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Abstract—Barrier coverage is an important application of
sensor networks. This paper studies how to build a strong barrier
with mobile sensors in which the maximum moving distance
of sensors is minimized. Our work differs from others in the
way the y-coordinate of the barrier is determined. We optimize
the y-coordinate of the barrier instead of fixing it a priori. An
efficient algorithm is proposed, in which the search space of the
y-coordinate of the barrier is first discretized and then searched
over iteratively. In the theoretical worst case, O(N4) iterations
may be needed to find the optimal barrier location, where N is
the number of sensors, but in practice, our algorithm requires
less than O(N2) iterations, as confirmed in simulation.

I. INTRODUCTION

Intruder detection and border surveillance are intuitive ap-
plications of sensor networks. In these applications, sensors
are deployed along the perimeter of a protected area such that
no intruder can cross the perimeter without being detected.
The arrangement of sensors for this purpose is referred to as
the barrier coverage problem in sensor networks.

Early research in barrier coverage focused on static sensors
[1]–[4]. Different kinds of barrier coverage were defined and
the corresponding critical densities of sensors were calculated.
Also, various schemes were proposed to identify the barriers
formed by static sensors. More recent research has examined
barrier coverage with mobile sensors [5]–[8]. The primary
focus of these papers has been minimizing the moving dis-
tances of sensors when building the barrier. These works either
restricted the sensors’ deployment and movement regions
to a 1-dimensional (1D) line, or fixed the y-coordinate of
the barrier if considering a 2-dimensional (2D) rectangular
deployment region with the minimum number of sensors. In
practice, it is difficult to deploy sensors along a 1D line, and
in the 2D case, fixing the y-coordinate of the barrier a priori
results in a suboptimal solution, since the y-coordinate of the
barrier affects the moving distance of sensors.

In this paper, we study the strong barrier coverage problem
in a 2D rectangular region, where the goal is to detect intruders
that may follow any path to cross the deployment region. This
is in contrast to weak barrier coverage, which deals with in-
truders that only perpendicularly cross the deployment region.
We assume that a strong barrier is formed with the minimum
number of sensors, along a horizontal line that spans the length
of the deployment region. We present an algorithm that decides
the optimal y-coordinate of the barrier, and identifies a subset
of sensors to move to their corresponding destinations, so that
the maximum moving distance of sensors is minimized. To
achieve this, our algorithm first discretizes the search space
for the y-coordinate of the barrier, then quickly iterates over

this discretized search space. Simulation results show that our
algorithm is efficient and scalable.

The rest of this paper is organized as follows. In Section II,
we discuss related work in detail. In Section III, the system
model is presented and the problem is formally defined. We
present our algorithm in Section IV and evaluate it in Section
V. Finally, we conclude this paper in Section VI.

II. RELATED WORK

Various 1D mobile barrier coverage problems have been
studied in [5, 9, 10]. In these papers, mobile sensors are
initially deployed on the line where the barrier will be built,
then the sensors move along this line to form the barrier.
The sensors move according to various objectives, such as
minimizing the maximum (min-max) or the sum (min-sum)
of moving distances, maximizing the coverage, or minimizing
the number of moving sensors. Regardless of the objective,
the y-coordinate of the barrier is not considered because the
sensors are assumed to already be on the line.

Barrier coverage has also been studied for mobile sensors
deployed in a 2D region. Bhattacharya et al. [5] solved the
min-max and min-sum problems for sensors moving from a
circle’s interior to its circumference to form a barrier. Their
algorithm optimizes an angle variable, analogous to our y-
coordinate of the barrier. However, their solution cannot be
applied to our problem due to different search spaces of the
angle variable and the y-coordinate, and the difference in how
these factors decide sensors’ final positions. Saipulla et al.
[6] studied the min-max problem of forming a barrier with a
minimum number of mobile sensors in a rectangular region.
However, they fixed the y-coordinate of the barrier a priori.
Shen et al. [7] did not fix the y-coordinate of the barrier in
their investigation into the min-sum problem for a rectangular
region, but they instead fixed the order of sensors along the
barrier. In contrast, our algorithm does not fix either the y-
coordinate or the order of the sensors along the barrier, thus
allowing for optimal min-max results with no assumptions
about how the sensors are deployed.

Distributed algorithms have also been proposed for the
barrier coverage problem [7, 8, 11, 12], but the goal of these
algorithms is usually to reduce the communication between
sensors. They are suboptimal when considering objectives such
as min-max or min-sum of sensors’ moving distances.

III. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model
1) Sensor Network: We study a network of N mobile

sensors deployed in a long rectangular region of size L×W ,
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where L ≫ W , as shown in Fig. 1. Sensors are named s1
to sN from left to right of the deployment region, and the
initial position of sensor si is denoted by (xi, yi). The set of
all the sensors is denoted by S. We adopt the widely-used
disk coverage model and denote the coverage radius as R. An
intruder can be detected by a sensor if and only if it is within
R of the sensor. In addition, we assume sensors can acquire
their positions from GPS or another localization scheme.
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Fig. 1. An example sensor network of 50 mobile sensors.

2) Intruder and Barrier: We assume that intruders may
take any path to cross the deployment region from bottom
to top, as shown in Fig. 1. In order to detect such intruders,
strong barrier coverage is required. This is in contrast to weak
barrier coverage, which assumes intruders only take paths
perpendicular to the x-axis of the deployment region.

The minimum number of sensors needed to form a strong
barrier is Nmin = ⌈ L

2R⌉. For simplicity, and without loss of
generality, we assume that L is a multiple of 2R; hence,
Nmin = L

2R . To form a strong barrier with Nmin sensors, which
is the focus of our study in this paper, these sensors must be
aligned along a horizontal line parallel to the x-axis of the
deployment region. In other words, the destination positions
of these sensors (denoted by tj , 1 ≤ j ≤ Nmin) must have the
coordinates of (αj , wj), where αj = (2j−1)R, 1 ≤ j ≤ Nmin,
and w1 = w2 = · · · = wNmin . We use T to denote the set of
destination positions, and use w to denote their common y-
coordinate, called the barrier location.

3) System: We assume that the sensor network remains
connected during sensor movement, and that there is a central
processing unit which collects information from sensors, exe-
cutes the proposed algorithm, and disseminates the movement
strategy to sensors.

B. Problem Statement
Our goal is to minimize the maximum moving distance of

mobile sensors that form a strong barrier, with selected Nmin
sensors from a network of N (N ≥ Nmin) sensors with known
initial positions. More specifically, our algorithm must decide
(1) where the barrier shall be formed, i.e., the optimal barrier
location, denoted by wopt; and (2) how to form the barrier at
wopt, i.e., the optimal sensor movement strategy, which can be
described as a mapping function M opt from S to T . In general,
a mapping function M : S → T is defined as follows: M(i) =
j ̸= 0 means that sensor si moves to destination tj , while
M(i) = 0 means that sensor si remains stationary. Sensors
not used in the initial barrier may participate in forming future
barriers after the operational lifetime of the current barrier has
expired. Formally, the problem we try to address in this paper
is described as follows:

Given:
• rectangular deployment region: L×W

• coverage radius: R

• total number of deployed sensors: N

• initial sensor positions: (xi, yi) for each si ∈ S

• x-coordinate of the destinations: αj for each tj ∈ T

Output:
• optimal barrier location wopt and sensor movement strat-

egy M opt: {wopt,M opt} = arg min
{w,M}

D(M,w) where

D(M,w) = max
si∈S,M(i) ̸=0

√(
xi − αM(i)

)2
+ (yi − w)2.

Constraint: 0 ≤ wopt ≤ W

Essentially, we solve a min-max problem. Our motivation
is the assumption that the sensor with the maximum moving
distance runs out of energy first, which would break the barrier.
Therefore, our scheme produces a barrier with the longest
operational lifetime. We use D(M,w) to denote the maximum
moving distance of the sensors when they follow strategy M
to form a barrier at location w. We restrict the barrier location
between 0 and W .

IV. PROPOSED SCHEME

A. Overview of the Proposed Scheme

To determine the optimal barrier location wopt, we first
reduce its search space from a continuous range [0,W ] to
a discrete set with less than N2N2

min points, which are called
candidate barrier locations. Afterwards, we propose an effi-
cient iterative algorithm to search over this discrete set. The
worst-case number of iterations is O(N2N2

min), but in practice,
our algorithm uses approximately O(NNmin) iterations.

B. Identification of Candidate Barrier Locations

Candidate barrier locations are derived from the minimum
and intersection points of the group of functions defined below.

Definition 1 (Function of Moving Distance). Suppose a sensor
si moves to a destination tj . The moving distance of si can
be represented as a function of the barrier location w, i.e.,

fi,j(w) =
√

[xi − (2j − 1)R]2 + (yi − w)2, (1)

where 0 ≤ w ≤ W .
We use F to denote the set of all f associated with a sensor

network of N sensors, i.e.,
F = {fi,j(w)|1 ≤ i ≤ N, 1 ≤ j ≤ Nmin, 0 ≤ w ≤ W}. (2)

For simplicity, we also define fi,0(w) = 0,∀i,∀w. With these
functions defined, we can now define the candidate barrier
locations.

Definition 2 (Candidate Barrier Locations). The set of candi-
date barrier locations is Φ = Φmins ∪ Φints, where

• Φmins =
∪

∀fi,j∈F

{w| argmin
w

fi,j(w)} includes all the w values

that yield a minimum value for at least one of the fi,j
functions in F ;

• Φints =
∪

∀fi,j∈F,fm,n∈F
{w|fi,j(w) = fm,n(w)} includes all the

w values at which two functions in F intersect.

Let |Φ| denote the total number of candidates in Φ. We
sort these candidates in ascending order and name them
{Ki| i = 1, · · · , |Φ|}. Let |Φmins| and |Φints| denote the number
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of candidates in Φmins and Φints, respectively. Then, we have
O(N4) candidates, as follows:

|Φ| = |Φmins|+ |Φints| ≤ NNmin +
(NNmin

2

)
= O(N2N2

min) = O(N4).

(3)
Fig. 3 plots all the functions in F corresponding to the sensor
network shown in Fig. 2. In this example, |Φmins| = 3, |Φints| =
10, and |Φ| = 13.

0 L
0

w

W
Initial Position

Destination Position

t
3

t
2

s
1

s
2

t
1

s
3

Fig. 2. An example sensor network of 3 mobile sensors.
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Fig. 3. For the example network in Fig. 2, there are 9 functions in F
and 13 candidate barrier locations. Φmins = {K3,K4,K13} and Φints =
{K1,K2,K5,K6,K7,K8,K9,K10,K11,K12}.

The optimal barrier location wopt is guaranteed to be at one
of the candidate barrier locations, as Theorem 1 below proves,
any movement strategy M for a barrier at any w between
two adjacent candidate locations can always yield a smaller
maximum moving distance at one of these two candidates.

Theorem 1. ∀M , ∀w ∈ (Kj ,Kj+1), where 1 ≤ j ≤ |Φ| − 1,
D(M,w)>min {D (M,Kj) , D (M,Kj+1)}.

Proof: Let si∗ denote the sensor that has the maximum
moving distance in M at w. This means

∀i, fi,M(i)(w) ≤ fi∗,M(i∗)(w). (4)

Since Kj and Kj+1 are adjacent candidate locations, no
other functions in F intersect between them. Therefore, (4)
implies that {

fi,M(i)(Kj) ≤ fi∗,M(i∗)(Kj), ∀i,
fi,M(i)(Kj+1) ≤ fi∗,M(i∗)(Kj+1), ∀i.

(5)

In other words,
fi∗,M(i∗)(Kj) = max

1≤i≤N
fi,M(i)(Kj),

fi∗,M(i∗)(Kj+1) = max
1≤i≤N

fi,M(i)(Kj+1).
(6)

Moreover, according to the definition of candidate barrier
locations, all the functions in F are monotone between two
adjacent candidates such as Kj and Kj+1. Therefore, we have:

D(M,w) = max
1≤i≤N

fi,M(i)(w) = fi∗,M(i∗)(w) (Definition)

> min
{
fi∗,M(i∗)(Kj), fi∗,M(i∗)(Kj+1)

}
(Monotone)

= min

{
max

1≤i≤N
fi,M(i)(Kj), max

1≤i≤N
fi,M(i)(Kj+1)

}
= min {D (M,Kj) , D (M,Kj+1)} . (7)

C. Iterative Algorithm

With the candidate barrier locations being identified, we
further reduce the search complexity by proposing an iterative
algorithm in which only a small portion of candidates are
checked. Fig. 4 shows the flowchart of our iterative algorithm,
which is explained in detail next.

Initialization: wcurr = 0,
wopt = wcurr, M

opt = ∅, Dopt = ∞

G(V,E) :
V = S ∪ T , E = {(si, tj)|si ∈ S, tj ∈ T },
Weight(si, tj) = fi,j(w

+
curr)

M∗=Bottleneck Bipartite Matching(G)

i∗ = argmax
i

fi,M∗(i)(w
+
curr)

D(M∗, wcurr) = max
1≤i≤N

fi,M∗(i)(wcurr)

D(M∗, wcurr) < Dopt?

Update:

wopt = wcurr,
Mopt = M∗,
Dopt = D(M∗, wcurr)

wnext = min{Kj|Kj > wcurr,Kj ∈ Φi∗,M∗(i∗)}

Does wnext exist?

STOP,
output Mopt, wopt

wcurr = wnext

yes

no

yes

no

Customized Bottleneck Bipartite Matching

Continue with the Next Candidate

Fig. 4. Flowchart of the iterative algorithm (note that w+
curr = wcurr + δw).

The algorithm starts with wcurr = 0. After initialization with
the optimal min-max moving distance Dopt set to infinity,
the Bottleneck Bipartite Matching (BBM) algorithm [13] is
applied to determine the best movement strategy for the current
barrier location as follows. The input to BBM is a weighted
bipartite graph G(V,E):

• V = S ∪ T where S is the set of sensors, T is the set of
destinations along wcurr;

• E = {(si, tj)| si ∈ S, tj ∈ T};
• Weight(si, tj) = fi,j(w

+
curr) where w+

curr = wcurr+δw and
δw is a positive offset which is sufficiently small so that
w+

curr does not reach the next candidate in Φ. Recall that
fi,j is the function of moving distance for sensor si to
reach destination tj .

BBM returns a max-cardinality matching whose maximum
edge weight is minimized. In other words, it produces a
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movement strategy which minimizes the maximum moving
distance of sensors from their initial positions to the destina-
tion positions along wcurr.

In this customized BBM algorithm, the offset δw is used as
a tie breaker in case there are multiple movement strategies
that all yield the same min-max moving distance at wcurr.
For example, in Fig. 5, at wcurr = K2, there exist two
such movement strategies: M1 = {1→2, 2→1, 3→3} and
M2 = {1→1, 2→2, 3→3}. By adding a small offset, the tie
is broken and M2 is chosen which yields a smaller maximum
moving distance than M1 at K+

2 . This serves as an important
base for the next round of iteration, as shown in the proof of
Theorem 2.

As shown in the flowchart, we record the output of the
customized BBM algorithm as follows:

• M∗: the min-max matching at w+
curr;

• i∗: the index of the sensor that has the maximum moving
distance in M∗ at w+

curr;
• D(M∗, wcurr): the min-max moving distance at wcurr.

The next candidate location to check is
wnext = min{Kj |Kj > wcurr,Kj ∈ Φi∗,M∗(i∗)}, (8)

where Φi∗,M∗(i∗) is the set of candidates along fi∗,M∗(i∗)

which is formally defined below.

Definition 3 (Candidate Barrier Locations along fi,j). The
set of candidate barrier locations along the fi,j function is
Φi,j = Φmins

i,j ∪ Φints
i,j , where

• Φmins
i,j = {w| argmin

w
fi,j(w)} includes the w value at which

fi,j achieves its minimum;
• Φints

i,j =
∪

∀fm,n∈F
{w|fi,j(w) = fm,n(w)} includes all the w

values at which fi,j intersects with another function in F .

Note that wnext is the first candidate location along the
fi∗,M∗(i∗) function after wcurr. There might exist other candi-
date locations between wcurr and wnext but belong to a different
f function, which are skipped in our iterative algorithm to
reduce the search complexity. For example, in Fig. 5, the
next candidate to check after K2 is K6. It is determined
with the following steps: (1) the min-max matching at K+

2
is M∗ = {1→1, 2→2, 3→3}; (2) the sensor that has the
maximum moving distance in M∗ at K+

2 is s3; (3) the first
candidate along f3,3 after K2 is K6. Comparing Fig. 5 with
Fig. 3, we can see that candidate locations K3, K4, and K5

are skipped. The reason why these candidate locations can
be skipped is that, as we will show in Theorem 2, at any w
between wcurr and wnext, the maximum moving distance of any
movement strategy is always larger than or equal to that of M∗

at wcurr or wnext.

Theorem 2. ∀M ′, ∀w ∈ [wcurr, wnext], where wcurr is the
current candidate location in the iterative algorithm, and wnext
is the next candidate location to check as defined in (8), we al-
ways have D(M ′, w) ≥ min {D(M∗, wcurr), D(M∗, wnext)},
where M∗ is the min-max matching at w+

curr.

Proof: Recall that i∗ is the index of the sensor that has
the maximum moving distance in M∗ at w+

curr, i.e.,

i∗ = argmax
i

fi,M∗(i)(w
+
curr). (9)
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Fig. 5. The iterative algorithm starts with wcurr = 0. Iteration #1: The min-
max matching at w+

curr is {1→2, 2→1, 3→3}, in which s3 has the maximum
moving distance at w+

curr. The next candidate to check is the first candidate
location along f3,3 after wcurr = 0, which is K2. Iteration #2: The min-
max matching at K+

2 is {1→1, 2→2, 3→3}, in which s3 has the maximum
moving distance at K+

2 . The next candidate to check is the first candidate
along f3,3 after K2, which is K6. The same process repeats for Iteration #3
and Iteration #4 till the algorithm terminates.

Therefore, the following inequality holds for all i:

fi∗,M∗(i∗)(w
+
curr) ≥ fi,M∗(i)(w

+
curr). (10)

As wnext is the first candidate location along the fi∗,M∗(i∗)

function after wcurr, no other functions in F intersect with
fi∗,M∗(i∗) between wcurr and wnext. Consequently, we have:

∀w ∈ [wcurr, wnext],∀i, fi∗,M∗(i∗)(w) ≥ fi,M∗(i)(w). (11)

Hence, we have:
∀w ∈ [wcurr, wnext], fi∗,M∗(i∗)(w) = D(M∗, w). (12)

On the other hand, let i′ denote the index of the sensor that
has the maximum moving distance in M ′ at w+

curr, i.e.,

i′ = argmax
i

fi,M′(i)(w
+
curr). (13)

As M∗ is the min-max matching at w+
curr, we have:

fi′,M′(i′)(w
+
curr) ≥ fi∗,M∗(i∗)(w

+
curr). (14)

Similarly, due to the fact that no other functions in F intersect
with fi∗,M∗(i∗) between wcurr and wnext, we have:

∀w ∈ [wcurr, wnext], fi′,M′(i′)(w) ≥ fi∗,M∗(i∗)(w). (15)

As the definition of D(M ′, w) implies:

D(M ′, w) = max
1≤i≤N

fi,M′(i)(w) ≥ fi′,M′(i′)(w), (16)

we have:
∀w ∈ [wcurr, wnext], D(M ′, w) ≥ fi∗,M∗(i∗)(w). (17)

Furthermore, as the fi∗,M∗(i∗) function is monotone be-
tween wcurr and wnext, (17) implies:

∀w ∈ [wcurr, wnext],

D(M ′, w) ≥ min{fi∗,M∗(i∗)(wcurr), fi∗,M∗(i∗)(wnext)}.
(18)

Finally, by combining (12) with (18), we have:
∀w ∈ [wcurr, wnext],

D(M ′, w) ≥ min{D(M∗, wcurr), D(M∗, wnext)}.
(19)
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The algorithm terminates when wnext cannot be found,
meaning that we have completed the search over the entire
range [0,W ]. Fig. 5 illustrates the iterative algorithm with an
example and the iteration process is explained in its caption.

D. Complexity Analysis

In theory, there is a total of O(N2N2
min) candidates in Φ,

which means that, in the worst case, we may need O(N2N2
min)

iterations to complete the search. However, in practice, the
number of iterations is more comparable to O(NNmin). This
is because our algorithm checks the candidate barrier locations
iteratively along a continuous function that is composed of
multiple sections from different f functions. In other words,
in each iteration, our algorithm only checks the candidate
locations along a particular section of a single f function.
Thus, the total number of checked locations is on the same
order as the number of candidate locations along a single f
function, which is O(NNmin). In Section V, we validate this
complexity analysis by simulation.

V. EVALUATION RESULTS

We evaluate our algorithm by simulating two types of
sensor deployment: random uniform deployment, and line-
based deployment. In both scenarios, we compare the optimal
min-max moving distance found by our algorithm to that of
a naive algorithm that fixes the barrier location to W

2 , which
is the middle point of the deployment region. We refer to our
algorithm as “Opt” and the naive algorithm as “Mid”. The
time complexity of our algorithm is also evaluated in terms of
the number of checked candidate locations.

A. Uniform Deployment

We first evaluate our algorithm with a random uniform
deployment of N sensors in an L×W region.

1) Min-max Moving Distance: Fig. 6 shows the min-max
moving distances of the two algorithms varying with N in the
uniform case. We test different sizes of deployment region.
For each size, the effect of redundant sensors on the min-max
moving distance is also tested.

We first note that, regardless of the size of the deployment
region, the min-max moving distance of both algorithms
decreases as the number of sensors increases. This is an
intuitive result, as more sensors deployed in the area means
a higher chance that one or more sensors will already be
close to each final destination. We also note that, regardless
of the size of the deployment region, Opt outperforms Mid
more when N is larger. This is because the horizontal moving
distance tends to dominate the overall 2D moving distance
as L ≫ W , but as the number of sensors increases, the
horizontal moving distance decreases. Therefore, the benefit of
optimizing vertical moving distance becomes relatively larger.
Finally, we note from Fig. 6(b) that, given the same L and
N , the difference between Opt and Mid is larger when W is
larger. This is again due to the increased proportion of vertical
distance in the total moving distance.

Fig. 6 shows the average min-max moving distances of
Opt and Mid. To further illustrate the improvement of Opt
over Mid, Fig. 7 presents the cumulative distribution function
(CDF) of the absolute and relative improvement of Opt over
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Fig. 6. Min-max moving distance when N sensors are uniformly deployed
in an L×W region. The coverage radius of each sensor is R = 10 m.

Mid in terms of min-max moving distance, which is a result
of 1000 trials for each of three different setups shown in the
figure. In the scenario where N = 150, Opt has a min-max
moving distance which is on average 2.5 m or 11.2% less than
that of Mid, but in around 40% of the trials, the improvement
is greater. In the most extreme case, Opt reduces the min-max
moving distance by 9.4 m or 38%. Similar observations can
be made for the other two setups.
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Fig. 7. CDF of the absolute and relative improvement of Opt over Mid in
terms of min-max moving distance.

2) Number of Checked Candidate Locations: Table I shows
the number of total and checked candidate locations of selected
experiments from the uniform scenario. “Total” is the number
of candidates in Φ, which is up to N2N2

min, while “check” is
the number of candidates checked in our iterative algorithm.
When N , L, or W increases, the number of total and checked
candidates increases accordingly. However, in any scenario,
only a small portion of candidates are checked, with a number
even less than NNmin, which indicates that our algorithm is
efficient and scalable. For example, when L = 2000 m, W =
100 m, Nmin = 100, given N = 300 sensors, NNmin = 30000,
but only 1783 candidates are checked.

TABLE I
TOTAL AND CHECKED CANDIDATES FOR THE UNIFORM DEPLOYMENT

CASE. R = 10 M AND NMIN = L/2R.

L=1000,W=50
Nmin = 50

L=2000,W=50
Nmin = 100

L=2000,W=100
Nmin = 100

N total check N total check N total check
50 31656 38 100 156114 54 100 512099 208
100 128167 306 200 629182 591 200 2062666 1286
150 288983 469 300 1422913 959 300 4663225 1783

B. Line-based Deployment

The second deployment scenario is the line-based sensor
deployment strategy proposed in [14], where N sensors are
deployed in an L × W region along the line of y = W

2 .
Each sensor si is deployed at its final position [(2j−1)R, W

2 ]
with a random x-axis error δxi and y-axis error δyi , where
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δxi , δ
y
i ∼ N(0, σ). In practice, this error could be the result

of wind or other environmental conditions during an air drop.
When redundant sensors are deployed, sensors are assumed to
be dropped in groups, e.g., for N = 2Nmin, two sensors are
dropped at each position.

1) Min-max Moving Distance: Fig. 8(a) shows the min-
max moving distances of Opt and Mid with varying σ. As
σ increases, the min-max moving distances of both Opt and
Mid increase, because the sensors tend to be initially deployed
farther from their final positions. Also, as σ increases, Opt
outperforms Mid more. This is because when σ is larger,
the sensors will be scattered in a wider region. It is more
necessary to optimize the vertical moving distance in this
case. Interestingly, when σ is fixed, the difference between Opt
and Mid is larger when N is smaller, which is the opposite
of the observations in the uniform deployment case. This is
due to the following reasons. Firstly, when N increases and
multiple sensors are dropped at each point, we tend to have a
combination of sensors that yields an optimal barrier location
close to W

2 ; therefore, the difference between the vertical
moving distance of Opt and Mid is smaller. Secondly, the
vertical and horizontal moving distances are comparable in
the line-based deployment case; hence, the reduction of the
vertical moving distance can be reflected in the overall 2D
moving distance.
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(a) Min-max moving distance vs.
σ given three different N values.
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(b) CDF of the absolute improve-
ment of Opt over Mid in terms of
min-max moving distance.

Fig. 8. The min-max moving distance for the line-based deployment strategy,
with L = 1000 m, W = 50 m, R = 10 m, and Nmin = 50.

Similar to before, we plot in Fig. 8(b) the CDF of the
improvement of Opt over Mid in four different setups. We
can see that when σ = 20 m and N = 50, on average, the
min-max moving distance of Opt is 4.6 m or 8.7% less than
Mid. In the most extreme case, the min-max moving distance
of Opt may be up to 19.3 m or 36% less than Mid. Similar
observations can be made for the other setups.

2) Number of Checked Candidate Locations: Table II
shows the number of total and checked candidate locations of
selected experiments from the line-based deployment scenario.
Similar to before, when N or σ increases, the number of total
and checked candidates increases, but only a small proportion
of the total candidates are checked in any scenario.

C. Discussions
As shown above, our proposed scheme outperforms the

scheme that fixes the barrier location, significantly in terms
of the min-max moving distance, thus saving much energy
on sensor movement. As a tradeoff, it may increase the
computational complexity at the central processing unit, which
usually is much more powerful than sensor nodes and has

TABLE II
TOTAL AND CHECKED CANDIDATES FOR THE LINE-BASED DEPLOYMENT

CASE. L = 1000 M, W = 50 M, R = 10 M, AND NMIN = 50.

N
σ = 5 σ = 20

total check total check
50 6997 83 39561 197
100 30833 104 161154 338
150 72210 159 363082 495

a sustainable power supply. On the other hand, these two
schemes incur the same communication overhead, as both
algorithms are executed by the central processing unit thus
all sensors need to report their initial positions to there.

VI. CONCLUSIONS AND FUTURE WORK

In conclusion, we have shown that our proposed algorithm
reduces the min-max moving distance for mobile sensors
in a barrier coverage network by determining the optimal
barrier location, instead of fixing it a priori. Depending on
the deployment scheme, this reduction can be up to 38% of
the min-max moving distance obtained by an algorithm that
uses an intuitive fixed barrier location. Additionally, simulation
results show that our proposed algorithm for finding the
optimal barrier location is both efficient and scalable. Future
work includes extending the proposed scheme to K-barrier
coverage and to use the probabilistic coverage model, in which
sensors may collaborate with each other to further reduce the
moving distance and the number of sensors used.
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