bit correcting decoders; the single-bit
correcting decoders are sufficient for segments with a single error
while the multi-bit decoders are needed in case multiple errors are
present in a segment. We use two instead of four 4-bit correcting
decoders to optimize the decoder area for VS-ECC since the segments
more commonly experience single-bit errors than multi-bit errors in
our evaluation.

We calculate the latency of SECDED according to [11], which
conservatively estimates decoder latency in FO4s by ignoring the wire
delay. We calculate the decoder area overhead of SECDED(72,64)
by counting the number of gates required according to [11] and
assuming that each gate is equal in area as two SRAM cells; the
latter assumption is consistent with prior works [8]. When calculating
the latency of Oracular BCH(127,64), we use the formula in [11] to
calculate the latency required to correct t-bit errors and weight that
calculate latency by the probability of encountering t bits of errors in
a word. For the decoder area overhead of Oracular BCH(127,64),
we assume it is the same as the area overhead of a constant
latency BCH(127,64), which we calculate according to [11]. We
extrapolate the latencies and area overheads of MS-ECC and WD
from their respective papers. We follow the methodology for the

parallel BCH decoder in VS-ECC to calculate the latency and decoder
area overheads of our VS-ECC adaptation; we assume that the latency
overhead of VS-ECC when a cache word is accessed is determined
by the segment with the most errors among the four segments in the
cache word, since this segment takes the longest to correct.

C. Experimental Setup

Keeping with the context of this work - energy efficient computing,
we evaluate a two-issue in-order core similar to the ARM Cortex-
A7 [15]; the detailed micro-architectural parameters are enumerated
in Table IV. The baseline core operating at nominal voltage (1.2V)
uses no ECC for L1 accesses.3 For each design that requires
correction, we deepen the pipeline to accommodate the minimum
correction latency of that design. The core uses a common voltage
rail for both its L1 caches and the rest of the core; as such, the
L1 caches determine the minimum operating voltage of the entire
core, in accordance with many prior works [5], [4], [7], [17]. We
only voltage scale the core, but not the rest of the system, such as
the memory system and lower-level caches, which we assume are on
different voltage rails. To model voltage scaling, we scale frequency
and leakage power with respect to voltage using the detailed 70nm
scaling given in [18]; we use the common quadratic scaling to
model dynamic power with respect to voltage. We model the SRAM
failure probabilities using data reported in [2]. During low voltage

3Without any loss of generality, we can easily assume that some other
default ECC is used at the nominal voltageFast'Fault'Mapping'with'OLSC1'Correctable'

EXPORT'

Stage'2'PRG'

Stage''
1'

PRG''

(a) A bit ordering with uncorrectable errors.

Fast'Fault'Mapping'with'OLSC1'Correctable'
EXPORT'

Stage'2'PRG'

Stage''
1'

PRG''

(b) Bit ordering after stage 1 reordering.

Fast'Fault'Mapping'with'OLSC1'Correctable'
EXPORT'

Stage'2'PRG'

Stage''
1'

PRG'

(c) Bit ordering after 2D reordering.

Fig. 12: PRGs for OLSC(24,16). Green and blue represent data and ECC bits, respectively. Red grid represents bits mapped to faulty SRAM
cells.

operations, we account for the added cache access latency due to
error correction by stalling each load instruction by the number of
cycles needed to perform error correction. We simulate seventeen
benchmarks from the SPEC2000 [19] and SPEC2006 [20] benchmark
suites4 using Gem5 [21]; we fast-forward each benchmark for 1
billion instructions and execute in detailed timing mode for 1 billion
instructions. We model processor power with McPAT [22] using
simulation outputs from Gem5. We use Cacti [23] to model cache
latency and power.

We choose a simple cache organization that is commonly used
by prior works [4], [7], [17] to evaluate the relative merits of EPT
and the various baselines. This simple cache organization stores
the check bits of a data cache word (i.e., a cache word assigned
to storing data during low voltage operation) in the same cache
word in a different way in the same cache set, as these two cache
words are typically always accessed in parallel in L1 caches both
with or without support for voltage scaling. Unlike an alternative
cache organization that uses one ECC way to protect multiple data
ways, this simple cache organization that allocates a dedicated ECC
way for each data way does not require expensive read-modify-write
operations when updating the ECC cache word. We do not investigate
new approaches to store ECC bits because it is orthogonal to the
core idea of EPT. All the evaluated cache resilience designs have
almost equal amount of check bits as data bits in each word, and
thus all effectively utilize the available space in the dedicated ECC
way for each data way. The only exception is the SECDED(72,64)
ECC, which only provides 72−64 = 8 bits of check bits per 64-bit
data word. Instead of reserving half of the ways as ECC ways, we
leave all four ways as data ways and expand the size of each cache
word statically to store the check bits for SECDED(72,64).

Also similar to prior works [4], [17], the cache organization we
evaluate uses the larger but more reliable 10T cells [2]5, as the tag
array is only a small fraction of the total cache area. Similar to these
prior works, we also use the more reliable tag array to store any
metadata needed for the evaluated cache resilience schemes, such as
the OID bits for EPT, the disable bits for WD, and the bits to identify
how many ECC chunks are allocated to each segment for VS-ECC.
Note that since half of the ways in the cache are used to store ECC
bits during low voltage operation, half of the tags in the tag array are
unused during low voltage operation. Therefore, we reuse the unused
tag bits to store the metadata during low voltage operation. When the
metadata bits do not completely fit in the unused tags (i.e., more than
5-bit OIDS), we expand the size of the tag entries in the ECC ways
to accommodate the remaining metadata bits. The area overhead due
to expanding the size of the tag entries are given in Table III and
Table II. We do not study OIDs smaller than 5-bits because they do
not reduce area and latency overheads, but reduce coverage.

V. RESULTS

In this section, we demonstrate that the proposed technique allows
memory to run at lower voltages than was previously possible for a
given yield target. We also discuss the core-wide power and energy
benefits this entails compared to the different baselines.

A. Yield
We define cache yield as the fraction of caches where all of the data

cache words in the data ways (i.e., the two data ways in our evaluated

4We evaluated ammp, applu, apsi, art470, facerec, gromacs, lbm, libquan-
tum, lucas, mcf 2006, mesa, mgrid, milc, omnetpp, soplex, swim, and
wupwise.

5Our reliability calculations also account for the failure probability of the
10T cells.

Core Type In-order, 7-Stage
Register File 32 Int, 32 FP
Fetch/Decode/Issue Width 2/2/2
BTB Size 4096 entries
RAS Size 16 entries
Branch Predictor Tournament
ALUs/FPUs/MDUs 2/1/1
Cache Line Size 64B

L1 I$ Nominal (1.2V) 32KB, 4-way, 2-cycle
Vmin 16KB, 2-way, 2-cycle

L1 D$ Nominal (1.2V) 32KB, 4-way, 2-cycle
Vmin 16KB, 2-way, 2-cycle

L2 Unified $ 1MB, 8-way, 20ns latency
Memory Configuration 1066 MHz DDR3

TABLE IV: Microarchitectural parameters.

4-way set-associative caches) are functional and error-free, similar to
prior works [4], [7]6. Fig. 13 shows the cache yield at low supply
voltage for the different cache resilience designs. Fig. 13 shows that
for a 99.9% yield target, which is commonly used in prior works
[4], [7], 8-bit EPT + Segmented Hamming(7,4) reduces the latter’s
Vmin by 134mV. For the same yield target, 8-bit EPT + Segmented
Hamming(7,4) reduces the Vmin of the two weakest baselines in terms
of Vmin (i.e., SECDED(72,64) and MS-ECC) by 70mV or more.

After 8-bit EPT + Segmented Hamming(7,4), the next closest
resilience design in terms of achieving the lowest Vmin is the 10-
bit correcting Oracular BCH(127,64) ECC (the strongest version of
a capacity-efficient code whose redundant bits fit in the disabled
way). While 8-bit EPT + Segmented Hamming(7,4) achieves only
1mV lower Vmin than Oracular BCH(127,64), the former’s main
advantage over the latter is having lower latency overhead; 8-bit
EPT + Segmented Hamming(7,4) incurs a constant one cycle latency
(see Table I), while the Oracular BCH(127,64) incurs 2 to 21
cycles of latency overhead per cache access (3.2 cycles, on average).
A second benefit of 8-bit EPT + Segmented Hamming(7,4) over
Oracular BCH(127,64) is having much lower decoder area. The area
overhead of a BCH decoder increases rapidly with the word size
and the number of errors to correct [11]. 8-bit EPT + Segmented
Hamming(7,4) requires both minimal word size (i.e., only seven bits
per segment) and minimal correction strength(i.e., only corrects one
error per segment), as compared to BCH (127,64) which uses a word
size that is roughly 16X as large and corrects 10X as many errors
per word.

Following after Oracular BCH(127,64), the next closest baseline in
Vmin is VS-ECC. 8-bit EPT + Segmented Hamming(7,4) only reduces
Vmin by 13mV compared to VS-ECC. However, the main benefit of
8-bit EPT + Segmented Hamming(7,4) over VS-ECC is against for
having lower latency overhead; VS-ECC incurs one to seven cycles
of latency overhead per cache access (1.9 cycles, on average). 8-bit
EPT + Segmented Hamming(7,4) also incurs much lower decoder
area overheads, since the latter uses a word size 8X as large and
corrects 4X as many errors per word.

After VS-ECC, the next closest baseline in Vmin is WD–Original.
8-bit EPT + Segmented Hamming(7,4) reduces the Vmin of WD–
Original by 33mV. However, WD–Original requires 4X as many
metadata bits as 8-bit EPT, which incurs a 43% overhead in total
cache area. On the other hand, the alternative WD–IsoArea imple-
mentation we evaluate, which requires the same number of metadata
bits as 8-bit EPT, only provides a Vmin of 769mV, which is nearly

6Cache word error rates are calculated analytically where possible (e.g.,
Oracular BCH(127,64)). For the rest of the designs, in particular, EPT, word
error rates are determined through Monte Carlo simulations.

650 700 750 800 850
Voltage (mV)

0.995

0.996

0.997

0.998

0.999

1.000

1.001

Y
ie

ld Oractular BCH(127,64)
8T
VS-ECC
WD--IsoArea
WD--Original
SECDED(72,64)

Segmented Hamming(7,4)
MS-ECC
5-bit EPT + OLSC(128,64)
5-bit EPT + Segmented OLSC(8,4)
5-bit EPT + Segmented Hamming(7,4)
8-bit EPT + Segmented Hamming(7,4)

2.15e-02 5.12e-03 6.55e-04 4.50e-05 3.09e-06
pBitFail

Fig. 13: Yield for 32KB 4-way cache implemented in 6T SRAM cells. Cache yield vs voltage for the various cache resilience schemes.
The red line depicts the 99.9% yield.

100mV higher than the best EPT solution.
The next closest baseline in Vmin are caches built using 8T SRAMs.

8-bit EPT + Segmented Hamming(7,4) reduces Vmin by 38mV and
59mV, respectively. However, 8T incurs high area (and thus power)
overheads of 33%. Fig. 13 shows that, although 8T SRAM cells
provide a reduction in Vmin, EPT solutions provide lower Vmin (e.g.,
EPT(8-bit OID) applied to segmented Hamming(7,4) provides a
reduction of 59mV over 8T). However, 8T incur high area overheads
(i.e., 33% [2], respectively).

For sensitivity analysis, we also evaluated three 5-bit EPT design
points. Among these three designs, 5-bit EPT + Segmented Ham-
ming(7,4) provides the highest yield; it provides higher yield than 5-
bit EPT + Segmented OLSC(8,4) because the former requires fewer
check bits than the latter while correcting the same number of errors
per segment as the latter. Having a fewer number of bits per word
reduces the average number of faulty bits per word and, thereby,
improving yield. On the other hand, 5-bit EPT with Segmented
OLSC(8,4) provides higher yield than 5-bit EPT + OLSC(128,64);
this is because the fraction of t-bit error patterns that are correctable
by OLSC(128,64) decreases more rapidly with respect to t than the
fraction of t-bit error patterns that are correctable by Segmented
OLSC(8,4), as shown in Fig. 5. When the fraction of t-bit error
patterns that are correctable is small, it becomes less likely to find a
bit ordering that always generates one of the correctable t-bit error
patterns in a logical word given a t-bit fault pattern in a cache word.

All of the above results hold irrespective of the core microarchitec-
ture (e.g., in-order vs out-of-order, issue-width, etc.) and workloads.
The next section describes how the improved yield due to EPT
translations into improved power and performance characteristics for
the chosen core microarchitecture and workloads.

B. Power and Performance
Table V summarizes the core-wide power and performance of

the EPT designs and the baselines. While 8-bit EPT + Segmented
Hamming(7,4) operates at the same Vmin and, therefore, similar power
as Oracular BCH(127,64), the former provides 21% higher IPC than
the latter. This performance improvement is due to having much
lower latency overhead than Oracular BCH(127,64) ECC. This shows
that EPT is better than imply using a stronger ECC due to decoder
latency and area overheads. Compared to 8-bit EPT + Segmented
Hamming(7,4), VS-ECC only increases Vmin by 13mV. However, the
higher decoder latency and area overhead of VS-ECC results in a
high EPI overhead. 8-bit EPT + Segmented Hamming(7,4) reduces
EPI by 40.2% compared to VS-ECC.

WD-Original and WD-IsoArea provide similar IPC as EPT since
WD also only incurs a constant one correction cycle latency. How-
ever, the high area overhead of WD-Original (i.e., 44.2%) results in a
high power overhead; 8-bit EPT + Segmented Hamming(7,4) reduces
power by 20.5% compared to WD-Original. Although WD-IsoArea
has similar area overhead as 8-bit EPT + Segmented Hamming(7,4),
it has a much higher Vmin; 8-bit EPT + Segmented Hamming(7,4)
reduces power by 31.1% over WD-IsoArea. MS-ECC also incurs
similar latency and area overheads as EPT. However, the Vmin of
MS-ECC is 70mV higher than that of 8-bit EPT + Segmented Ham-
ming(72,64). As a result, 8-bit EPT + Segmented Hamming(72,64)
reduces core-wide power by 25.7% compared to MS-ECC.

Using robustified SRAM cells can provide significant Vmin reduc-
tion without incurring any error correction latency overhead since
they do not require error correction; however, robustified SRAM
cells incur significant area. Due to the high area overhead as well as
the higher Vmin of 8T cells, 8-bit EPT + Segmented Hamming(7,4)
reduces overall core power by 28.1% compared to using 8T SRAM
cells. Due to this power overhead, 8-bit EPT + Segmented Ham-
ming(7,4) has a 19.1% lower EPI than 8T cells. Note that unlike
architectural techniques where most of the circuits (e.g., decoders)
needed for low voltage operations can be power gated during nominal
voltage operations, caches with robustified SRAM cells continue to
incur high overheads at nominal operation. For example, caches with
the 8T SRAM cells incur a 12.0% core-wide EPI overhead at nominal
voltage operation, whereas 8-bit EPT + Segmented Hamming(7,4)
incurs only a 7.8% EPI overhead at nominal voltage (due to the
overheads of the added correction pipeline stages).

The above results show that EPT is very effective at reducing the
Vmin and, therefore, power of low latency caches by increasing the
coverage of an ECC-based error resilience scheme. The results also
show that EPT does not have some of the limitations that hamper the
efficacy of other comparable techniques (e.g., high power and area
overheads during nominal and low voltage operation). This makes
EPT a promising technique to allow deeply voltage scaled processors
and on-chip memories.

C. Additional Sensitivity Analysis
1) BIST-Undetectable Faults: EPT targets faulty SRAM cells that

can be identified during BIST. However, some SRAM faults, such as
soft errors, erratic faults, or aging related faults, cannot be detected
by BIST. EPT does not protect against these faults because they
cause errors to occur randomly in different locations. For L1 caches,
existing processors typically only detect these errors using parity or

Vmin Freq IPC Power EPI
(mV) (GHz) (%) (%)

Oracular 671 0.931 1.035 24.3 50.5BCH(127,64)
VS-ECC 683 0.960 0.854 22.4 54.8
8T SRAMs 729 1.061 1.236 26.6 40.5
WD–IsoArea 769 1.141 1.171 27.7 41.5
WD–Original 703 1.006 1.228 24.0 38.9
SECDED 823 1.256 0.879 34.5 62.6
Segmented Hamming(7,4) 804 1.210 1.147 31.5 45.4
MS-ECC 740 1.083 1.191 25.7 39.8

EPT-Based Designs
5-bit EPT+ 697 0.993 0.918 22.0 48.3OLSC(128,64)
5-bit EPT+ 693 0.984 1.229 20.7 34.3Seg OLSC(8,4)
5-bit EPT+ 680 0.953 1.242 19.7 33.2Seg Ham(7,4)
8-bit EPT+ 670 0.929 1.252 19.1 32.8Seg Ham(7,4)+

TABLE V: Performance, power, and energy normalized to nom-
inal execution of the baseline design.

protect against these errors using SECDED to guarantee correction
of a single random error per word [15]. One can also guarantee
correction of a single random error per word in caches with EPT
by adding an independent layer of random error correcting code.

As an example, when storing a 64-bit dataword, besides protecting
it with EPT + Segmented Hamming(7,4), one can also protect it using
an independently calculated single-symbol-correcting (SSC) Reed-
Solomon (RS) ECC with 5-bit symbols; each adjacent four data bits
in the 64-bit dataword is mapped to a symbol in the SSC ECC when
calculating the SSC ECC. When a random error occurs in a cache
word, EPT + Segmented Hamming(7,4) may not be able to correct
the segment in which the error resides. However, since only a single
segment and, therefore, a single symbol contains the random error, the
erroneous segment is guaranteed to be correctable via the SSC ECC
if the random error is the only random error in the cache word. The
overhead required by this additional layer random error correction is
small. The RS ECC requires 10 additional ECC bits7, which fit within
the 64− (7− 4) · 16 = 16 unused bits per ECC way of Segmented
Hamming(7,4). The area overhead of the RS ECC encoder [24]
and a ROM-based decoder, which stores the correctable syndromes
and the error pattern corresponding to each correctable syndrome,
is only 1.8% of the L1 cache area. Our evaluation shows that
including this additional layer of SSC ECC to 8-bit EPT + Segmented
Hamming(7,4) only increases the latter’s core-wide power by 6.8%.
Since random errors only need to incur any correction latency when
an random error occurs [15], which is rare, the energy overhead
of adding the SSC ECC is minimal (i.e., 4.4%). In comparison to
VS-ECC, the best prior scheme that can provide built-in soft error
protection, EPT + Segmented Hamming(7,4) provides a 40% energy
reduction and a 25% total cache area reduction. Despite incurring
a 4.4% energy overhead and a 2% cache area overhead from SSC
ECC, EPT’s relative benefits remain high.

Note that in our evaluation in Sections V-A and V-B, we dedicate
all the error correction resources of all evaluated resilience schemes to
protecting against BIST-detectable faults; in other words, additional
overheads will be required for all the evaluated baselines to guarantee
correction of a single random error per word while maintaining the

7For simplicity, we protect against known bit faults among these 10 bits
per cache word by only using EPT to move the faulty bits away from them
but not storing Hamming(7,4) ECC bits for them.

Vmin Freq IPC Power EPI
(mV) (GHz) (%) (%)

Oracular
BCH(767,512) 701 1.002 0.956 28.0 58.5
MS-ECC 758 1.119 0.996 29.0 52.0
8-bit EPT+ 689 0.974 0.983 24.0 50.2Seg OLSC(128,64)

One ECC way for seven data ways
VS-ECC 754 1.111 0.967 30.8 57.3
8-bit EPT:

742 1.087 0.930 29.0 57.4Seg BCH(80,64)

TABLE VI: L2 6T performance, power, and energy normalized
to nominal execution.

same strength of protection against BIST-detectable faults that the
baselines enjoy in Sections V-A and V-B. As such, although we do
not evaluate adding random error protection for the baselines, we
expect the merits of EPT relative to the various baselines to remain
roughly the same as those in Sections V-A and V-B even in scenarios
where protection against random errors are needed.

2) L2 Caches: While EPT is primarily a technique to allow deeply
voltage scaled on-chip memories, it can also be viewed as a technique
to reduce the latency of strong error correction since it allows low-
latency ECCs to attain the coverage of high-latency (Sections II
and III). While latency is less of a concern for L2 caches, we
demonstrate that EPT can still provide some benefits. Table VI shows
the performance, power, and energy evaluations for several designs
where the L2 is co-scaled with L1s and the core. For these designs,
the L2 determines the Vmin. The values in the table include the
power consumed by the L2. BCH, MS-ECC, and EPT + Segmented
OLSC(128,64), continue to use an ECC way for each data way, which
is consistent with our evaluation of the L1 cache. Compared against
MS-ECC, 8-bit EPT + Segmented OLSC(128,64) reduces combined
core and L2 power by 17%.

Since the capacity overhead requirement may be more stringent at
the L2 level, we also demonstrate the benefits of EPT while disabling
only one of 8 ways. For this capacity overhead requirement, we
compare EPT against a VS-ECC solution which has the same number
of redundant bits as 8-bit EPT. This VS-ECC solution breaks each
cache line into four words each of which can correct up to four faults.
Across these four words, up to eight total faults may be corrected,
requiring 72 bits of redundancy. We do not allocate any correction
resources to BIST-undetectable faults. Results show that the energy
characteristics of EPT and VS-ECC are comparable. However, EPT
may still be preferable since VS-ECC decoders have high area
overhead–10% of the L2 cache area. High decoder area overhead
comes from implementing four 4-bit correcting BCH decoders in a
fully combinational manner (i.e., lowest latency BCH decoder). 8-
bit EPT + Segmented BCH(80,64), on the other hand, only incurs a
3.5% total area overhead.

3) 28nm/32nm Technology Node: The performance, power, and
energy benefits provided by fault tolerant mechanisms for low-
Vmin caches are strongly tied to the characteristics of a particular
technology process (i.e., how fault rates, frequency, and power scale
with voltage). In this section, we explore the benefits for a 28nm
fault rate [12]8 and 32nm frequency and power rates [6]. 8-bit EPT
+ Segmented Hamming(7,4) has 17.7% lower power and 34.5% lower
energy than VS-ECC (the next lowest power correction technique).
8-bit EPT + Segmented Hamming(7.4) has 23.9% lower power and
11.8% lower energy than MS-ECC (the next lowest energy correction

8We could not find any 28nm or 32nm 8T SRAM fault rates.

Vmin Freq IPC Power EPI
(mV) (GHz) (%) (%)

Oracular 674 0.326 0.977 15.5 44.6BCH(127,64)
VS-ECC 688 0.344 0.896 14.7 43.5
WD–IsoArea 738 0.415 1.157 17.3 32.9
WD–Original 701 0.361 1.185 15.5 33.0
SECDED 777 0.469 0.851 21.3 48.8
MS-ECC 719 0.388 1.165 15.9 32.3

EPT-Based Designs
5-bit EPT+ 696 0.355 0.873 14.2 41.8OLSC(128,64)
5-bit EPT+ 693 0.351 1.186 13.3 29.3Seg OLSC(8,4)
5-bit EPT+ 682 0.336 1.186 12.6 28.9Seg Ham(7,4)
8-bit EPT+ 673 0.324 1.202 12.1 28.5Seg Ham(7,4)

TABLE VII: 28nm/32nm performance, power, and energy at
Vmin normalized to those at nominal voltage (1.2V).

0" 1" 2" 3"
Default(bit(ordering((

(without(EPT)(

Data(cache(line(Sacrificial(cache(line(

chunk(chunk(
3" 0" 1" 2"

Modified(bit(ordering(
(with(EPT)(

Data(cache(line(Sacrificial(cache(line(

chunk(chunk(

Logical(bit(to(physical(bit(correspondence(within(a(line(

Chunk(remapping(between(lines(

Fig. 14: Applying EPT to Archipelago [25]. Left: two chunks need
to be remapped while the sacrificial line only has room for one chunk.
Right: Only one chunk needs to be remapped after bit reordering.

technique). These 28nm/32nm results demonstrate that EPT can
provide voltage scaling benefits across technology nodes.

VI. RELATED WORK
This section describes several additional related works. Parichute

[9] explores how to protect low-level caches operating at low voltages
using Turbo codes. By themselves, Turbo codes under-utilize cache
capacity because they do not increment in size in powers of two.
To better utilize cache capacity, Parichute fills up the ECC ways by
constructing additional check bits to the original Turbo codes and,
thereby, improves the strength of the original Turbo codes as well.
However, the latency overheads of Turbo codes are still significant
(e.g., > 4 cycles, on average [9]). In addition, Turbo codes can correct
a different number of errors depending on the error pattern in the
word. As such, EPT can be applied on top of Parichute and is,
therefore, orthogonal to Parichute.

Archipelago [25] avoids accessing faulty bits by remapping groups
of logical bits (called chunks) from one physical cache line to a
second cache line, called a sacrificial line. However, remapping
chunks across lines require significant design complexity. For each
remapped chunk, Archipelago records the original location of the
chuck, its corresponding sacrificial line, and the corresponding po-
sition within the sacrificial line; this requires adding two additional
address translation tables to the critical path of cache access [25]. In
addition, a complete cache access now has to wait for two cache line
accesses to complete. Since the sacrificial cache line is often not in the
same cache set as the data line, to allow both cache line accesses to
complete around the same time, the number of banks in the cache has

to be doubled from what is needed to meet the fetch and issue width
[25]. This not only increases cache area and latency, but also requires
modifying the access scheduling for the different cache banks to
improve synchronization of accesses between different banks. Cache
access scheduling is further complicated because sacrificial line store
chunks from different data cache lines. Therefore, on a write to a
data cache line, Archipelago requires updating the appropriate chunks
within the corresponding sacrificial line using an expensive read-
modify-write operation. EPT only reorders bits within a word, not
across words, and, therefore, avoids all of the above complexities.
Finally, EPT can also be applied on top of Archipelago to improve
its effectiveness by aggregating faults in unused chunks, as illustrated
in Fig. 14. In this way, EPT is orthogonal to Archipelago.

IPatch [26] protects caches operating at low voltages by reusing
unused spaces in other memory structures, such as the store queue,
micro-op cache, MSHR buffers, etc., to store redundant copies of
words in the cache. IPatch requires modifying a large number of
processor components to make them aware of faulty cache words;
this may significantly complicate processor design and verification.
In addition, these structures can only protect a small fraction of the
cache due to the smaller sizes of these memory structures relative to a
cache; as such, IPatch disables unprotected faulty cache words in data
lines [26]. Disabling a cache word in a data line leads to uncachable
logical words, which can significantly impact performance. EPT, on
the other hand, restricts the required modifications to within a cache
and does not require disabling cache words in data lines. In addition,
EPT can also be applied to a cache along with IPatch and is, therefore,
orthogonal to IPatch.

EPT bears some resemblance to bit-interleaving, which statically
interleaves adjacent physical bits across different segments of a seg-
mented ECC. For physically adjacent faults, bit-interleaving converts
multiple adjacent bits of errors in one segment into single-bit errors
in different segments. Causes of physically adjacent bit faults include
large alpha particle strikes [27] and complete DRAM chip failures
[28]. Faulty SRAM cells at low voltages, however, are randomly
distributed across a cache[4], not typically physically adjacent to one
another. As such, bit-interleaving does not improve the coverage of
faulty SRAM cells during low voltage operation, which EPT does by
adaptively modifying the bit ordering in each cache word according
to the identified fault pattern of the cache word.

EPT also bears some resemblance to fault dispersion, which seeks
to transfer faults from a line with too many faults to lines with fewer
faults, in off-chip main memories [29], [30], [31], [32], [33], [34],
[35]. In off-chip main memories, a line is typically striped across
multiple memory chips/cards called a rank, such that all chips/cards in
a rank receive the same memory address input and operate in lockstep
to satisfy a single memory request. Exploiting this architecture, prior
works perform fault dispersion by physically swapping the memory
chips/cards or by reconfiguring the memory chips/cards in a rank
to access different intra-chip/card locations for the same address
presented to all the chips/cards in the rank. As such, these prior
works differ vastly in implementation from EPT, which targets on-
chip memories. Fault dispersion in the context of L1 caches equates
to transferring logical bits between words in different sets, which
requires accessing multiple cache words per access to a faulty cache
word; this can incur high latency overheads for low voltage SRAM
caches, where latencies are low and fault rates are high, unlike off-
chip main memories, where latencies are high and the fault rates are
low. Finally, unlike fault dispersion, EPT does not reduce the number
of errors in a cache word, but simply transforms the error pattern
generated by the cache word. As such, EPT can also be applied on

top of fault dispersion, and is, therefore, also orthogonal to fault
dispersion.

VII. CONCLUSION
In this paper, we presented error pattern transformation, a general

technique for low cost error correction which enables memory
voltages to be scaled further than prior works on error correction.
We observed that although many ECCs only guarantee correction of
a small number of errors, they can actually correct a large number
of erroneous bits if these bits are in the particular error patterns.
Since the same physical fault pattern in a cache word can manifest
as different error patterns depending on the ordering of the logical bits
stored in a physical cache word, EPT adaptively rearranges the logical
bit to physical bit mapping per word according to the known BIST-
detectable fault pattern in the physical word. The adaptive logical bit
to physical bit mapping transforms many uncorrectable error patterns
in the logical words into correctable error patterns and, therefore,
improves ECC error coverage and reduces the minimum required
voltage of operation. This reduces the minimum voltage at which
memory can run by 70mV over the best low-latency ECC baseline
leading to a 25.7% core-wide power reduction for an ARM Cortex-
A7-like core. Energy per instruction is reduced by 15.7% compared
to the best baseline.

ACKNOWLEDGMENT
This work was partially supported by NSF, Cisco, and CFAR,

within STARnet, a Semiconductor Research Corporation program
sponsored by MARCO and DARPA.

REFERENCES

[1] J. Kulkarni, K. Kim, and K. Roy, “A 160 mv robust schmitt trigger
based subthreshold sram,” Solid-State Circuits, IEEE Journal of, vol. 42,
pp. 2303–2313, Oct 2007.

[2] J. Kulkarni and K. Roy, “Ultralow-voltage process-variation-tolerant
schmitt-trigger-based sram design,” Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, vol. 20, pp. 319–332, Feb 2012.

[3] R. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge,
“Near-threshold computing: Reclaiming moore’s law through energy
efficient integrated circuits,” Proceedings of the IEEE, vol. 98, no. 2,
pp. 253–266, 2010.

[4] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khellah, and
S.-L. Lu, “Trading off cache capacity for reliability to enable low voltage
operation,” in Proceedings of the 35th Annual International Symposium
on Computer Architecture, ISCA ’08, (Washington, DC, USA), pp. 203–
214, IEEE Computer Society, 2008.

[5] S. M. Khan, A. R. Alameldeen, C. Wilkerson, J. Kulkarni, and D. A.
Jimenez, “Improving multi-core performance using mixed-cell cache
architecture,” in Proceedings of the 2013 IEEE 19th International Sym-
posium on High Performance Computer Architecture (HPCA), HPCA
’13, (Washington, DC, USA), pp. 119–130, IEEE Computer Society,
2013.

[6] S. Vangal and S. Jain, “Claremont: A solar-powered near-threshold volt-
age ia-32 processor,” in Design Technologies for Green and Sustainable
Computing Systems (P. P. Pande, A. Ganguly, and K. Chakrabarty, eds.),
pp. 229–239, Springer New York, 2013.

[7] Z. Chishti, A. Alameldeen, C. Wilkerson, W. Wu, and S.-L. Lu, “Improv-
ing cache lifetime reliability at ultra-low voltages,” in Microarchitecture,
2009. MICRO-42. 42nd Annual IEEE/ACM International Symposium on,
pp. 89–99, 2009.

[8] A. R. Alameldeen, I. Wagner, Z. Chishti, W. Wu, C. Wilkerson, and
S.-L. Lu, “Energy-efficient cache design using variable-strength error-
correcting codes,” in Proceedings of the 38th annual international
symposium on Computer architecture, ISCA ’11, (New York, NY, USA),
pp. 461–472, ACM, 2011.

[9] T. N. Miller, R. Thomas, J. Dinan, B. Adcock, and R. Teodorescu,
“Parichute: Generalized turbocode-based error correction for near-
threshold caches,” in Proceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 351–362, IEEE
Computer Society, 2010.

[10] M. K. Qureshi and Z. Chishti, “Operating secded-based caches at ultra-
low voltage with flair,” in Dependable Systems and Networks (DSN),
2013 43rd Annual IEEE/IFIP International Conference on, pp. 1–11,
2013.

[11] D. Strukov, “The area and latency tradeoffs of binary bit-parallel bch
decoders for prospective nanoelectronic memories,” in Signals, Systems
and Computers, 2006. ACSSC ’06. Fortieth Asilomar Conference on,
pp. 1183–1187, 2006.

[12] F. Frustaci, M. Khayatzadeh, D. Blaauw, D. Sylvester, and M. Alioto,
“Sram for error-tolerant applications with dynamic energy-quality man-
agement in 28 nm cmos,” Solid-State Circuits, IEEE Journal of, vol. 50,
pp. 1310–1323, May 2015.

[13] Synopsys, Synopsys Design Compiler User’s Manual.
[14] Candence, Cadence SoC Encounter User’s Manual.
[15] ARM, “Cortex-a7 technical reference manual, rev r0p5.”
[16] C. Wilkerson, A. R. Alameldeen, Z. Chishti, W. Wu, D. Somasekhar, and

S.-l. Lu, “Reducing cache power with low-cost, multi-bit error-correcting
codes,” SIGARCH Comput. Archit. News, vol. 38, pp. 83–93, June 2010.

[17] H. Duwe, X. Jian, and R. Kumar, “Correction prediction: Reducing error
correction latency for on-chip memories,” in High Performance Com-
puter Architecture (HPCA), 2015 IEEE 21st International Symposium
on, pp. 463–475, Feb 2015.

[18] M. Hempstead, G. yeon Wei, and D. Brooks, “Architecture and cir-
cuit techniques for low-throughput, energy-constrained systems across
technology generations,” in Proceedings of CASES, pp. 368–378, ACM
Press, 2006.

[19] Standard Performance Evaluation Corporation, “Spec cpu2000.”
[20] Standard Performance Evaluation Corporation, “Spec cpu2006.”
[21] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,

J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, pp. 1–7, Aug. 2011.

[22] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “Mcpat: an integrated power, area, and timing modeling frame-
work for multicore and manycore architectures,” in Proceedings of the
42nd Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO 42, (New York, NY, USA), pp. 469–480, ACM, 2009.

[23] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, “”cacti
5”,” 2008.

[24] S. Morioka and Y. Katayama, “Design methodology for a one-shot reed-
solomon encoder and decoder,” in Computer Design, 1999. (ICCD ’99)
International Conference on, pp. 60–67, 1999.

[25] A. Ansari, S. Feng, S. Gupta, and S. A. Mahlke, “Archipelago: A
polymorphic cache design for enabling robust near-threshold operation.,”
in HPCA, pp. 539–550, IEEE Computer Society, 2011.

[26] D. Palframan, N. S. Kim, and M. Lipasti, “ipatch: Intelligent fault
patching to improve energy efficiency,” in High Performance Computer
Architecture (HPCA), 2015 IEEE 21st International Symposium on,
pp. 428–438, Feb 2015.

[27] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. Hoe, “Multi-bit
error tolerant caches using two-dimensional error coding,” in Microar-
chitecture, 2007. MICRO 2007. 40th Annual IEEE/ACM International
Symposium on, pp. 197–209, Dec 2007.

[28] Intel, “Intel e7500 chipset mch intel x4 single device data correction (x4
sddc) implementation and validation,” Aug 2002.

[29] G. Bond, “Fault alignment control system and circuits,” Dec. 18 1984.
US Patent 4,489,403.

[30] G. Bond, F. Cartman, and P. Ryan, “Multi-bit error scattering arrange-
ment to provide fault tolerant semiconductor static memories,” Dec. 11
1984. US Patent 4,488,298.

[31] D. Bossen and M. Hsiao, “Deterministic permutation algorithm,” July 17
1984. US Patent 4,461,001.

[32] W. Beausoleil, “Method of manufacturing a full capacity monolithic
memory utilizing defective storage cells,” Aug. 5 1975. US Patent
3,897,626.

[33] H. M. Bossen D, Haugh C, “Dynamic address translation scheme using
orthogonal squares,” May 21 1974. US Patent 3,812,336.

[34] W. Beausoleil, “Monolithic memory utilizing defective storage cells,”
Dec. 25 1973. US Patent 3,781,826.

[35] B. W. F, “Memory with reconfiguration to avoid uncorrectable errors,”
Feb. 22 1972. US Patent 3,644,902.

