
Correction Prediction: Reducing Error Correction
Latency for On-Chip Memories

Henry Duwe
University of Illinois
at Urbana-Champaign

Email: duweiii2@illinois.edu

Xun Jian
University of Illinois
at Urbana-Champaign

Email: xunjian1@illinois.edu

Rakesh Kumar
University of Illinois
at Urbana-Champaign

Email: rakeshk@illinois.edu

Abstract—The reliability of on-chip memories (e.g., caches) de-
termines their minimum operating voltage (Vmin) and, therefore,
the power these memories consume. A strong error correction
mechanism can be used to tolerate the increasing memory cell
failure rate as supply voltage is reduced. However, strong error
correction often incurs a high latency relative to the on-chip
memory access time. We propose correction prediction where a
fast mechanism predicts the result of strong error correction to
hide the long latency of correction. Subsequent pipeline stages
execute using the predicted values while the long latency strong
error correction attempts to verify the correctness of the predicted
values in parallel. We present a simple correction prediction
implementation, CP, which uses a fast, but weak error correction
mechanism as the correction predictor. Our evaluations for a
32KB 4-way set associative SRAM L1 cache show that the
proposed implementation, CP, reduces the average cache access
latency by 38%-52% compared to using a strong error correction
scheme alone. This reduces the energy of a 2-issue in-order core
by 16%-21%.

I. INTRODUCTION

One simple, yet effective, technique to reduce the power
of on-chip memories (e.g., caches) is voltage scaling [21],
[20], [28], [32], [10]. Reducing the supply voltage results in
significant reductions in static and dynamic power [32]. One
major challenge of scaling the voltage of on-chip memories is
maintaining the desired reliability. Process variations can cause
a rapidly increasing fraction of memory cells to become faulty
as the supply voltage decreases [32], [12].

A flurry of recent work has been devoted to providing the
desired cache reliability at low supply voltages [32], [10], [2],
[3], [23]. Some propose using larger, and therefore stronger,
memory cells (e.g., 8T and 10T SRAM cells or cells with up-
sized transistors) to prevent errors from occurring in the first
place. Unfortunately, these methods incur a high static over-
head even for nominal voltage operation (see Section VI-A).
As a result, many have instead proposed using error correction
to correct the wrong values in memory cells as the cells
become faulty due to voltage scaling. A large number of error
correction techniques have been proposed, spanning from the
use of error correction codes [10], [2], [23] to data remapping
[32], [3].

However, error correction inevitably incurs a latency over-
head, which may be significant relative to the cache access
time for error correction strong enough to provide the desired
reliability (see Section III). This increase to cache access
time due to strong error correction may lead to a significant

degradation in performance and energy (see Section VII)
from either an increased clock cycle time [6] or increased
pipeline depth. An alternative supported by some processors
is to speculatively execute on the instruction or data accessed
from the cache prior to performing error detection [11]. A
detected error corresponds to a mis-speculation, which causes
the appropriate instructions to be squashed and the pipeline
to be stalled for correction. While this technique suffices for
scenarios where the bit-failure probability is low, it incurs a
high performance overhead for scenarios where the bit-failure
probability is high (e.g., when the supply voltage is low) due
to rampant mis-speculation leading to frequent squashes and
stalls (see Section IV-A).

We propose a novel scheme for hiding the latency overhead
of a strong error correction scheme used to ensure reliability.
Our scheme, correction prediction, uses a fast mechanism
to predict the results of strong error correction. Subsequent
pipeline stages execute using the predicted values. In parallel,
the long latency strong error correction attempts to verify
the correctness of the predicted values. On a mis-prediction,
i.e., when the value produced by the correction predictor is
not the same as the result of the strong error correction,
speculative instructions are squashed and the pipeline is re-
started. By allowing the logic core to execute on the predicted
data or instructions, one can effectively hide the latency of
the slow, strong error correction, even at very low supply
voltages where cell failure is prevalent. In the context of
hard faults in voltage scaled SRAM L1 caches, we propose
implementing the correction predictor using a fast, but weak
error correction mechanism that produces the same result as
strong error correction mechanisms for most but not all words.
Our implementation, CP, is based on a Correction Prediction
Table (CPT—details in Section V) that can correctly predict
over 90% of cache word corrections.

We make the following contributions:
• We propose correction prediction, a scheme to reduce

the latency of strong error correction by predicting its
output. Long latency strong error correction verifies
the correctness of prediction even as execution con-
tinues with the predicted value.

• We present CP, a simple implementation of correction
prediction where a fast, weak correction precedes
strong error correction and allows CP to limit the
mis-prediction rate to <0.1%. CP adds <10% area
overhead and <2.5% worst-case latency to a cache
with strong error correction.



Fig. 1: The average fraction of bits and 32-bit words that
are faulty in a cache for 65nm SRAMs.

• We evaluate CP applied to three recently proposed
strong error correction schemes—Hi-ECC [31], VS-
ECC [2], and Bit-Fix [32]. Compared to using the
strong error correction technique alone, CP reduces L1
cache access latency by 38%, 38%, and 52%, respec-
tively. For a 2-issue in-order core, this corresponds to
a processor-wide energy savings of 16%, 17%, and
21%.

II. BACKGROUND AND RELATED WORK

In this paper we apply correction prediction to SRAM-
based L1 caches. Below we discuss the effect of voltage
scaling on SRAM cache reliability and prior approaches to
provide reliable cache operation.

A. SRAM Reliability at Low Voltages

Some SRAM cells in a cache are weaker than other cells
in the cache due to process variations. Although practically
every cell in a cache (e.g., 99.999% plus) is functional at a
high supply voltage, more and more of these weaker cells
become faulty as the supply voltage is reduced. A faulty cell
can experience both read failures, where the wrong value is
returned or the stored value is toggled unintentionally, and
write failures, where the value in the cell cannot be toggled
[32]. Since these faulty cells are due to permanent defects
(e.g., dopant variation), they can be located using a number of
built-in self test (BIST) routines [32], [2], [3]. Some faults at
low voltages are due to soft errors [8] that cannot be detected
by BIST routines. However, the fraction of such faults at
low voltages is minuscule (by over 5 orders of magnitude at
650mV [10]).

Figure 1 shows the average fraction of the cells in a 65nm
cache that are faulty as a function of the supply voltage.
The calculation is based on the SRAM failure probability
reported in [12] and assumes that the faulty cells are dis-
tributed randomly across the cache, which is consistent with
the assumption made in prior works [32], [10], [2]. We also
calculated the fraction of 32-bit words that are faulty; a word
is faulty if it contains one or more faulty bits. The results
in Figure 1 show that nearly 30% of all words require error
correction when the supply voltage is scaled beyond 650mV,
motivating the need for efficient error correction algorithms.

B. Error Resilience Techniques In Caches

One technique to improve reliability is using larger transis-
tors to implement the SRAM cells [12]. Another technique is
to use a more fault tolerant SRAM implementation, such as an
8T or a 10T SRAM cell [12]. The downside of these techniques
is that they incur a significant area and power overhead even
when the processor is operating at high supply voltage (see
Table II).

There have been several recent attempts at using strong er-
ror correcting codes to implement a cache that operates reliably
at low supply voltages while incurring a low overhead at a high
supply voltage. For example, FLAIR [23] uses a combination
of SECDED (single error correction double error detection)
codes and dual modular redundancy to correct errors in a cache
line. VS-ECC [2] proposes using a combination of SECDED
and 4EC5ED (four error correct five error detect). MS-ECC
[10] proposes trading off storage-overhead for decode latency
by using Orthogonal Latin Square Codes (OLSC) for multi-bit
error correction. The downside of these techniques is their high
energy overhead at low voltages due to the high performance
cost of detection and correction (Section VII).

Finally, several works observe that since the location of
the faulty cells can be predetermined via offline testing (e.g.,
BIST), one can remap the value of faulty cells elsewhere
in the cache. PADded Cache [24], for example, uses a fast,
programmable address decoder to remap cache lines into other
sets and disables faulty physical lines. Unfortunately, for low
supply voltage operation, most cache lines would need to
be disabled (e.g., >99% of cache lines at 650mV). Bit-Fix
[32] proposes a simple remapping policy that uses dedicated
bits per cache line to record the bad bits in each cache line
and remap their values to a different cache line. Archipelago
[3] proposes a more sophisticated remapping policy that uses
a global fault map table to perform remapping with greater
flexibility. The primary downside of these techniques is the
unavoidable latency increase for every cache access due to
data correction after data array access or map look-up before
the data access. This latency increase may have significant
performance and energy impact (Section VII).

C. Tolerating Error Detection and Correction Latency

One simple approach to account for the additional delay
in the instruction-fetch and data-load stages due to error
correction without stalling the processor pipeline is to slow
down the overall core frequency; however, this can lead
to a significant performance degradation (Section VII) since
the error correction latency is often a significant fraction of
the cache access latency. Instead of slowing down the core
frequency, Bonnoit et al. [6] propose using additional pipeline
stages to handle the error correction latency. However, using
pipeline deepening to hide correction latency can also lead to a
degradation in performance and energy efficiency (Section VII)
because branch and data hazards become more expensive.
Also, load-dependent instructions are stalled more frequently
and for more cycles. Furthermore, since only low supply
voltage operation requires error correction, the added pipeline
stages result in unwanted overhead for high voltage operation.

Bonnoit et al. [6] also propose avoiding the additional
pipeline stages by decoupling error detection from correction.



Sheet1

Page 1

mV 600 700 800 840 1000 1100 1200

 Bits 0.02 0.006 0.002 0.001 0.000035 0.0000032 0.0000004

Words 0.47611686 0.17517028 0.06205511 0.03150892 0.00111939 0.0001024 1.28E-005

0.945783133

0.3392 0.5312 3.40660933 0.3024

BCH No-Error BCH 1-Error BCH Multi-bit ErrorOLSC Fault Map Archipelago 7-Modular Redundancym

0.5 .78 6.5 .44 1.40 .70 0.063529412 -2.08333333 0.68

1.663333333

1.572866667

0.441942687

600 700 800 900 1000 1100 1200

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0  Bits Words

Supply Voltage (mV)

F
ra

c
ti
o
n

 F
a
u
lt
y

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
647% 140%

BCH No-Error

BCH 1-Error

BCH Multi-bit 
Error

OLSC

Fault Map

7-Modular 
Redundancy

L
a

te
n
c
y
 N

o
rm

a
liz

e
d
 t

o
 a

4
-w

a
y
 3

2
K

B
 C

a
c
h

e

Fig. 2: Latency of different error correction schemes
normalized to the access time of a 4-way set-associative
32KB cache at 65nm.

They observe that error detection typically incurs a shorter
latency than error correction. Therefore, they propose reducing
the clock frequency to accommodate only the error detection
latency, and then stalling the pipeline when errors are detected
to wait for the error correction. However, this technique may
result in a significant reduction in clock frequency when error
detection latency is still a large fraction of cache access latency.
In addition, this technique leads to frequent stalling when the
fraction of cache accesses with errors is high, which limits its
effectiveness for aggressive voltage scaling.

Some processors [11] attempt to hide the latency of error
detection by using speculation, whereby the word retrieved
from the cache is sent directly to the subsequent pipeline
stages, prior to performing any error detection; meanwhile,
error detection takes place in the clock cycles following the
cache access. If errors are detected, the pipeline is flushed,
an exception handler performs the correction, and execution
restarts from the erring instruction. However, this technique
is also ineffective at low voltages, where flushing is frequent
due to the large fraction of cache accesses with errors (see
Figure 1).

III. MOTIVATION

Error correction can be expensive when the number of
errors that need to be corrected is large (as may be the
case for low V

min

L1 caches). Consider, for example, 5-bit
BCH-based error correction at 650mV for the SRAM failure
rates in Figure 1. BCH-based correction has been used for
strong error correction in past works such as VS-ECC [2]. We
calculate the decode latency of the BCH code for the three
scenarios (no error, one error, multi-bit errors) assuming 32
data bits per codeword using the methodology in [27], [31] and
using the FO4 delay for the 65nm technology reported in [30]
(more modeling details in Section VI-A). Figure 2 shows the
latency values normalized to the access latency of a 65nm 4-
way set-associative 32KB cache with 64-bit output granularity
(see Section VI-A for details). The figure shows that even in
the most optimistic scenario (i.e., codeword is error-free), the
decode latency of the BCH code is a significant fraction (50%)
of the cache access latency. The decode latency is 72% of the
cache access latency for single-bit errors and 647% for multi-
bit errors.

Other strong error correction techniques that provide com-

parable reliability are expensive as well. Figure 2 shows the
decode latency of a 7-bit error-correcting OLSC code [10],
and Bit-Fix, a fault-map-based technique [32]—the reported
implementations provide the same reliability as the 5-bit BCH
discussed above. Results show that the decode latency of
OLSC and the decoding and shifting latencies of Bit-Fix are
also significant (41% and 140% of the cache access latency
respectively). Moreover, while the error correction latency of
the OLSC code is shorter than that of the BCH code, it comes
at a significant cost in terms of storage overhead. Similarly,
while the error correction latency of 7-modular redundancy is
only 6% of that of the cache access, the corresponding storage
overhead is 600%.

Our goal is to develop a technique that allows strong
error correction to be used for low V

min

caches without the
prohibitive latency or storage overhead. Towards this goal we
employ correction prediction used in conjunction with a strong
error correction scheme.

IV. CORRECTION PREDICTION FOR L1 CACHES

Correction prediction for L1 caches feeds predicted values
to the pipeline while using strong error correction in parallel.
When the predicted value is correct (i.e., the word consumed
by the subsequent pipeline stages is the same as the output
of the strong error correction), the latency of strong error
correction is avoided. On a mis-prediction (i.e., the word
consumed by the subsequent pipeline stages differs from
the output of the strong error correction), the instructions
dependent on the consumed predicted word are flushed and
restarted using the output of the strong error correction. The
mis-prediction penalty is the larger of the squash/restart and
strong error correction penalties.

A. Key Idea

A correction predictor must be both accurate and fast. A
correction predictor must have high accuracy to be effective
since a large fraction of words are faulty at low voltages (e.g.,
over 30% at 650mV, see Figure 3). A high mis-prediction rate
will lead to frequent squashes. A correction predictor must be
fast since even an added cycle of latency may be prohibitive
for L1 cache accesses.

A high accuracy correction predictor implementation pre-
dicts correctly in high likelihood scenarios. Figure 3 shows
that for voltage-scaled SRAMs, a high likelihood scenario is
where a word has zero, one, or two faults. An error correction
mechanism that can correct up to two errors would correct
over 99% of words at 650mV. One fast implementation of
such an error correction mechanism is storing information
about up to two faults in a table. Since the table cannot store
enough information to correct every word and since the table
itself can suffer faults, the table cannot correctly predict every
access. However, we show in Section V that it can correctly
predict over 90% of all accesses. By allowing the pipeline
to speculatively execute using instructions or data that have
been predicted by the fast error correction mechanism, our
proposed error correction implementation, CP, can effectively
provide error correction latency similar to that of a fast error
correction mechanism with the same level of reliability as a
long latency error correction mechanism.



  

0 1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

70.191%

24.982%

4.307%
0.479% 0.039% 0.002%

Number of Bit Failures Per 32-bit Word

F
ra

c
ti
o

n
 o

f 
3

2
-b

it
 W

o
rd

s

Fig. 3: Word Error Distribution at 650mV. 99% of words
have two or fewer errors. This suggests that a weak error
correction mechanism provides sufficient prediction for most
cache accesses.

  

0% 100% 200% 300% 400% 500% 600% 700%

0%

10%

20%

30%

40%

50%

60%

70%

80%
650mV, 30% words have faults

700mV, 17.1% of words have faults

765mV, 8.7% of words have faults

Capacity Overhead of Correction

A
v
e
ra

g
e
 C

o
rr

e
c
ti
o

n
 L

a
te

n
c
y

v.
s
. 
3

2
K

B
 C

a
c
h
e

 L
a
te

n
c
y

New design
points

N-Modular Redundancy

OLSC

BCH

Fig. 4: Capacity Overhead vs Latency Tradeoff.

Figure 4 shows the capacity overhead and the average
error correction latency of the CP implementation relative
to other strong error correction implementations that meet
the same reliability target (i.e., implementation can correct
99.9987% of words in the cache for the word error rates
shown in the legend1). Each data point corresponds to a
particular implementation of a correction technique. For the
BCH code, the average correction latency is the average of the
correction latency for zero errors, one error, and more than one
error weighted by the frequency of occurrence of these errors
(Figure 3). Each CP design point uses BCH as the strong error
correction mechanism while the fast correction mechanism
is based on fault-map and can correct up to zero, one, and
two errors (corresponds to zero, one, and two Map Units–
see Section V). The results show that CP indeed provides
latency similar to the low latency correction techniques (e.g.,
N-modular redundancy) at the capacity overhead of capacity-
optimized techniques (e.g., BCH).

1This means that each implementation has barely enough ECC resources to
provide the same reliability for the voltages shown in the legend as the cache
has at 1.2V.

Read Correction Prediction Table

Perform fast, weak correction to 
generate new value;

Feed predicted value to pipeline

Should we 
predict request 

correction?

Perform strong correction 
on new value

Is there an 
error?

Cache access completed

No

No

Yes

Yes

Feed corrected value to pipeline;
Restart next instruction

Cache Request

Squash speculative instructions

Perform strong correction 
on raw value

Fig. 5: Correction Prediction for an L1 Cache Access.

B. Microarchitectural Support

Figure 5 details the logical flow of an L1 cache access
using CP. When the pipeline requests an L1 cache access,
the cache performs the normal cache tag and data array
accesses. In parallel, the cache reads the Correction Prediction
Table entry (see Section V) corresponding to the word being
accessed. The entry indicates whether to perform correction
prediction. To predict, the cache applies fast error correction
and feeds the resulting predicted value to the pipeline. After
speculative execution begins using the predicted value, the
slow, strong error correction determines whether the predicted
value contains an error. If the predicted value does contain an
error, a mis-prediction has occurred and the pipeline squashes
all dependent instructions. The cache then returns the corrected
value to the pipeline and the pipeline restarts the instruction
that initiated the cache request with the correct value. When
prediction is not performed, the cache applies strong correction
to the value returned from the data array and returns the correct
value to the pipeline.

To support CP, the following changes need to be made to
the processor pipeline:

Cache Support Figure 6 depicts the additions the CP cache
module requires beyond a traditional cache. The fast, weak
correction module contains the Correction Prediction Table
and associated logic (see Section V). This module determines
whether prediction should be triggered and also generates the
predicted value. The slow, strong correction module uses the
predicted value to provide sufficient error correction to meet
the reliability requirement. It outputs both whether it detected
an error within the predicted codeword and also returns the



L1 Cache Array

Read Port

Fast, 
Weak 

Correction

Error
Detected

Corrected Value Cache Output

Squash

Stall

Slow, Strong 
Correction

Pipeline
 Control

Speculate

Fig. 6: Modifications to L1 caches. The critical path for the
common case of correction prediction is in bold.

corrected value (i.e., the corrected data bits from the codeword)
in case of an error. If the corrected value does not match the
predicted value, then a mis-prediction occurred. The Pipeline
Control module then indicates that a squash is required. The
Pipeline Control module also stalls the pipeline when the fast,
weak correction module does not predict a value and the
strong error correction module must perform long-latency error
correction.

We recognize that the additional logic inserted on the criti-
cal path of a cache access may result in a reduction in operating
frequency. We quantify this overhead in Section V-B and study
the sensitivity of benefits to this overhead in Section VII-C.

Instruction Fetch Applying CP to the instruction cache re-
quires support for squashing each instruction dependent on
a mis-predicted instruction and restarting the corrected in-
struction in the decode stage. Also, the predicted instructions
may cause exceptions (e.g., illegal opcode or divide by zero
exceptions). Such exceptions must be suppressed until strong
correction completes. For the core used in our evaluations (see
Section VI), our strong correction scheme requires at least
two cycles to detect a mis-prediction, resulting in potentially
erroneous instruction bits propagating to the decode, execute,
and initial fetch stages. For this core, all exceptions must be
suppressed until after the execute stage, which would happen
anyway to maintain precise exception handling.

Data Memory Load The core idea behind CP is allowing com-
putation to continue successfully speculating during error cor-
rection. For a data memory load, this means that the predicted
result must be forwarded to any dependent instructions within
the pipeline. This avoids execution of dependent instructions
being stalled by the additional latency of error correction. To
allow continued forwarding of predicted data to dependent
instructions, additional pipeline stages must be added after
the data memory stage. The number of required additional
stages is equal to the number of cycles it takes to perform
strong correction. These additional stages are dummy stages
through which instructions flow. These stages also support
the forwarding of predicted values to earlier stages. Note that
adding these forwarding stages to the data cache access has
a significantly smaller impact on performance than adding
pipeline stages for error correction (Deep Pipelining). This is
because the dependent instructions are stalled waiting for the
strong correction to complete in the latter case. For the core
used in our evaluations (see Section VI), at least two additional

Valid
Bit

Location
Field

Value
Field

Valid
Bit

Location
Field

Value
Field

Pred
Flags

Map Unit 0 Map Unit 1

4 bits 1 bit 7 bits 1 bit 9 bits

Fig. 7: Correction Prediction Table Entry Format. Each
table entry corresponds to four 32-bit words.

pipeline stages are needed after the data memory stage. Mis-
predictions are detected during the write-back stage. On a mis-
prediction, the value generated by strong error correction is
written back to the register file; all following instructions are
squashed.

C. Tag Array Protection

Note that the above discussion assumes that correction
is performed only on the content of the data array, not the
tag array. The tag access is assumed to be robust at low
voltages similar to previous related work [3], [32]. Since the
tag array is significantly smaller than the data array and is
less latency constrained, we assume a 10-T SRAM-based [13]
implementation for the tag array to guarantee robustness at low
voltages.

V. IMPLEMENTATION, COVERAGE, AND OVERHEADS

For correction prediction to be beneficial, the underlying
prediction mechanism must only add minimal latency to a
regular cache access. As such, our design goal is to limit the
latency of correction prediction to the delay of a single logic
gate. Many prediction mechanisms with varying prediction
accuracies, latencies, and storage overheads are possible. Here
we present one such correction prediction mechanism and
leave a full exploration of correction prediction mechanisms
as future work.

The proposed correction prediction mechanism is a fast
but weak error correction mechanism that duplicates a small
number of faulty bits in the cache. The number of duplicate bits
is kept small so that they can be stored in a small enough table,
called the Correction Prediction Table or CPT, that accessing
the table is much faster than accessing the L1 cache. The CPT
is accessed in parallel with a L1 cache access. The fast CPT
allows the duplicate bits to be accessed and then processed
before a L1 cache access completes; as such, it allows the
duplicate bits to correct the faulty bits in the cache word at
the cost of the delay of a single MUX, which decides what
bit—a regular data bit or a duplicate bit—to output per bit
position to subsequent pipeline stages.

The CPT is organized as follows. There is a CPT entry
corresponding to every consecutive four words (e.g., 128 bits)
in the L1 cache. Each CPT entry contains four predFlags and
two Map Units (Figure 7). There is a predFlag for each word
that allows CP to avoid bad predictions, such as when a CPT
entry does not have enough Map Units to correct all faults
in the corresponding words or when a Map Unit is faulty.
The predFlag indicates to the cache controller whether to
perform correction prediction or to simply perform strong error
correction and stall the pipeline when the word is accessed.
A Map Unit has three fields—valid, location, and value. The



Way 1 Bit Location Decoding 
and Enable

Way Select

Way 1 Bit Location 
Decoding and 

Enable

Way 0 Bit Location 
Decoding and 

Enable

Way Select

Word i
Bit x Corrected

Word i Bit x

Value Field
M.U. 0 Way 0

Value Field
M.U. 0 Way 1

Value Field
M.U. 1 Way 0
Value Field

M.U. 1 Way 1

5-to-1 
Binary 

Decoder

Way 0 Bit Location 
Decoding and Enable

Word Offset
Bit1L.6:L.2V. L.1

Way 0 M.U. 0 
L.0 Bit0

/ 5

Fig. 8: Fast, weak error correction circuit for bit x of word
i. M.U. stands for Map Unit, V. stands for valid bit, and L.
stands for location field. Value propagation before data array
access completes is bolded.

valid bit indicates that the corresponding location and value
fields are error-free. The location field contains the location
of one of the single-bit errors within the 128 bits. The value
bit contains the correct current value for the corresponding
cache bit. Note that both the valid bits and the predFlags are
vulnerable to errors; however, errors in the CPT only affect
prediction accuracy, not reliability.

Each CPT entry is populated as follows. Only a CPT entry’s
value bits are set and updated during regular cache accesses,
while all other bits in the CPT are set at runtime by a built-in
self test (BIST) routine that tests the L1 cache at the target
low voltage. The BIST routine first tests the two Map Units
of the CPT entry. If the routine finds any faulty bits in a Map
Unit, the routine sets the valid bit of the Map Unit to false.
The routine then tests the 128 cache bits that correspond to
the CPT entry to identify as many faulty cache bit locations
as there are valid Map Units in the CPT entry. These faulty
cache bit locations are then recorded in the location field of the
valid Map Units. Next, for each of the four predFlags in the
CPT entry, the routine sets a predFlag to true if every faulty bit
in the 32-bit cache word that corresponds to the predFlag has
a corresponding valid Map Unit. Finally, for each write to the
cache data array (data write or cache fill), the corresponding
CPT entry of written cache word must be read to update the
value bits.

Figure 8 shows the fast correction circuitry that uses entries
from the CPT to fix an error in a bit of the data word.
The location field bits of the two Map Units are decoded to
determine which of the 128 bits are replaced by the values
stored in the Map Units. The Map Unit valid bit enables this
decoding. The least significant two bits of the word offset
are used to determine if the Map Unit points to Word

i

. For

Rate Derived Formula Value at
650mV

Prediction 1� (p · [1� P (error)] + (1� p) · P (error)) 91%
Mis-prediction p · P (error) 0.089%

TABLE I: Prediction and Mis-prediction Rates.

every bit in the word accessed from the cache (Word

i

Bit

x

),
a multiplexer is used to select between the bit read out from
the cache and the values stored in the Map Units. The valid
bit of a Map Unit enables the selection of its corresponding
value field.

A. Detection and Correction Coverage

In order to evaluate the fast error correction mechanism we
must calculate what fraction of words it attempts to predict (the
prediction rate) and of those words how many are incorrectly
predicted (the mis-prediction rate).

To calculate the prediction and mis-prediction rates, we first
calculate the probability of observing an error in the output
of fast correction. An error may exist in the output of fast
correction if the total number of fault bits among the four data
words that share the same CPT entry exceeds the number of
correct Map Units in the entry. Note that since the Map Units
themselves have the same bit error probability as the words in
the L1 cache, one or more of the two correction units in a CPT
entry may be faulty. To calculate the probability that an error
occurs at the output of the fast correction circuitry, we observe
that when the total number of faulty bits among the four data
words exceed the number of non-fault Map Units by one, an
error will appear when one of these four words is accessed.
Therefore, the probability that an error occurs when one of
these four words is accessed given that the error correction
capability of the fast correction entry is exceeded by one is 1/4.
Similarly, the probability that an error will occur when one of
these four words are accessed given that the error correction
capability of the fast correction entry is exceeded by two is
2/4. The following equation summarizes the probabilities of
all possible scenarios that cause an error in the output of fast
correction:

P (error) =
2X

i=0

·
✓
2

i

◆
((1� p)9)2�i(1� (1� p)9)i · [

128X

j=2�i+1

✓
128

j

◆
p

j(1� p)128�j ·min((j � 2 + i)/4, 1)] (1)

In the formula above, p is the fault probability of a single
bit, i is the number of faulty Map Units in the entry and j

represents the total number of bad bits in the four words with
a total of 128 bits.

To determine the mis-prediction rate, i.e., the probability
that the output of fast correction is faulty, but prediction is
still triggered, we note that it is equal to the probability that
the predFlag bit is faulty when the output of fast correction
is faulty. This probability is p · P (error). Prediction is not
attempted when the predFlag bit is fault-free while the output
of fast correction is faulty, even though it would have been
beneficial to trigger prediction. The probability of this occur-
ring is p·[1�P (error)]. Prediction is also not attempted when
a predFlag bit is faulty while the output of fast correction is



not faulty. In this case, the pipeline is correctly stalled until
strong correction completes. The probability of this occurring
is (1 � p) · P (error). Table I lists calculated values for our
cache operating at 650mV where the bit failure rate is 0.011
(Figure 1). We note that we could protect the CPT with
Schmidt Trigger (ST) SRAM cells or increased supply voltage.
However, only 0.089% of cache accesses are mis-predicted,
resulting in an insignificant performance degradation. We argue
that this is a good tradeoff for not requiring an additional
voltage rail or a unnecessary increase in area (i.e., 100%) for
the CPT.

We also note that although our specific implementation of
fast correction leverages characteristics of the fault distribution
(e.g., uncorrelated bit errors where single errors are most
common), this is not a requirement of fast error correction.
For example, if faults are correlated within a word, we could
increase the size of our value fields in the Map Units to
improve the correct speculation rate.

B. Latency Overhead

We model the CPT for our 4-way set associative 32KB
cache using CACTI [29] to determine its latency. The table
has a latency of 0.44ns in a 65nm technology node operating
at 1.2V. As shown in Figure 8, the critical path of the fast
correction circuit before the MUX that picks between a data
bit and a duplicate bit consists of the following: a 5-to-1 binary
decoder, 2 AND gates, a MUX to select between the outputs
of the fast correction entries that correspond to the two ways in
the set, a MUX to select between the two Map Units, and the
three level of inverters required for every location to drive 32
bit slices. Using the FO4 delay of 65nm technology reported
in [30], these equate to a total delay of 0.2ns. In comparison,
the access latency of a 4-way set-associative 32KB L1 cache
(the associativity/size of the L1 caches in our evaluations
in Section VII) is 0.68ns. Therefore, the delay of fast error
correction circuitry prior to the MUX gate can be effectively
hidden by the latency difference between the L1 cache and the
CPT. Consequently, the MUX gate used to select between the
data bit and the duplicate bit is the only additions to the critical
path of the cache access. Following the methodology in [14],
we estimate the MUX to be 0.5 FO4. In our evaluations, we
increase the clock period of the CP cores by 0.01ns at nominal
Vdd (1.2V) and 0.026ns at 650mV to account for these delays.

C. Area Overhead

The area overhead of the fast correction technique is
dominated by the Correction Prediction Table. We estimated
using CACTI [29] that the area of a Correction Prediction
Table with two Map Units is 8.6% of the size of a 4-way set
associative 32KB L1 cache. Depending on the the desired level
of voltage scaling, fewer Map Units may be needed. For design
points with only a single Map Unit plus the four predFlag bits
or with the four predFlag bits only, the area overhead due
to the Correction Prediction Table normalized to cache area
would be 5.1% and 1.6%, respectively.

We also estimated the area overhead of the fast correction
circuit. As shown in Figure 8, the fast error correction circuit
that corrects a single bit of the 32-bit word requires 3 MUXes,
eight XOR gates, 12 AND gates, and four 5-to-1 binary

decoders, where each requires at most four AND gates, for a
total of 40 gates. The total number of gates required by the fast
error correction circuit is 40 · 32 = 1240 gates. Assuming that
two such decoders are needed to keep up with the issue width
of the processor, this translates to a maximum of 2480 gates,
which incurs an area overhead 1.3% compared to a 32KB L1
cache.

D. Energy Overhead

We model the access energy of the CPT using CACTI [29]
and determined that an access to the table results in a 4%
energy increase for every cache access. We also estimated
the energy consumed by the correction circuitry (Figure 7)
assuming an activity factor of 1 and the switching energy of a
65nm transistor given in [1]. This energy is 0.2% that of the
access energy of the 32KB L1 cache. Static power overheads
are no worse than the area overheads discussed in Section V-C.

VI. METHODOLOGY

In this section, we describe the methodology we used
to evaluate CP for a 65nm technology node. Section VI-A
describes the strong error correction baselines to which we
apply CP. Section VI-B describes the different designs we
evaluated. Section VI-C describes our experimental details.

A. Strong Error Correction

CP can be applied to any strong error correction technique
to reduce its latency. In this paper, we use CP in conjunction
with three recently proposed strong error correction schemes—
Hi-ECC [31], VS-ECC [2], and Bit-Fix [32]. These strong
error correction methods vary in their area, capacity, and
latency overheads.

Our Hi-ECC implementation protects every word using a
BCH code that is capable of correcting five erroneous bits
within a 59-bit codeword. We employ an additional parity bit
to detect a sixth error within the codeword. If zero or one
errors are detected, the evaluated BCH decoder only incurs the
single error correction latency, but not the much longer multi-
bit correction latency. Single-bit correction is used instead of
the multi-bit correction whenever applicable. The multi-bit
BCH correction is used if single-bit correction fails. In our
implementation, the ECC bits are stored in cache ways during
low voltage operation such that half the ways store data bits,
while the other half store ECC bits. The ECC cache ways
store data during nominal operation as in [10]. Our VS-ECC
implementation, based on VS-ECC-fixed from [2] uses seven
bits for SECDED per cache word. At the same time, each
cache line contains four additional 20-bit extended ECC fields
to accommodate a 5EC6ED BCH code for up to four words
within the line.

The slow, strong correction module in Figure 6 contains
a BCH decoder implemented iteratively according to the
modified Berlekamp-Massey Algorithm presented in [2]. With
the addition of a modest amount of logic, this decoder can
detect errors and correct single bit errors with a small latency
relative to the latency of full 5-bit error correction [31]. Using
the latency equations from [27] and the 65nm technology
parameters from [30], we calculate the error detection latency
for the 5EC6ED BCH code to be 0.34ns or 50% of the access



Fig. 9: Impact of adding CP to different strong correction
schemes at 650mV.

latency of a 4-way set-associative 32KB L1 cache [29]. Single-
bit correction, as calculated from [31], takes 0.53ns or 78%
of an L1 cache access. Similarly, multi-bit correction requires
4.4ns or 648% of an L1 cache access. Given the iterative BCH
decoder used in [2] and Schmidt Trigger 10-T cell protection
for the tag array, Hi-ECC has a total area overhead of 11.9%.
VS-ECC, requiring additional static storage overhead has a
41.4% area overhead compared with our L1 cache.

The energy consumption of the BCH code used by both
our Hi-ECC and VS-ECC implementations depends on the
number of errors in the input codeword (i.e., zero, one, or
more than one). At 650mV, an average of 11 bits are bad
per 1000 bits (Figure 1). At this bit error rate, the energy
overhead of the BCH decoding is calculated to be 0.86% that
of the L1 access assuming an activity factor of 1. The energy
overhead of the BCH encoder is calculated to be 0.3% that of
an L1 access. Static power overheads are no worse than the
previously discussed area overheads.

Our Bit-Fix implementation is adapted from [32]—we
assume access at word granularity. Each access takes three
cycles [32]. The decoding circuitry has fewer than 26,000
transistors [32] or roughly 1.7% of a 32KB caches data
array. Our Bit-Fix implementation also requires the 4.8% area
overhead for robust tag cells (10T-ST) resulting in a total area
overhead of 6.5% of a 32KB L1 cache. Using an activity factor
of 1, our Bit-Fix circuitry has an energy overhead of 1.2% the
access energy of an L1 cache. Static power overheads are no
worse than the area overheads.

Figure 9 presents the latency, area, and energy impact of
applying CP to the above strong error correction schemes. In
the worst-case, CP increases the latency of a cache access
by up to 2.2% (e.g., when fast, weak correction attempts to
predict a word, but strong error correction determines that the
predicted word was incorrect). However, as shown in Table I,
most errors can be predicted by fast error correction, allowing
CP to reduce the average latency of a cache access by 38% to
52% depending on the strong error correction scheme. These
benefits come at an area overhead of no more than 8%, a
maximum dynamic energy overhead of 4.2%, and a maximum
static energy overhead of 8% at low Vdd.

Table II compares the latency, capacity, and area overheads
of complete CP schemes (including overheads from both CP
and the specific strong error correction scheme) to those of
a strong circuit-level technique. At nominal voltage, all CP

Low Vdd Nominal Voltage Low Vdd (650mV)
Tolerance Ave Lat Capacity Ave Lat Capacity Area
Technique Over. Over. Over. Over. Over.
CP 2% 0% 24% 100% 20%+ Hi-ECC
CP 2% 0% 24% 0% 50%+ VS-ECC
CP 2% 0% 19% 33% 13%+ BitFix
10T ST

60% 0% 60% 0% 100%Cell
SRAM [17]

TABLE II: Latency, capacity, and area overheads normal-
ized to an unprotected cache.

schemes have significantly smaller latency and area overheads
compared to a 10T ST SRAM cell. The 10T ST SRAM [16]
has significantly better reliability at low voltage than 8T [9]
and 10T [7], yet it still cannot provide sufficient reliability for a
32KB cache compared with a strong error correction technique
such as Bit-Fix [32].

B. Design Points

As shown in Figure 9, applying CP reduces the average
access latency of a reliable, low Vdd L1 cache. At the proces-
sor level, this can result in significant performance and energy
benefits for those processors (e.g., in-order cores) where the la-
tency of cache access can significantly determine performance.
To quantify the processor benefits, we evaluate CP against
three design points presented in Table III. The first baseline,
Nominal Baseline, is a 7-stage pipeline running at 2.68GHz
at 1.2V. Note that cache accesses take two cycles for this
baseline. The second baseline, Deep Pipe, has additional stages
(for both the L1 ICache and L1 DCache) to accommodate the
latency of error correction required during 650mV operation
without affecting the frequency of the pipeline during nominal
(1.2V) operation. For Hi-ECC and VS-ECC, error correction
latency requires two cycles given the single-bit correction
latency described in Section VI-A, while Bit-Fix requires
three cycles. The frequency of the Deep Pipe baseline (and
other baselines) at 650mV is determined using the operating
point pairs from [32] and assuming a linear voltage-frequency
scaling (this is similar to the methodology used in [18], [2]).

The third design point is Speculate on Every Access
(SEA) where every cache access is speculated upon. I.e.,
the uncorrected value is returned to the pipeline and to the
strong correction circuitry at the same time. This design point
represents the natural extension of [11] using hardware error
correction. This design will suffer from frequent squashing
of speculative instructions and more frequent stalls for long-
latency correction. SEA also requires the additional pipeline
stages that CP needs for forwarding speculative values. A
fourth design point is SECDED+Disable where each word is
protected by an ECC that can correct up to one error (this is the
same SEC as used for our VS-ECC implementations). If more
than one error is identified, that word is disabled, requiring an
access to the next level in the cache hierarchy. Since SECDED
requires more than one cycle of additional latency, implement
it in an 11-stage pipeline. The final design point is CP . It has
a slightly lower frequency at nominal voltage than the other



Parameter Nominal Deep SEA CPBaseline Pipe
Processor Low Vdd — 968 MHz 968 MHz 945 MHz
Frequency Nom Vdd 2.68 GHz 2.56 GHz
L1 $ Low Vdd — 2.37 ns
Latency Nom Vdd 0.68 ns
L1 Singlebit Hi-ECC — 2 cycles
Correction VS-ECC — 2 cycles
Latency BitFix — 3 cycles
L1 Multibit Hi-ECC — 13 cycles
Correction VS-ECC — 13 cycles
Latency Bit-Fix — 3 cycles

Pipeline Hi-ECC 7 11 9 9

Stages VS-ECC 7 11 9 9
Bit-Fix 7 13 10 10

L2 Latency 10 ns

TABLE III: Operating Point Parameters.

design points and a slightly lower frequency than Deep Pipe
and SEA at 650mV to account for the addition of two MUXes
to the critical path of a cache access (see Figure 8).

C. Experimental Setup

Number Cores 1 in-order
Register File 32 Int, 32 FP
Fetch/Decode/Issue Width 2/2/2
BTB Size 4096 entries
RAS Size 16 entries
Branch Predictor Tournament
ALUs/FPUs/MDUs 2/1/1
Cache Line Size 64B

L1 I$

Nominal (1.2V, all designs) 32KB, 4-way
Hi-ECC (650-840mV) 16KB, 2-way
VS-ECC (650-840mV) 32KB, 4-way
Bit-Fix (650-840mV) 24KB, 3-way

L1 D$

Nominal (1.2V, all designs) 32KB, 4-way
Hi-ECC (650-840mV) 16KB, 2-way
VS-ECC (650-840mV) 32KB, 4-way
Bit-Fix (650-840mV) 24KB, 3-way

L2 Unified $ 1MB, 8-way
Memory Configuration 2 GB of 1066 MHz DDR3

TABLE IV: Basic core characteristics.

We evaluate CP over benchmarks from the Spec2000 [25]
and Spec2006 [26] benchmark suites executing on a 2-issue
in-order core. Core microarchitectural parameters were chosen
to be similar to the ARM Cortex-A7 [4] and are enumerated
in Table IV. An aggressive branch predictor was chosen to
not unduly penalize Deep Pipe. Performance simulations were
run using Gem5 [5], fast forwarding for 1 billion instructions
and executing for 1 billion instructions. Frequency for a
given voltage was determined by the linear scaling in [2].
Nominal dynamic and static power overheads were determined
using the simulation results and McPAT [19]. Low supply
voltage dynamic power was scaled quadratically with respect
to voltage [32]. Low supply voltage static power was scaled
cubically with respect to voltage [32]. The L2 and the main
memory are not scaled (i.e., we model them to have an absolute
latency in terms of ns).

VII. EXPERIMENTAL RESULTS

In this section, we evaluate the impact of the reduced
error correction latency enabled by CP on processor-level

performance, power, and energy.

A. Low Voltage (650mV) Operation

Figure 10 shows the performance of the different schemes
at 650mV compared to the nominal baseline operating at 1.2V.
For simplicity, we discuss Hi-ECC results here, although the
trends for VS-ECC and Bit-Fix are similar. We see a 22%
performance benefit over the deepened pipeline design in spite
of slightly lower frequency (945MHz vs 968MHz). This is due
to a reduced penalty for branch and data hazards since the
number of pipeline stages is smaller (9 vs 11). Furthermore,
the additional pipeline stages in CP continue to forward to
dependent instructions, while the additional pipeline stages
in the deepened pipeline design lead to stalls for the load-
dependent instructions. CP increases performance by 42% over
the SECDED with word disable scheme, which performs the
worst of all correction schemes on average. When compared to
Speculate on Every Access (SEA), CP increases performance
by 18%. There are two reasons for this performance improve-
ment. First, CP reduces the mis-prediction rate and thus the
penalty from squashing speculative instructions. Second, CP
reduces the number of long-latency stalls for strong error
correction because the fast, weak correction in CP can correct
errors within the data word, which may reduce multi-bit errors
to single-bit errors. Finally, CP achieves average performance
within 13% of the ideal, zero-latency, zero-capacity correction.
The slight difference in performance is due to the slightly lower
frequency of operation at 650mV, stalls due to non-predictions
and mis-predictions (see Table I). When compared against the
SECDED+Disable design point, CP has a performance benefit
of 42% because SECDED requires additional pipeline stages
for both L1 caches and also incurs long-latency misses to the
next levels of the cache hierarchy.

Figure 11 shows the energy benefits that the error correc-
tion prediction scheme can provide over the reduced frequency
and pipeline deepening schemes. The observed benefit of CP
compared to the deepened pipeline design is 19% and it
occurs due to the 22% higher performance. CP has 16% lower
energy than SEA because of the increased performance from
correct prediction and decreased power consumption. All error
correction techniques show a reduction of average energy by
58% or more relative to the nominal baseline. We report energy
benefits for a core where logic and SRAMs are on a single
power rail. If logic and SRAMs are on different rails, energy
benefits will still be significant because SRAM energy would
dominate at low supply voltages.

B. Nominal Operation

We recognize that for many applications low power/energy
operating points are desirable, but they must not come at
the price of hurting performance at nominal operating points.
We evaluated the performance of each design point at the
nominal voltage (1.2V). Figure 12 shows that CP has only
a slight performance degradation of 1.2% when operating at
the nominal voltage due to the addition of a MUX on the
critical path of L1 cache accesses. This shows that CP is
not only an attractive design point for fixed voltage systems
running at low voltages (e.g., 650mV), but also for systems
that support DVFS to provide high performance at nominal
operating points. In contrast, pipeline deepening has an average

Henry Duwe



Fig. 10: Performance for 650mV Operation.

Fig. 11: Energy for 650mV Operation.

Fig. 12: Performance for Nominal Voltage Operation.

performance degradation of over 15%. The high performance
degradation is due to two factors (1) data and control hazards
are more expensive because of increased number of pipeline
stages, and (2) since the additional pipeline stages correspond-
ing to the data cache accesses cannot forward values until
the access is complete, dependent instructions have to stall.
Finally, the reduced frequency design and SEA have high
performance at nominal operation. However, these designs
may have significant performance and energy overhead at low
voltage operation (Figure 10, Figure 11).

C. Sensitivity

The benefits provided by CP are dependent on several
parameters, including the voltage of operation, the latency
impact of CP, and the fault rates of a given voltage. In this
section we perform a sensitivity analysis of these parameters.

Our results in Section VII-A were presented for 650mV.
It is the lowest voltage at which all the ECC bits for a
32-bit data word can fit within another 32-bit word. In this
section, we compare the performance of correction prediction
against other design points over higher supply voltages and
corresponding error rates. For Hi-ECC and VS-ECC, we select
the weakest BCH code which guarantees reliability at that
voltage equivalent to the reliability at nominal voltage. This
means that the given supply voltage is the lowest supply
voltage at which the design can be run (e.g., the BCH decoder
that is required for 840mV operation would not be sufficient
to operate at 700mV). The CP error correction hardware is
constant across all supply voltages.

Figure 13 shows the results. The results show that CP
allows operation over a large voltage range at a performance
comparable to the ideal scheme. Performance degradation of
CP applied on top of Hi-ECC compared to the ideal is only
13%, 7%, and 7% at 650mV, 700mV, and 840mV respectively.
The primary reason why CP performs comparably to the ideal
is that a large fraction of errors over a wide voltage range are
predictable by the fast, weak correction. We also observe that
while CP provides better performance than other design points
over the entire range that was evaluated, the performance
advantage depends on the operating voltage. For example,
while CP has nearly identical performance to SEA at 840mV,
the performance advantage increases to 18% at 650mV. This
is because the number of errors is considerably higher at
650mV than 840mV. For SEA, this leads to significantly
higher number of squashes and long-latency stalls. For CP,
most of the cache accesses continue to be predicted by the
fast, weak correction scheme at 650mV. Finally, CP continues
to perform much better than reduced frequency and pipeline
deepened designs even at higher supply voltages (e.g., 840mV).
This is because the reduced frequency design has significantly
lower frequency even at 840mV (1.111GHz vs 1.524GHz).
Similarly, the deepened pipeline not only suffers from the
standard disadvantages of having a large number of pipeline
stages (increased cost of branch and data hazards), but also has
additional stalls due to the load-dependent instructions waiting
for the error correction for the data cache access to complete.

The results in Section VII-A correspond to a 2.5% la-
tency overhead for CP as modeled by the methodology in
Section V-B. Figure 14 shows the performance of CP applied



Fig. 13: Voltage Scaling Sensitivity Study.

Fig. 14: Fast Correction Table Latency Sensitivity Study.

to Hi-ECC (the correction scheme CP performs worst with)
assuming its latency overhead is double and quadruple our cal-
culated value. Despite the increased overhead (5% and 10%),
CP still increases performance by 16% and 12%, respectively.

Our results in Section VII-A are based on the 65nm fault
rate data from [12] (note that prior work [2], [32] used 130nm
fault rate data). We explored the sensitivity of benefits to fault
rates nearly 5x lower than [12]. Figure 15 shows that CP can
still provide performance improvements of 14-20% for a lower
fault rate vs voltage curve. These results (including results in
Figures 13, 14, and 15) attest to the generality of our approach.

The results reported above are for min-sized 6T SRAMs.
Prior work (e.g., [17]) has demonstrated that circuit-level
techniques such as doubling the size of transistors in 6T

Fig. 15: Fault Rate Sensitivity Study.

cells or using 8T cells may allow reduced voltage operation.
However, CP can still yield performance benefits when used
with such circuit-level techniques. To quantify the benefits we
rely on the fault rate vs voltage dataset from [17] and voltage
versus frequency scaling dataset from [15].2 6Tx2 SRAM cells
allow operation at 454mV with the evaluated strong error
correction techniques. When implemented on top of 6Tx2
SRAM cells, CP can achieve a performance improvement of
up to 13-20% as shown in Figure 16. Such upsizing results

2We use fault rate vs voltage data from [17] since the data set used for
our main set of results in Section VII-A did not have fault rate vs voltage
data for 6T upsized or 8T SRAM cells. We use the non-linear voltage vs
frequency scaling data from [15] since the linear voltage vs frequency scaling
assumption no longer applies for the low voltages allowed by 6Tx2 and 8T
cells.



Fig. 16: 6T 2x Upsized Sensitivity Study using [17], [15].

Fig. 17: 8T Sensitivity Study using [17], [15].

in a 33% area increase and a doubling of static power. By
using 8T SRAM cells, the additional static power can be
reduced, while still allowing a minimum voltage of 454mV.
When implemented on top of 8T SRAM cells, CP provides up
to a 13-20% performance improvement as shown in Figure 17.
For completeness, Figure 18 shows CP results when applied to
6T cells using these datasets. At the lowest voltage where the
reliability target can be met, CP shows a performance benefit
of 12-19% for 6T transistors, similar to the primary results
presented in Section VII-A.

VIII. FUTURE WORK AND DISCUSSIONS

In this paper, we explore one implementation of correc-
tion prediction; many other implementations with different
tradeoffs exist. For example, instead of using a BIST routine
to populate the CPT as described in the paper, one can use
a learning mechanism to populate the CPT by dynamically
identifying the weak memory cells at runtime. Also as an
example, instead of allocating a static CPT entry to every
group of four words as described in the paper, one can also
use a smaller CPT table with fewer dynamic entries that
correspond to the most frequently accessed words. Finally,
other implementations of correction predictors are possible,
such as weak error-correcting codes or history prediction.

While our evaluation is performed in the context of an
L1 cache, the concept of correction prediction is applicable to
other on-chip memories. Examples include L2 and L3 caches,

Fig. 18: 6T Sensitivity Study using [17], [15].

as well as non-cache on-chip memories such as GPU register
files and the memory systems of embedded processors which
often reside on-chip. Correction prediction is also applicable to
emerging technologies such as STT-RAMs, where fault rates
are high [22]. In addition to in-order cores, correction predic-
tion can be applied to other processor micro-architectures that
support speculative execution, such as out-of-order processors
and processors with runahead threads. The details needed
to apply correction prediction to these different contexts are
outside the scope of this paper.

Finally, correction prediction bears some resemblance to
value prediction, which seeks to predict the value of a load
before the load instruction completes. They differ in three main
ways. First, value prediction is beneficial only for accesses to
words with value locality, while correction prediction is not
limited by this requirement. Second, value prediction benefits
only load instructions, while correction prediction benefits all
instructions by predicting the correct values of instruction
words accessed from the I-cache. Third, by predicting the
values of weak cells in a word, instead of predicting the
complete value of the whole word, correction prediction can
require significantly lower overheads than value correction
while providing the same prediction accuracy.

IX. CONCLUSION

On-chip memories consume an increasingly large fraction
of chip power. The reliability of on-chip memories determines
their voltage and, therefore, the power these memories con-
sume. Voltage scaling can be used to significantly reduce the
power consumed by on-chip memories and chips as a whole.
However, aggressive voltage scaling leads to high error rates in
on-chip memories (e.g., caches). Strong error correction can be
used to tolerate high error rates in on-chip memories. However,
such strong error correction may require significant latency
relative to the memory access itself. We propose correction
prediction, a scheme that reduces the latency of strong error
correction by using a fast mechanism to predict the result of
strong error correction. We present CP, a fast, weak correction
mechanism that predicts the result of strong error correction
with a mis-prediction rate of <0.1%. This reduces the effective
access latency of a 32KB, 4-way SRAM L1 cache by 38%-
52%. For a 2-issue in-order core, CP provides 16%-21%
energy reduction compared with using a strong error correction
scheme alone, while incurring less than a 1.2% performance
degradation at nominal voltage.



ACKNOWLEDGMENT

This work was supported in part by Systems on Nanoscale
Information fabriCs (SONIC), one of the six SRC STARnet
Centers, sponsored by MARCO and DARPA. The authors
would like to thank Janak Patel and the anonymous reviewers
for their helpful feedback.

REFERENCES

[1] “International technology roadmap for semiconductors 2001 edition
process integration, devices, and structures and emerging research
devices.” [Online]. Available: http://www.itrs.net/Links/2001ITRS/
PIDS.pdf

[2] A. R. Alameldeen, I. Wagner, Z. Chishti, W. Wu, C. Wilkerson, and
S.-L. Lu, “Energy-efficient cache design using variable-strength error-
correcting codes,” in Proceedings of the 38th annual international
symposium on Computer architecture, ser. ISCA ’11. New York, NY,
USA: ACM, 2011, pp. 461–472.

[3] A. Ansari, S. Feng, S. Gupta, and S. A. Mahlke, “Archipelago: A
polymorphic cache design for enabling robust near-threshold operation.”
in HPCA. IEEE Computer Society, 2011, pp. 539–550. Available:
http://dblp.uni-trier.de/db/conf/hpca/hpca2011.html#AnsariFGM11

[4] ARM, “Cortex-a7 technical reference manual, rev r0p5.”
Available: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.
doc.ddi0464f/index.html

[5] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7,
Aug. 2011. Available: http://doi.acm.org/10.1145/2024716.2024718

[6] T. Bonnoit, M. Nicolaidis, and N.-E. Zergainoh, “Using error
correcting codes without speed penalty in embedded memories:
Algorithm, implementation and case study,” Journal of Electronic
Testing, vol. 29, no. 3, pp. 383–400, 2013. Available: http:
//dx.doi.org/10.1007/s10836-013-5386-8

[7] B. Calhoun and A. Chandrakasan, “A 256kb sub-threshold sram in
65nm cmos,” in Solid-State Circuits Conference, 2006. ISSCC 2006.
Digest of Technical Papers. IEEE International, Feb 2006, pp. 2592–
2601.

[8] V. Chandra and R. Aitken, “Impact of technology and voltage
scaling on the soft error susceptibility in nanoscale cmos,” in
Proceedings of the 2008 IEEE International Symposium on Defect
and Fault Tolerance of VLSI Systems, ser. DFT ’08. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 114–122. Available:
http://dx.doi.org/10.1109/DFT.2008.50

[9] L. Chang, D. Fried, J. Hergenrother, J. Sleight, R. Dennard, R. Montoye,
L. Sekaric, S. McNab, A. Topol, C. Adams, K. Guarini, and W. Haen-
sch, “Stable sram cell design for the 32 nm node and beyond,” in VLSI
Technology, 2005. Digest of Technical Papers. 2005 Symposium on, June
2005, pp. 128–129.

[10] Z. Chishti, A. Alameldeen, C. Wilkerson, W. Wu, and S.-L. Lu,
“Improving cache lifetime reliability at ultra-low voltages,” in Microar-
chitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM International
Symposium on, 2009, pp. 89–99.

[11] Alpha 21264 Microprocessor Hardware Reference Manual,
Compaq Computer Corporation. Available: http://h18000.www1.hp.
com/cpq-alphaserver/technology/literature/21264hrm.pdf

[12] R. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge,
“Near-threshold computing: Reclaiming moore’s law through energy
efficient integrated circuits,” Proceedings of the IEEE, vol. 98, no. 2,
pp. 253–266, 2010.

[13] R. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. Mudge,
“Near-threshold computing: Reclaiming moore’s law through energy
efficient integrated circuits,” Proceedings of the IEEE, vol. 98, no. 2,
pp. 253–266, 2010.

[14] K. Khubaib, M. Suleman, M. Hashemi, C. Wilkerson, and Y. Patt, “Mor-
phcore: An energy-efficient microarchitecture for high performance ilp
and high throughput tlp,” in Microarchitecture (MICRO), 2012 45th
Annual IEEE/ACM International Symposium on, 2012, pp. 305–316.

[15] W. Kim, M. Gupta, G.-Y. Wei, and D. Brooks, “System level analysis
of fast, per-core dvfs using on-chip switching regulators,” in High
Performance Computer Architecture, 2008. HPCA 2008. IEEE 14th
International Symposium on, Feb 2008, pp. 123–134.

[16] J. Kulkarni, K. Kim, and K. Roy, “A 160 mv robust schmitt trigger
based subthreshold sram,” Solid-State Circuits, IEEE Journal of, vol. 42,
no. 10, pp. 2303–2313, Oct 2007.

[17] J. Kulkarni and K. Roy, “Ultralow-voltage process-variation-tolerant
schmitt-trigger-based sram design,” Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, vol. 20, no. 2, pp. 319–332, Feb 2012.

[18] E. Le Sueur and G. Heiser, “Dynamic voltage and frequency
scaling: the laws of diminishing returns,” in Proceedings of the 2010
international conference on Power aware computing and systems, ser.
HotPower’10. Berkeley, CA, USA: USENIX Association, 2010, pp.
1–8. Available: http://dl.acm.org/citation.cfm?id=1924920.1924921

[19] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi, “Mcpat: an integrated power, area,
and timing modeling framework for multicore and manycore
architectures,” in Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO 42.
New York, NY, USA: ACM, 2009, pp. 469–480. Available:
http://doi.acm.org/10.1145/1669112.1669172

[20] K. Ma, X. Li, M. Chen, and X. Wang, “Scalable power control
for many-core architectures running multi-threaded applications,” in
Proceedings of the 38th annual international symposium on Computer
architecture, ser. ISCA ’11. New York, NY, USA: ACM, 2011, pp.
449–460. Available: http://doi.acm.org/10.1145/2000064.2000117

[21] K. Meng, R. Joseph, R. P. Dick, and L. Shang, “Multi-optimization
power management for chip multiprocessors,” in Proceedings of the
17th international conference on Parallel architectures and compilation
techniques, ser. PACT ’08. New York, NY, USA: ACM, 2008, pp.
177–186. Available: http://doi.acm.org/10.1145/1454115.1454141

[22] H. Naeimi, C. Augustine, A. Raychowdhury, S.-L. Lu, and
J. Tschanz, Intel Technology Journal, vol. 17, no. 1, 2013.
Available: http://www.csit-sun.pub.ro/⇠cpop/Documentatie SM/Intel
Microprocessor Systems/Intel%20TechnologyNew/intelr technology
journal volume 17 issue 1 2013.pdf#page=54

[23] M. K. Qureshi and Z. Chishti, “Operating secded-based caches at ultra-
low voltage with flair,” in Dependable Systems and Networks (DSN),
2013 43rd Annual IEEE/IFIP International Conference on, 2013, pp.
1–11.

[24] P. P. Shirvani and E. J. McCluskey, “Padded cache: a new fault-
tolerance technique for cache memories,” in VLSI Test Symposium,
1999. Proceedings. 17th IEEE. IEEE, 1999, pp. 440–445.

[25] Standard Performance Evaluation Corporation, “Spec cpu2000.”
Available: www.spec.org/cpu2000

[26] Standard Performance Evaluation Corporation, “Spec cpu2006.”
Available: www.spec.org/cpu2006

[27] D. Strukov, “The area and latency tradeoffs of binary bit-parallel bch
decoders for prospective nanoelectronic memories,” in Signals, Systems
and Computers, 2006. ACSSC ’06. Fortieth Asilomar Conference on,
2006, pp. 1183–1187.

[28] M. B. Taylor, “Is dark silicon useful?: harnessing the four
horsemen of the coming dark silicon apocalypse,” in Proceedings
of the 49th Annual Design Automation Conference, ser. DAC ’12.
New York, NY, USA: ACM, 2012, pp. 1131–1136. Available:
http://doi.acm.org/10.1145/2228360.2228567

[29] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, “CACTI
5.1,” HP Laboratories, Palo Alto, Tech. Rep, vol. 20, 2008.

[30] N. H. West and D. M. Harris, “Cmos vlsi design: A circuits and systems
perspective,” 2010, p. 312.

[31] C. Wilkerson, A. R. Alameldeen, Z. Chishti, W. Wu, D. Somasekhar,
and S.-l. Lu, “Reducing cache power with low-cost, multi-bit error-
correcting codes,” SIGARCH Comput. Archit. News, vol. 38, no. 3, pp.
83–93, Jun. 2010.

[32] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khellah,
and S.-L. Lu, “Trading off cache capacity for reliability to enable low
voltage operation,” in Proceedings of the 35th Annual International
Symposium on Computer Architecture, ser. ISCA ’08. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 203–214.


